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Abstract. We present a novel framework for characterizing signals in
images using techniques from computational algebraic topology. This
technique is general enough for dealing with noisy multivariate data in-
cluding geometric noise. The main tool is persistent homology which can
be encoded in persistence diagrams. These are scatter plots of paired
local critical values of the signal. One of these diagrams visually shows
how the number of connected components of the sublevel sets of the sig-
nal changes. The use of local critical values of a function differs from the
usual statistical parametric mapping framework, which mainly uses the
mean signal in quantifying imaging data. Our proposed method uses all
the local critical values in characterizing the signal and by doing so offers
a completely new data reduction and analysis framework for quantifying
the signal. As an illustration, we apply this method to a 1D simulated
signal and 2D cortical thickness data.

1 Introduction

In neuroimaging, it is usually assumed that measurements f in images follow
the familiar signal plus noise framework

f(x) = µ(x) + ǫ(x), x ∈ M ⊂ R
d, (1)

where µ is the unknown mean signal, to be estimated, and ǫ is noise [5] [15] [19]
[20] [26] [37]. The unknown signal is usually estimated by various spatial image
smoothing techniques over M. The most widely used smoothing technique is
kernel smoothing and its variants because of their simplicity, and because they
provide the theoretical context for scale spaces and Gaussian random field theory
[33] [37].

In the usual statistical parametric mapping framework [15] [20] [37], inference
on the model (1) proceeds as follows. If we denote an estimate of the signal by



µ̂, the residual f − µ̂ gives an estimate of the noise. One then constructs a
test statistic T (x), corresponding to a given hypothesis about the signal. As a
way to account for spatial correlation of the statistic T (x), the global maximum
of the test statistic over the search space M is taken as the subsequent test
statistic. Hence a great deal of the neuroimaging and statistical literature, have
been devoted to determining the distribution of supx∈M

T (x) using random field
theory [35] [37], permutation tests [31] and the Hotelling–Weyl volume of tubes
calculation [30].

The use of the mean signal is one way of performing data reduction, however,
this may not necessarily be the best way to characterize complex multivariate
imaging data. Thus instead of using the mean signal, in this paper we propose to
use what is known as persistent homology, which pairs the local critical values
[12] [13] [40]. It is intuitive that the local critical values of µ̂ approximately
characterizes the shape of the continuous signal µ using only a finite number of
scalar values. By pairing these local critical values in a nonlinear fashion and
plotting them, one constructs the persistence diagram [7] [12] [29] [39].

Although persistent homology is popular in computational algebraic topology
with applications in protein structure analysis [32], gene expression [11], and
sensor networks [9], as far as the authors are aware, there is no such application
in medical image analysis. This is the first paper that applies the concept of
persistent homology to medical imaging data. The proposed method is illustrated
using both simulated and real neuroimaging data. For the simulation, we use 1D
Gaussian noise in (1). The 2D neuroimaging data comes from an MRI autism
study where the interest is in quantifying the abnormal cortical thickness pattern
in autistic subjects if there is any.

2 Persistence Diagrams

A function is called a Morse function if all critical values are unique and non-
degenerate, i.e. the Hessian does not vanish [28]. We note that for integer valued
digital images, critical values of intensity may not be all unique; however, the un-
derlying continuous signal µ in (1) is likely and assumed to be a Morse function.
We estimate the signal using a kernel function and obtain a smooth estimate.

For illustrative purposes, we will show how to construct the persistence di-
agram for a 1D Morse function. Assuming µ is a Morse function with a finite
number of critical values, define a sublevel set R(y) = µ−1(−∞, y]. The sub-
level set is the subset of R that satisfies µ(x) ≤ y. The sublevel set can have
many disjoint components. Let #R(y) be the number of connected components
in the sublevel set. Let us denote the local minimums as g1, · · · , gm and the local
maximums as h1, · · · , hn. Since the critical values of the Morse function are all
unique, we can strictly order the local minimums from the smallest to the largest
as

g(1) < g(2) < · · · < g(m)

and similarly for the local maximums as

h(1) < h(2) < · · · < h(n).



We further collect all the critical values,

z1 = g1, . . . , zm = gm, zm+1 = h1, . . . , zm+n = hn

and order them as
z(1) < z(2) < · · · < z(m+n).

At each minimum, we have the birth of a new component, i.e.

#R(gi) = #R(gi − ε) + 1

for sufficiently small ε. The new component is identified with the local minimum
gi. Similarly at each maximum, we have the death of a component, i.e.

#R(hi) = #R(hi − ε) − 1,

and two components will merge as one. The number of connected components
will only change if we pass through critical points and we can iteratively compute
#R at each critical value as

#R(z(i+1)) = #R(z(i)) ± 1.

The sign depends on whether z(i+1) is a maximum (−1) or a minimum (+1).
This is the basis of Morse theory [28] that says the topological characteristics
of a topological spaces are characterized by the local behavior at critical points
of a Morse function on that space. Persistent homology produces pairs (gi, hj)
of critical values so that a component is born at gi and dies at hj . Of course
these are the (topological) parameters of interest which are unknown and to be
statistically estimated with data generated according to (1).

As an example, the birth and death processes are illustrated in Figure 1,
where the gray dots are simulated with Gaussian noise with mean 0 and variance
0.22 as

f(x) = µ(x) + N(0, 0.22)

with signal µ(t) = 10(t − 1/2)2 + cos(7πt)/2. The signal µ is estimated using
heat kernel smoothing [5] and plotted as the red line. Now we increase y from
−∞ to ∞. When we hit the first critical value y = a, the sublevel set consists

of a single point, i.e. #̂R(a) = 1. When we hit the minimum at y = b, we have

the birth of a new component at b, i.e. #̂R(b) = 2. When we hit the maximum
at y = c, the two components identified by a and c are merged together to form

a single component, i.e. #̂R(c) = 1.
When we pass through a maximum and merge two components, we pair the

maximum with the higher of the two minimums of the two components [12].
Doing so we are pairing the birth of a component to its death. Obviously the
paired extremes do not have to be adjacent to each other. If there is a boundary,
the function value evaluated at the boundary is treated as a critical value. In
our simulated example, we need to pair (b, c) and (d, e). Other critical values
are paired similarly. The reduced persistence diagram is then the scatter plot of
these pairings. For technical reasons, the persistence diagram also include all of
the points (a, a), where a ∈ R.



Fig. 1. The births and deaths of components in sublevel sets. We have critical values
a, b, c, d, e, f , where a < b < d < f are minimums and c < e are maximums. At y = a,
we have a single component marked by a single gray area. When we increase the level
to y = b, we have the birth of a new component in addition to the existing component
born at a. At the maximum y = c, the two components merge together to form a single
component. Following the pairing rule [12], we pair (b, c) and (d, e). Other critical values
are paired similarly.

2.1 Persistence Diagram for Cortical Data

For a 2D Morse function defined on a cortical manifold M ⊂ R3, we need to
also consider saddle points so the situation is more complicated. At a saddle
point, we can have two possible pairings corresponding to either birth or death.
A saddle point may join two components. This case is analogous to the local
maximum in the 1D case. In this case, persistent homology pairs the value of
the saddle point with the larger of the minimums of the two components. This
pair is recorded in the persistence diagram of degree 0 (Figure 4). If the saddle
point does not join to disconnected components, then a hole is born in the
sublevel sets. Persistent homology pairs the value at this saddle point with the
value of the local maximum where this hole disappears. This pair is recorded in
the persistence diagram of degree 1 (Figure 4). A precise definition is given in
Section 4.

Among various cortical measures, in this paper we consider cortical thickness,
which has been used in characterizing various clinical populations [6] [14] [23]
[24] [27] [38]. High resolution magnetic resonance images of age-matched right-
handed males (6 high functioning autistic and 11 normal controls) were obtained
using a 3-Tesla GE SIGNA scanner. The collected images went through inten-
sity nonuniformity correction [34] and were spatially normalized into the MNI
stereotaxic space via a global affine transformation [8]. Subsequently a supervised



Fig. 2. Cortical thickness is computed as the distance between the outer (yellow) and
the inner cortical (blue) surfaces. The cortical thickness is mapped onto a unit sphere
and goes through heat kernel smoothing [5]

neural network classifier was used for tissue segmentation [22]. Brain substruc-
tures such as the brain stem were removed to make both the outer and the
inner surfaces to be topologically equivalent to a sphere. A deformable surface
algorithm [25] was used to obtain the inner cortical surface by deforming from
a spherical mesh (Figure 2). Then the outer surface was obtained by deforming
the inner surface. The deformation process establishes the structural correspon-
dence between the two surfaces. The cortical thickness f is then defined as the
distance between the corresponding vertices along the cortical mesh M.

Since the deformable surface algorithm starts with a spherical mesh, there is
no need to use other available surface flattening algorithms [1] [2] [16] [17] [36]
for mapping thickness to the unit 2–sphere S2. Let ζ : M → S2 be a sufficiently
smooth surface flattening obtained from the deformable surface algorithm. Then
the pullback (ζ−1)∗µ̂ = µ̂ ◦ ζ−1 projects the cortical thickness from the cortical
surface M to the unit sphere. Figure 2 shows the pull back and the corresponding
heat kernel smoothing on S2. Note that in the process of flattening, the critical
values do not change so the persistence diagram should be identical for µ̂ and its
pullback (ζ−1)∗µ̂. Therefore, we will construct the persistence diagram on the
unit 2–sphere by projecting the cortical data to the sphere.

3 Kernel Smoothing

As described in Section 2.1, after the application of a deformable surface algo-
rithm, our data is on the unit 2– sphere, S2. So our measurement, f : S2 → R

is given by the nonparametric regression formula (1), where µ is the unknown
signal and ǫ is the noise. In this section, we estimate the persistent homology of
the sublevel sets of µ̂, an estimator of µ.

We begin by smoothing the data using the kernel,

Kx0
(x) = max(1 − κ arccos(x′

0x), 0),



Fig. 3. The flat maps of cortical thickness at different smoothing scales. The maximums
and minimums are denoted with black and white crosses respectively. The smoothing
is done along the unit sphere and flattened using the Eulger angles θ (vertical axis)
and ϕ (horizontal axis) associated with the 2-sphere. Smoother thickness produces less
number of critical points and, in turn, less number of pairings.

where κ is given in [21] and arccos(x′y) gives the geodesic distance between x
and y on the unit sphere. We smooth the data using the usual kernel function
estimator

µ̂(x) =

∑
i f(xi)Kxi

(x)∑
i Kxi

(x)
. (2)

To implement this we need to choose the corresponding design points which
we do in the following way. We start by choosing a triangulation, T , of the
sphere whose number of vertices satisfies the conditions in [3]. For our data, we
start with an icosahedron and iteratively subdivide it three times, obtaining a
triangulation with 1280 faces and 642 vertices.

For a sample of size n, define the estimator µ̂n in the following way. For each
vertex v in our triangulation, we define µ̂n(v) = µ̂(v) according to (2). For each
face in our triangulation, we define µ̂n on the face by affine interpolation from
the values on the vertices. This construction is well defined on the edges, and
defines a function on the sphere.

3.1 The persistence diagrams of µ̂n

It remains to calculate the persistence diagrams of the sublevel sets of µ̂n. We
will see that because of the way µ̂n is constructed, we can calculate its persistence
diagrams using our triangulation, T .

We filter T using µ̂n as follows. Let r1 ≤ r2 ≤ . . . ≤ rm be the ordered list
of values of µ̂n on the vertices of the triangulation. For 1 ≤ i ≤ m, let Ti be the
subcomplex of T containing all vertices v with µ̂n(v) ≤ ri and all edges whose



Fig. 4. The persistence diagrams for 11 control (blue) and 16 autistic (red) subjects in
degree 0, (a) and (b), and degree 1, (c) and (d). One notices an additional layer of struc-
ture in the autistic group in both persistence diagrams. The figure clearly demonstrates
the feasibility of using the persistence diagram for discriminating populations.

boundaries are in Ti and all faces whose boundaries are in Ti. This construction
is called a Vietoris–Rips complex. We obtain the following filtration of T ,

φ = T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Tm = T .

The end result is that the topological properties of the sublevel sets of µ̂n

will equal the topological properties of the above filtration of T .

Using the software Plex, [10], we calculate the persistent homology, in degrees
0, 1 and 2 of the triangulation T filtered according to the estimator for each of the
27 subjects. Since the data is two–dimensional, we do not expect any interesting
homology in higher degrees. In degree two, the persistent homology consists of
a single persistence pair (a,∞), where a is the maximum of µ̂n.

To compare the autistic subjects and control subjects, we take the union of
the persistence diagrams of the subjects (Figure 4).



4 Statistical Properties of Persistence Diagram

In this section we will make more precise definition of a persistence diagram [7]
and present results that compare the topological parameters and their estimators
[3] [4].

The persistent homology of the signal, µ, is encoded in its reduced persistence
diagram, D̄(µ), which is a multiset of points each corresponding to the persis-
tence of one topological feature, as in the examples above. In order to define a
metric for such diagrams, it is convenient to add the ordered pairs (a, a) for all
a ∈ R, each with infinite multiplicity. Call this multiset the persistence diagram

of µ, denoted D(µ). We now give the precise definition.
Let k be a nonnegative integer. Given µ : S2 → R and a ≤ b ∈ R the inclusion

of sublevel sets iba : S2
µ≤a →֒ S2

µ≤b induces a map on homology

Hk(iba) : Hk(S2
f≤a) → Hk(S2

f≤b).

The image of Hk(iba) is the persistent homology group from a to b. Let βb
a be

its dimension. This counts the independent homology classes which are born by
time a and die after time b.

Call a real number a a homological critical value of µ if for all sufficiently
small ε > 0 the map Hk(ia+ε

a−ε) is not an isomorphism. Call µ tame if it has
finitely many homological critical values, and for each a ∈ R, Hk(S2

µ≤a) is finite
dimensional. In particular, any Morse function on a compact manifold is tame.

Assume that µ is tame. Choose ε smaller than the distance between any two
homological critical values. For each pair of homological critical values a < b,
we define their multiplicity µb

a which we interpret as the number of independent
homology classes that are born at a and die at b. We count the homology classes
born by time a + ε that die after time b − ε. Among these subtract those born
by a − ε and subtract those that die after b + ε. This double counts those born
by a − ε that die after b + ε, so we add them back. That is,

µb
a = βb−ε

a+ε − βb−ε
a−ε − βb+ε

a+ε + βb+ε
a−ε.

The reduced persistence diagram of µ, D̄(µ), is the multiset of pairs (a, b)
together with their multiplicities µb

a. We call this a diagram since it is convenient
to plot these points on the plane. We will see that it is useful to add homology
classes which are born and die at the same time. Let the persistence diagram of
µ, D(µ), be given by the union of D̄(µ) and {(a, a)}a∈R where each (a, a) has
infinite multiplicity.

A metric on the space of persistence diagrams is the bottleneck distance
which bounds the Hausdorff distance [7]. It is given by

dB(D(µ), D(ν)) = inf
γ

sup
p∈D(µ)

‖p − γ(p)‖∞, (3)

where the infimum is taken over all bijections γ : D(µ) → D(ν).



In [7], the following result is proven:

dB(D(µ), D(ν)) ≤ ‖µ − ν‖∞ (4)

where µ, ν : M → R are tame functions. As an immediate consequence of (4), we
can apply it to the model (1). Let Λt(β, L) denote the subset of tame functions
in Λ(β, L) the class of Hölder functions

Λ(β, L) = {f : S2 → R | |f(x) − f(z)| ≤ L(arccos(x′y))β , x, z ∈ S2}, (5)

where 0 < β ≤ 1 and L > 0.
If we assume µ ∈ Λt(β, L) for the model (1) ǫ is N(0, σ2), for the estimator

µ̂n with 0 < β ≤ 1 and L > 0,

sup
µ∈Λt(β,L)

EdB (D(µ̂n), D(µ)) ≤ L2/(2β+2)

(
σ2 (β + 2)23

β2

log n

n

)β/(2β+2)

as n → ∞ [3].
Consequently, because of the large n in medical image data, Figure 4 is an

accurate description of the population parameters and therefore the extra layer
of homology classes for the autistic group is most likely significant.

5 Discussion

We have presented the concept of persistence diagrams and described the filtra-
tion based algorithm for constructing the persistence diagrams. Since cortical
thickness is highly noisy, kernel smoothing is applied to remove high frequency
spatial noise before the filtration. The constructed degree 0 and 1 persistence
diagrams seem to show a significant extra layer of homology classes for the autis-
tic group (Figure 4). Cortical thickness has been shown to be a discriminating
anatomical feature for autism although the underlying biological mechanism is
still unknown [6]. It is found that autistic subjects exhibit more structural vari-
ability than normal controls. It is likely that autistic subjects exhibit a more
complex underlying geometric and topological pattern of the brain which is the
cause of additional anatomical variability.

It is unclear how one determines the possible statistical significance level of
a seemingly significant extra layer of persistent homology classes. One may be
tempted to use hypothesis-free classification frameworks for inference. However,
Figure 4 shows that classification based on possibly discriminating spatial pat-
tern might be difficult if not impossible. Note that the autistic scatter plots
basically encompass the control scatter plots for the degree 0 and degree 1 per-
sistence diagrams. Since there are a lot of overlap, it may be difficult to directly
apply machine learning techniques.

It is hoped that this paper offers a spring board for further investigation of
the persistence diagram based characterization of medical images. There are a lot
of methodological issues we have not discussed in the paper such as an inferential
procedure or the estimation of confidence circles around paired points possibly
via the bootstrap. These we hope to do in future works.
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Abstract. We present a novel computational framework for character-
izing signal in brain images via nonlinear pairing of critical values of the
signal. Among the astronomically large number of different pairings pos-
sible, we show that representations derived from specific pairing schemes
provide concise representations of the image. This procedure yields a
“min-max diagram” of the image data. The representation turns out to
be especially powerful in discriminating image scans obtained from dif-
ferent clinical populations, and directly opens the door to applications
in a variety of learning and inference problems in biomedical imaging.
It is noticed that this strategy significantly departs from the standard
image analysis paradigm – where the ‘mean’ signal is used to character-
ize an ensemble of images. This offers robustness to noise in subsequent
statistical analyses, for example; however, the attenuation of the signal
content due to averaging makes it rather difficult to identify subtle vari-
ations (which may be clinically relevant). The proposed topologically
oriented method seeks to address these limitations by characterizing and
encoding topological features or attributes of the image. As an applica-
tion, we have used this method to characterize (in the form of min-max
diagrams) cortical thickness measures along brain surfaces in classifying
autistic subjects. Our promising experimental results provide evidence
of the power of this representation.

1 Introduction

The use of critical values of measurements (e.g., in images) within classical im-
age analysis and computer vision has been relatively limited so far, and typically
appear as part of simple preprocessing tasks such as feature extraction and iden-
tification of “edge pixels” in an image. For example, first or second order image
derivatives may be used to identify the edges of objects (e.g., LoG mask) to
serve as the contour of an anatomical shape, possibly using priors to provide



additional shape context. Specific properties of critical values as a topic on its
own, however, has received less attention. Part of the reason is that it is diffi-
cult to construct a streamlined linear analysis framework using critical points,
or values of images. Also, the computation of critical values is a nonlinear pro-
cess and almost always requires the numerical estimation of derivatives. In some
applications where this is necessary (e.g., in level sets [8]), the discretization
scheme must be chosen carefully, and remains an active area of research [8]. It
is noticed that in most of these applications, the interest is only in the stable
estimation of these points rather than (1) their properties, and (2) how these
properties vary as a function of images. We note that in brain imaging, on the
other hand, the use of extreme values has been quite popular in other types of
problems. For example, these ideas are employed in the context of correction
for multiple comparisons using random field theory [11]. Recall that in random
field theory, the extreme of a statistic is obtained from an ensemble of images,
and is used to compute the p-value (for correcting for correlated noise across
neighboring voxels). Our interest in this paper is to take a topologically oriented
view of the image data. We seek to interpret the critical values in this context
and assess their response as a function of brain image data. In particular, we
explore specific representation schemes (to be introduced shortly) and evaluate
the benefits they afford with respect to different applications.

The calculation of the critical values of a certain function of images (e.g.,
image intensities, cortical thickness, curvature maps etc.) is the first step of our
procedure. This is performed after heat kernel smoothing [3], which allows us
to obtain analytic estimation of the derivatives. It is the second step which is
more interesting, and a central focus of the paper. The obtained critical values
are paired in a nonlinear fashion following a specific pairing rule to produce
so-called min-max diagrams. These are similar to the theoretical construct of
persistence diagrams in algebraic topology and computational geometry, but
have notable differences (discussed in §2.2). Min-max diagrams resemble scatter
plots, and lead to a powerful representation of the key characteristics of their
corresponding images. We discuss these issues in detail, and provide a number
of examples and experiments to highlight their key advantages, limitations, and
possible applications to a wide variety of medical imaging problems.

This paper makes the following contributions: (1) We propose a new topo-
logically oriented data representation framework using the min-max diagrams;
(2) We present a new O(n log n) algorithm for generating such diagrams with-
out having to modify or adapt the complicated machinery used for constructing
persistence diagrams [6]; (3) Using brain MRI, we demonstrate that using the
min-max diagram representation, upon choice of a suitable kernel function, the
subsequent classification task (e.g., using support vector machines) becomes very
simple. In other words, because this representation captures the relevant features
of the image nicely, it induces separability in the distribution of clinically dif-
ferent populations (e.g., diseased and control groups). We show that significant
improvements can be obtained over existing techniques.



2 Main Ideas

Consider measurements f from images given as

f(t) = µ(t) + ε(t), t ∈M ⊂ Rd, (1)

where µ is the unknown mean signal (to be estimated) and ε is noise. The
unknown mean signal is estimated via image smoothing over M, and denoted
as µ̂. Traditionally, the estimate for the residual f − µ̂ is used to construct a
test statistic corresponding to a hypothesis about the signal. The mean signal
may not be able to fully characterize complex imaging data, and as a result,
may have limitations in the context of inference. Hence, we propose to use a
new topologically motivated framework called the min-max diagram, which is
the scatter plot of specific pairing of critical values. Intuitively, the collection of
critical values of µ can approximately characterize the shape of the continuous
signal µ. By pairing critical values in a nonlinear fashion and plotting them, we
construct the min-max diagram. We will provide additional details shortly.

2.1 Heat Kernel Smoothing

In order to generate the min-max diagram, we need to find the critical values of
µ. It requires estimating the unknown signal smoothly so that derivatives can be
computed. We avoid the diffusion equation based implicit smoothing techniques
[2] since the image derivatives can only be obtained via finite difference type
approaches. Instead, we present a more flexible spectral approach called heat
kernel smoothing that explicitly represents the solution to the diffusion equation
analytically. Heat kernel smoothing analytically solves the following equation

∂F

∂σ
= ∆F, F (t, σ = 0) = f(t).

The solution is given in terms of eigenfunctions ψk (and the corresponding
eigenvalues λk) of the Laplace-Beltrami operator, i.e., ∆f + λf = 0. Define the
heat kernel Kσ as

Kσ(t, s) =

∞X
k=0

e−λkσψk(t)ψk(s).

The heat kernel smoothing estimate of µ is then given by

bµ =

Z
M
Kσ(t, s)f(s) dη(s) =

∞X
i=0

e−λkσfkψk(t). (2)

The Fourier coefficients fk =
∫

M fψk dη are estimated using least squares [10].
For a given bandwidth, the expansion is truncated at the degree where adding
more terms will not increase the goodness of fit.
Examples. For M = [0, 1], with the additional constraints f(t + 2) = f(t) and
f(t) = f(−t), the eigenfunctions are

ψ0(t) = 1, ψk(t) =
√

2 cos(kπt)



Fig. 1. The birth and death process of sublevel sets. Here a < b < c < f are minimums
and d < e < g are maximums. At y = b, we add a new component to the sublevel
set. When we increase the level to y = d, we have the death of the component so we
pair them. In this simulation, we pair (f, g), (c, e) and (b, d) in the order of parings
generated in Algorithm 1.

with the corresponding eigenvalues λk = k2π2. For simulation in Fig. 1, we used
σ = 0.0001 and truncated the series at the 100-th degree.

For M = S2, the eigenfunctions are the spherical harmonics Ylm(θ, ϕ) and
the corresponding eigenvalues are λl = l(l + 1). The bandwidth σ = 0.001 and
degree k = 42 was used for cortical thickness example in Fig. 2. We found that
bandwidths larger than 0.001 smooth out relevant anatomical detail.
Analytic Derivatives. The explicit analytic derivative of the expansion (2) is
simply given by

Dbµ =

∞X
i=0

e−λiσfiDψi(t)

where D is ∂
∂t for [0, 1] and ( ∂∂θ ,

∂
∂ϕ ) for S2. For the unit interval, the derivatives

are Dψl(t) = −
√

2lπ sin(lπt). For S2, the partial derivatives with respect to θ are
given in iterative formulas. Fig. 2 shows the result of minimum and maximum
detection after heat kernel smoothing.

2.2 Min-max Diagram

A function is called a Morse function if all critical values are distinct and non-
degenerate, i.e., the Hessian does not vanish. For images (where intensities are
given as integers), critical values of intensity may not all be distinct; however,
the underlying continuous signal µ in (1) can be assumed to be a Morse function.
Assuming µ̂ is a Morse function, we define a sublevel set as R(y) = µ̂−1(−∞, y].
The sublevel set is the subset of M that satisfies µ̂(t) ≤ y. As we increase y from
−∞, the number of connected components of R(y) changes as we pass through
critical values.

Let us denote the local minimums as g1, · · · , gm and the local maximums as
h1, · · · , hn. Since the critical values of a Morse function are all distinct, we can
strictly order the local minimums from the smallest to the largest as g(1) < g(2) <
· · · < g(m) and similarly for the local maximums as h(1) < h(2) < · · · < h(n) by
sorting them. At each minimum, the sublevel set adds a new component while



Fig. 2. Heat kernel smoothing of cortical thickness and surface coordinates with σ =
0.001 and degree k = 42. For better visualization, it has been flattened onto the unit
sphere. The white (black) crosses are local minimums (maximums). They will be paired
in a specific manner to obtain the min-max diagram. The min-max diagram is invariant
to whether it is constructed from the cortical surface or from the unit sphere.

at a local maximum, two components merge into one. By keeping track of the
birth and death of components, it is possible to compute topological invariants
of sublevel sets such as Euler characteristics and Betti numbers (see [6]).
Simulation. The birth and death processes are illustrated in Fig. 1, where the
gray dots are simulated with Gaussian noise with mean 0 and variance 0.22 as

f(t) = t+ 7(t− 1/2)2 + cos(8πt)/2 +N(0, 0.22).

The signal is estimated and plotted as the red line using the 1D heat kernel
smoothing in §2.1. Let us increase y from −∞ to ∞. At y = b, we add a new
component to the sublevel set R(y). When we increase the level to y = d, we
have the death of the component so we pair b and d. In this simulation, we need
to pair (b, d), (c, e) and (f, g).

Pairing Rule. When we pass a maximum and merge two components, we pair
the maximum with the higher of the minimums of the two components [6]. Doing
so we are pairing the birth of a component to its death. Note that the paired
critical values may not be adjacent to each other. The min-max diagram is then
defined as the scatter plot of these pairings.

For higher dimensional Morse functions, saddle points can also create or
merge sublevel sets so we also have to be concerned with them. If we include
saddle points in the pairing rule, we obtain persistence diagrams [6] instead of
min-max diagrams. In one dimension, the two diagrams are identical since there
are no saddle points in 1D Morse functions. For higher dimensions, persistence
diagrams will have more pairs than min-max diagrams. The addition of the
saddle points makes the construction of the persistence diagrams much more
complex and will be pursued in subsequent research. We note that [12] presents
an algorithm for generating persistence diagrams based on filteration of Morse
complexes.
Algorithm. We have developed a new simpler algorithm for pairing critical val-
ues. Our algorithm generates min-max diagrams as well as persistence diagrams



Fig. 3. Min-max diagram for 11 control (blue) and 16 autistic (red) subjects. The
pairings for autism often occurs closer to y = x line indicating there is greater high
frequency noise in autism. This observation is consistent with the autism literature
where it has been found that there is greater anatomical variability in autism subjects
than the controls subjects. This figure suggests that the min-max diagram may indeed
be useful for discriminating populations.

for 1D Morse functions. At first glance, the nonlinear nature of pairing does not
seem to yield a straightforward algorithm. The trick is to start with the max-
imum of minimums and go down to the next largest minimum in an iterative
fashion. The algorithm starts with g(m) (step 3). We only need to consider max-
imums above g(m) for pairing. We check if maximums hj are in a neighborhood
of g(m), i.e. hj ∼ g(m). The only possible scenario of not having any larger maxi-
mum is when the function is unimodal and obtains the global minimum g(m). In
this situation we have to pair (g(m),∞). Since∞ falls outside our ‘plot’, we leave
out g(m) without pairing. Other than this special case, there exists at least one
smallest maximum h∗m in a neighborhood of g(m) (intuitively, if there is a valley,
there must be mountains nearby). Once we paired them (step 4), we delete the
pair from the set of extreme values (step 5) and go to the next maximum of min-
imums g(m−1) and proceed until we exhaust the set of all critical values (step 6).
Due to the sorting of minimums and maximums, the running time is O(n log n).
This may also be implemented using a plane-sweep approach [4] which also gives
a running time of O(n log n). In this case, pairing will be based on how points
enter or leave the queue of “events” as the plane (or line) sweeps in the vertical
direction.
Algorithm 1 Iterative Pairing and Deletion

1. H ← {h1, · · · , hn}.
2. i← m.
3. h∗i = arg minhj∈H{hj |hj > g(i), hj ∼ g(i)}.
4. If h∗i 6= ∅, pair (g(i), h∗i )
5. H ← H − h∗i .
6. If i > 1, i← i− 1 and go to Step 3.

3 Experimental Results

We used an MRI dataset of 16 highly functional autistic subjects and 11 nor-
mal control subjects (aged-matched right-handed males). These images were ob-



Fig. 4. (a) Min-max diagram of an autistic subject from Fig. 2. (b) The concentration
map of the min-max diagram is constructed by discretizing the square [1, 7]2 into 502

uniform pixels and evaluating the number of pairs within a circle (r = 0.2) centered on
the pixel. (c) The t-test statistic (autism - control) shows significant group differences
in red regions (t ≥ 3.61) vs blue (t ≤ −4.05) regions at level 0.05 (corrected). (d) PDF
of the concentration map.

tained from a 3-Tesla GE SIGNA scanner, and went through intensity nonunifor-
mity correction, spatially normalized into the MNI stereotaxic space, and tissue
segmentation. A deformable surface algorithm was used to obtain the inner cor-
tical surface by deforming from a spherical mesh (see Fig. 2). The outer surface
M was obtained by deforming the inner surface further. The cortical thickness
f is then defined as the distance between the two surfaces [7], this measure is
known to be relevant for autism. Since the critical values do not change even if
we change the underlying manifold from M to S2, the min-max diagram must
be invariant as well. Therefore, the min-max diagram is constructed on the unit
sphere by projecting the cortical data on to the sphere. Fig. 3 shows the super-
imposed min-max diagram for 11 control (blue) and 16 autistic (red) subjects,
and a single subject example is shown in Fig. 4. Pairings for autistic subjects
are more clustered near y = x indicating higher frequency noise in autism. More
pairing occurs at high and low thickness values in the control subjects showing
additional topological structures not present in autism.
Statistical Inference. We have formally tested our hypothesis of different topo-
logical structures between the groups. Given a min-max diagram in the square
[1, 7]2, we have discretized the square with the uniform grid such that there are
a total of 502 pixels (see Fig. 4-b). A concentration map of the pairings was ob-
tained by counting the number of pairs in a circle of radius 0.2 centered at each
pixel. Notice that this approach is somewhat similar to the voxel-based mor-
phometry [1], where brain tissue density maps are used as a shapeless metric
for characterizing concentration of the amount of tissue. The inference at 0.05
level (corrected for multiple comparison) was done by performing 5000 random
permutations on the maximum of t-statistic of concentration maps (Fig. 4-c).
SVM Based Classification. Our final set of experiments were performed to
evaluate the usefulness of min-max diagrams for classification at the level of in-
dividual subjects. We view the concentration map of each min-max diagram as
a PDF (Fig. 4), which allows easy construction of appropriate kernels and mak-
ing use of Support Vector Machines (SVM). We evaluated linear and Gaussian
weighted kernels (using Bhattacharya distance between the two PDFs [5]) and
found that the accuracy results were quite similar. To perform our evaluations



relative to existing techniques, we used data shared with us by the authors in
[9]. We summarize our results next.

For k-fold cross-validation, by varying k ∈ {9, · · · , 2}, and performing 30
random runs for each k value (calculating the mean accuracy), we consistently
achieved near perfect accuracy. The algorithm performs exceedingly well for 2-
fold cross-validation as well – when only one half of the data is used as the
training set. We incrementally decreased the size of the training set (up to 35%)
and found that the algorithm still gives more than 96% accuracy. A simple com-
parison with ∼ 90% accuracy estimates reported in [9] for this data suggest that
the improvements in accuracy comes primarily from our min-max representation.

4 Conclusions

We have presented a unified framework of the min-max diagram based signal
characterization in images. While unconventional, we believe that this represen-
tation is very powerful and holds considerable promise for a variety of learning
and inference problems in neuroimaging. To demonstrate these ideas, we applied
the methods to characterize cortical thickness data in a dataset of autistic and
control subjects, via the use of a new Iterative Pairing and Deletion algorithm
(to generate the min-max diagram). Our results indicate that significant im-
provements in classification accuracy are possible (relative to existing methods)
merely by representing the input data as a set of min-max diagrams. Finally, we
note that this paper only scratches the surface, and future research will clearly
bring up other applications where these ideas might be useful.
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