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Abstract

The difference between networks has been often assessed by the difference of global

topological measures such as the clustering coefficient, degree distribution and modular-

ity. In this paper, we introduce a new framework for measuring the network difference

using the Gromov-Hausdorff (GH) distance, which is often used in shape analysis. In

order to apply the GH distance, we need to know the shape of the network which is not

well defined. Thus, we define the shape of the brain network by piecing together the

patches of locally connected nearest neighbors using the graph filtration. The shape of

the network is then transformed to an algebraic form called the single linkage matrix.

The single linkage matrix is subsequently used in measuring network differences using

the GH distance. As an illustration, we apply the proposed framework to compare

the FDG-PET based functional brain networks out of 24 attention deficit hyperactiv-

ity disorder (ADHD) children, 26 autism spectrum disorder (ASD) children and 11

pediatric control subjects.

1 Introduction

The functional and anatomical connectivity studies based on graph theory have provided new

understanding of human brain [1, 2, 3, 4]. The characteristic of the brain network is quantified

by the global topological measures such as clustering coefficient, characteristic path length

and modularity [1, 5, 6]. The network comparison is then performed by determining the

difference between these topological measures. Each measure reflects different topological

characteristic of the brain network. For example, the clustering coefficient and characteristic

path length are related with the small-worldness, the assortativity and betweenness are

related with the scale-freeness and the modularity is related with the community structure

[7, 1]. These measures give us a clue for whether the networks have similar topological

properties. However, it is unclear which measure is appropriate for network comparison.

Instead of trying to find one particular characteristic of network at a given scale, one can

also look at the overall change of topological features through persistent homology [8, 9].

2



In the persistent homology, the topological features such as the connected components and

circles of the network are tabulated in terms of the algebraic form known as Betti numbers.

The network difference is then often measured using the bottleneck distance which basically

ignores the geometric information of network nodes.

In this paper, we propose a radically different computational framework for determining

network difference. Instead of trying to model the topological features of networks, we first

define the shape of network using the topological concept called the graph filtration. The

graph filtration is a new graph simplification technique that iteratively build a nested sub-

graphs of the original graph. The algorithm simplifies a complex graph by piecing together

the patches of locally connected nearest nodes. The process of graph filtration can be shown

to be mathematically equivalent to the single linkage hierarchical clustering and dendrogram

construction.

Once the shape of network is defined, we transform the shape into an algebraic form

called the single linkage matrix. The single linkage matrix is subsequently used in com-

puting the network difference using the Gromov-Hausdorff (GH) metric. The GH metric

is a deformation-invariant dissimilarity measure often used in matching deformable shapes

[10, 11]. The GH metric was never used in measuring the distance between brain networks

before.

The proposed method is applied in differentiating functional brain networks with 96 re-

gions of interest (ROIs) extracted from FDG-PET data for 24 attention-deficit hyperactivity

disorder (ADHD), 26 autism spectrum disorder (ASD) and 11 pediatric controls (PedCon).

Numerical experiments show that the graph filtration framework can differentiate the popula-

tions better than most known graph theoretic approaches and the recently popular persistent

homology framework.

The methodological contributions of this paper are:

(1) We propose a new geometric framework for defining the shape of networks using graph

filtration. We introduce the concept of graph filtration and show that it is equivalent
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to the single linkage hierarchical clustering and dendrogram construction. This implies

that there is a mapping from any complex networks to dendrograms.

(2) We determine the distance between networks using the Gromov-Hausdorff metric for

the first time. The framework is then used in determining the brain network difference.

(3) We demonstrate that our framework outperforms most of graph theoretic measures

and the recently popular persistent homology framework.

2 Main Ideas

The main problem we are trying to solve is to compare and quantify the brain network

differences in ADHD, ASD and PedCon populations. We start with briefly introducing the

correlation-based brain network construction.

2.1 Brain Network Construction.

Suppose FDG-PET measurements are obtained in p selected ROIs in n subjects. Each ROI

serves as a node in the brain network. Let X = {x1, · · · , xp} be the collection of such

nodes. Let fi be the FDG-PET measurement at the node xi modeled as a random variable.

The measurement fi are assumed to be distributed with mean zero and the covariance

Σ = [σij] ∈ Rp×p. The correlation between fi and fj is given by

corr(fi, fj) =
σij√
σiiσjj

.

We can define the metric between the nodes xi and xj through the correlation:

cX(xi, xj) = 1− corr(fi, fj).

Then the brain network can be represented as the metric space (X, cX).
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Figure 1: (a) An example of shape representation using a network of nodes X = {x1, . . . , x6}

and the distance cX . The pair (X, cX) defines the hand. (b) Graph filtration algorithm for

representing the graph (X, cX). (c) The resulting shape can be equivalently represented as

the single linkage matrix dX and the geodesic distance matrix lX . dX and lX are deformation-

invariant. (d) A deformable hand where dX and lX are invariant.

2.2 Shape of Brain Network.

One can characterize the deformable shapes in images using a collection of nodes and the

mapping between the deforming nodes. In deformation-invariant shape matching frame-

works [10, 11], we can identify an open and bended hands as equivalent by establishing the

correspondence between nodes (Fig. 1 (d)).

Unlike shapes in images, the shape of brain network is difficult to define and visualize

since it is not determined by the Euclidean distance between the nodes, but the correlation
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between measurements on the nodes. In this paper, we define the shape of the network by

piecing together patches of locally connected nearest neighbor nodes in an iterative fashion

as illustrated in Fig. 1 (b).

The brain network can be viewed as the weighted graph (X, cX) consisting of the collection

of nodesX and the distance cX . We start with ε = 0 and increase the ε value at each iteration.

The value of ε is taken discretely from the smallest cX(xi, xj) to the largest cX(xi, xj).

We connect two nodes xi and xj if the distance cX(xi, xj) is smaller than ε. By increasing

ε, more connected edges are allowed and larger patches are generated. If two nodes are

already connected directly or indirectly via other intermediate nodes in smaller ε values, we

do not connect them. For example, in Fig. 1 (b), we do not connect x2 and x3 at ε = 3.2

since they were already connected through other nodes at ε = 3. When ε is larger than any

distance cX(xi, xj), the iteration terminates since the graph does not change anymore.

Suppose Gj corresponds the graph obtained at the j-th iteration with ε = εj. Then for

ε1 < ε2 < ε3 < · · · ,

the algorithm generates the sequence of graphs

G1 ⊂ G2 ⊂ G3 ⊂ · · · .

Such the sequence of the nested graph is called the graph filtration in algebraic topology[8, 9].

In this fashion, we define the shapes of the brain network as a sequence of nested subgraphs

(Fig. 2).

2.3 Single Linkage Matrix.

The graph filtration exactly corresponds to the single linkage hierarchical clustering as

demonstrated in Fig. 1 (b). The equivalence to the graph filtration and the dendrogram

is self-evident. The linking of nodes xi and xj corresponds to the linking of leaves in the

dendrogram. Increasing the ε value in the graph filtration corresponds to increasing the

height of the dendrogram.
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Figure 2: The shapes of brain networks at the end of the graph filtration (a) ADHD, (b)

ASD and (c) PedCon.

In the hierarchical clustering, the distance between patches of nodes C1 and C2 is given by

the distance between the closest members in C1 and C2:

dX(C1, C2) = min
x1∈C1

min
x2∈C2

cX(x1, x2).

For example, when ε = 3, the distance between the two patches {x1, x2, x3} and {x4, x5, x6}

is given by the distance between x3 and x4. Thus, we can represent the shape of brain

network as the single linkage matrix, where the elements are the single linkage distances

between nodes.

Instead of using the single linkage matrix, we can use the geodesic distance matrix. The

geodesic distance lX is defined as the sum of edge weights along the shortest path in the

graph. For example, in Fig. 1 (b), the geodesic distance lX(x2, x5) is the sum of cX(x2, x3),

cX(x3, x4) and cX(x4, x5). We will not discuss the geodesic distance formulation in this paper.

2.4 Gromov-Hausdorff Distance.

After representing the shapes of brain networks, we need to compute the distance between

the networks for quantification. Given two metric spaces (X, dX) and (Y, dY ), the Gromov-
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Hausdorff Distance (GH) distance between X and Y is defined as [12, 10]:

dGH(X, Y ) = inf

f :X→Y

g:Y→X

1

2
max (F(f),G(g),H(f, g)) , (1)

where

F(f) = sup
x1,x2∈X

|dX(x1, x2)− dY (f(x1), f(x2))|,

G(g) = sup
y1,y2∈Y

|dX(g(y1), g(y2))− dY (y1, y2)|,

H(f, g) = sup
x∈X,y∈Y

|dX(x, g(y))− dY (f(x), y)|.

We used the single linkage distance for dX and dY . Note that the single linkage distance

does not satisfy the triangle inequality but satisfies [13]

max(dX(x1, x2), dX(x2, x3)) ≥ dX(x1, x3).

In computing the GH distance, we need to determine the the isometric embedding functions

f and g, which is not straightforward in general [11, 14, 15]. In our problem, all the nodes

in X and Y are in the fixed locations, thus, the mapping functions f and g are simply given

as f(xi) = yi and g(yi) = xi and Eq. (1) is discretized as

dGH(X, Y ) =
1

2
max
∀i,j
|dX(xi, xj)− dY (yi, yj)|.

3 Experimental Results

3.1 Data Description.

The data consists of 24 ADHD (19 boys, mean age: 8.2 ± 1.6 years), 26 ASD (24 boys, mean

age: 6.0 ± 1.8 years) and 11 PedCon (7 boys, mean age: 9.7 ± 2.5 years). PET images were

preprocessed using Statistical Parametric Mapping (SPM) package. After spatial normaliza-

tion to the standard template space, mean FDG uptake within 96 ROIs were extracted. The

values of FDG uptake were globally normalized to the individuals total gray matter mean

count.
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Figure 3: The correlation-based distance cX (top) and single linkage matrix dX (bottom)

for (a) ADHD, (b) ASD and (c) PedCon. In each connectivity matrix, the upper-left and

the lower-right 48 ROIs are from left and right hemispheres, respectively. The order of ROIs

of the left and the right hemispheres are horizontally and vertically symmetric, thus, the

diagonal terms from the top-right to the bottom-left represents bilateral symmetry of brain.

3.2 Comparison of the connectivity matrix.

The distance matrices obtained from correlation cX and single linkage matrices dX are shown

in Fig. 3. The group difference is more evident in the single linkage matrices. The maximum

single linkage distances of ADHD, ASD and PedCon are 0.62, 0.51, 0.48. The most regions

in ADHD are weakly connected except a few strongly connected regions within the occipital

(O) and left frontal (F) regions and between the right and the left frontal regions [16]. On

the other hand, PedCon network is well-connected in the whole brain regions. In ASD, the

connection is segmented according to lobes and temporal (T) asymmetry is obviously visible

[17].
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Figure 4: Network comparison using various network measures: (a) GH distance, (b) bot-

tleneck distance, (c) assortativity, (d) centrality, (e) clustering coefficient, (f) characteristic

path length, (g) small-worldness and (h) modularity.

3.3 Performance against other network measures.

We performed the leave-one-out cross validation on the network differences using 8 different

measures including the GH distance, bottleneck distance, assortativity, centrality, clustering

coefficient, characteristic path length, small-worldness and modularity (Fig. 4) [9, 1, 6].

After constructing the distance matrices, we divided the networks into 3 clusters using

the hierarchical clustering and evaluated the clustering accuracy by comparing the assigned

labels with the true labels. The clustering accuracies of GH distance, characteristic path

length and small-worldness are all 100 %. However, the distance between the groups is much

larger than the distance within the groups in the GH metric, i.e. |w − b| = 0.49 in (Fig.
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4(a)), indicating the superior performance of the GH-metric.

4 Conclusions

We presented a novel framework for computing the distance on networks. Using the graph

filtration, we defined the shape of the network as a sequence of nested subgraphs. The

graph filtration is then transformed into an algebraic form called the single linkage matrix.

The single linkage matrices were demonstrated to differentiate the group differences in the

ADHD, ASD and PedCon populations. The distance between different single linkage ma-

trices is quantified using the Gromov-Hausdorff metric. The Gromov-Hausdorff metric was

validated against other global network measures from graph theory and persistent homol-

ogy: bottleneck distance, assortativity, centrality, clustering coefficient, characteristic path

length, small-worldness and modularity. The GH metric outperforms all of them in terms

of the clustering accuracy and the difference between the within- and the between-group

distance.
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