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Abstract

The brain network is usually constructed by estimating the connectivity matrix and thresholding it at an arbitrary

level. The problem with this standard method is that we do nothave any generally accepted criteria for determining

a proper threshold. Thus, we propose a novel multiscale framework that models all brain networks generated over

every possible threshold. Our approach is based on persistent homology and its various representations such as

the Rips filtration, barcodes and dendrograms. This new persistent homological framework enables us to quantify

various persistent topological features at different scales in a coherent manner. The barcode is used to quantify

and visualize the evolutionary changes of topological features such as the Betti numbers over different scales.

By incorporating additional geometric information to the barcode, we obtain a single linkage dendrogram that

shows the overall evolution of the network. The difference between the two networks is then measured by the

Gromov-Hausdorff distance over the dendrograms.

As an illustration, we modeled and differentiated the FDG-PET based functional brain networks of 24 attention-

deficit hyperactivity disorder children, 26 autism spectrum disorder children and 11 pediatric control subjects.
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I. INTRODUCTION

Many functional brain connectivity studies have often focused on verifying the topological characteristics

of the network such as the small-worldness, scale-freenessor modularity using well-known graph measures

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10].

The connectivity of the human brain, also known as human connectome, is usually represented as a graph

consisting of nodes and edges connecting the nodes [11]. The nodes are mainly predefined anatomical

regions of interest (ROIs). The edges are determined by various technique such as correlation methods,

structural equation modeling or dynamic causal modeling [2], [12], [13], [14], [15], [16], [17].

In the correlation approaches, depending on whether we threshold the correlation at a certain level or

not, we obtain either weighted or binary networks [18], [17]. Since the weighted brain network is difficult

to interpret and visualize compared to the binary network, the binary brain network has more been often

used [19], [20]. However, depending on where to threshold the correlation, the binary network changes.

To obtain the proper threshold, the multiple comparison correction over every possible edge can be also

applicable [21], [3], [22], [23], [24], [20]. However, depending on whatp-value to threshold, the resulting

graph also changes.

Others tried to control the sparsity of edges in the network.The sparsity of a graph is defined as the

ratio of the number of edges to the number of all possible edges [25], [26], [6], [27], [20]. Fixing the

sparsity needs an educated guess; therefore, two differentnetworks are compared in the preselected range

of sparsity [25], [28], [19]. Since this approach is also problematic, in the end, the two different networks

are compared at the maximum sparsity.

Until now, there are not widely accepted criteria for thresholding networks. Instead of trying to come

up with a proper threshold for network construction that maynot work for different clinical populations

or cognitive conditions [20], why not use all networks for every possible threshold? Motivated by this

question, we developed a novel multiscale hierarchical network modeling framework that traces the

evolution of network changes over different thresholds. Since we are using networks constructed at every

threshold, we practically bypass the problem of determining the optimal threshold. However, one main

technical huddle of using every possible network at different scales is the inherent computational burden

of handling significantly many networks. The persistent homology, a new branch of the algebraic topology,

provides a clue for efficiently handling and analyzing multiscale networks by identifying the persistent

topological features over changing scales [29], [30], [31].

The concept of persistent homology has been previously applied to medical image analysis [32], [33],

[34], [35]. In particular, Singh, et. al. applied the persistent homology to the electrocorticography-based

connectivity in primary visual cortex of macaque previously [34]. They tried to find the proper threshold

for connectivity matrix using persistent homology. On the other hand, in this paper, we will show that
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it is also possible to do network modeling without determining the threshold within the same persistent

homology framework.

The brain network corresponds to theRips complex, which is the main algebraic representation used in

persistent homology, and the multiscale networks corresponds to theRips filtration, which is the sequence

of the nested Rips complexes over different scales [36]. The main topological features are theBetti

numbers. Among the Betti numbers, the first three Betti numbers, which count the number of connected

components, holes and voids, would be of interest in practice. In this paper, we will mainly focus on the

zeroth Betti numberβ0, which measures the number of the connected components.

The changes of the Betti numbers over the Rips filtration can be visualized using thebarcode[37],

[38]. The barcode is a topologically invariant representationof the network change over the filtration.

So it does not have geometric information of node positions.If we incorporate the node indexing to the

barcode, surprisingly we obtain thesingle linkage dendrogram (SLD)[39], [40], [41]. Since the distance

between two different SLDs can be measured using theGromov-Hausdorff (GH) distance[40], [41], we

can directly measure the distance between any two networks.

The two main contributions of this paper are:

(1) We propose a new multiscale network modeling framework for brain connectivity that avoids using

a single fixed threshold. The proposed method basically usesnetworks generated at every possible

threshold. The computational challenge of handling significantly many networks was addressed by

introducing the concept ofgraph filtration in the persistent homology framework.

(2) We show that, if we add the geometrical information of node indexing to the barcode, we obtain

SLD. The difference between two different SLDs can be measured using the GH distance. Hence, our

method provides the first unified mathematical framework formeasuring brain network differences.

The proposed method is applied in differentiating the abnormal resting glucose metabolic networks

using 103 ROIs extracted from FDG-PET of 24 attention-deficit hyperactivity disorder (ADHD), 26 autism

spectrum disorder (ASD) and 11 pediatric controls (PedCon). Numerical experiments show that our graph

filtration framework can differentiate the populations better than most known graph theoretic approaches

as well as the previous persistent homology framework.

II. BRAIN NETWORK CONSTRUCTION

Consider FDG-PET measurements obtained inp selected ROIs inn subjects. Each ROI serves as a

node in the brain network. We have the FDG-PET measurementxi at i-th node. The measurement set is

denoted asX = {x1, · · · , xp}. The measurementxi is assumed to be normally distributed with mean zero

and the variance1. This condition can be guaranteed by centering and normalizing the measurements.

We define the distancecX between the measurementsxi andxj through the Pearson correlation:

cX(xi, xj) = 1 − corr(xi, xj). (1)

The functional brain network is represented using measurement setX and the distancecX , which form

the metric space(X, cX).
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Fig. 1. Construction of binary network and Rips complex. (a)Point cloud dataX (b) The balls of radiusǫ/2 centered at each point. (c)

The binary networkB(X, ǫ). (d) The Rips complexR(X, ǫ).

Let us more formally define the network constructed by thresholding correlations between the nodes.

Definition 1: We connect the nodesi and j with an edge if the distancecX(xi, xj) ≤ ǫ for some

thresholdǫ. The collection of all those edges is denoted asE. Then thebinary networkB(X, ǫ) at

thresholdǫ is a graph consisting of the node setV and the edge setE.

All previous studies on brain network modeling used the single fixed thresholdǫ [19], [18], [17], [20]

while we are trying to avoid using a fixed threshold using the persistent homology framework.

III. PERSISTENT NETWORK HOMOLOGY AND CLUSTERING

In this section, we introduce the basic concepts used in persistent homology and relate them to brain

network modeling.

A. Network as simplicial complex

The shape of an object can be approximated by the point cloud data (node set)X consisting ofp points.

If we connect points of which distance satisfies a given criterion, the connected points start to recover the

topology of the object. Therefore, we can represent the underlying topologyas a collection of the subsets

of X that consist of nodes which are connected [29], [42]. Denote the collection of all possible subsets

as 2X . There are2p possible subsets ofX that can be a possible topology. Here we provide the formal

definition of the topology [29].

Definition 2: If U ⊂ 2X , (X,U) is a topological space on the finite setX if

1) ∅, X ⊂ U ,

2) u1, u2 ⊂ U implies u1 ∪ u2 ⊂ U and

3) u1 ∩ u2 ⊂ U .

Note that every metric space is a topological space. Hence, the binary networkB(X, ǫ) is also a topology.

In general, given a point cloud data setX with a rule for connections, the topological space is a simplicial
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Fig. 2. The schematic of the multiscale network modeling viabarcode and dendrogram. (a) Node setX and metriccX . (b) The Rips

filtration at the filtration values 0, 1, 2 and 2.7. (c) The corresponding adjacency matrices of the Rips filtration. (d) Theconnected component

matrices representing the connected components through different colors. (e) The single linkage distancedX . (f-g) The topological changes

are visualized by the barcode and the single linkage dendrogram (SLD). The vertical axis of the barcode represents the zeroth Betti number

β0, and one of dendrogram represents the indices of nodes. Their horizontal axes represent the filtration value. If we rearrange the bars

according to the node indices, and connect them following how new connections were introduced in the Rips filtration, thebarcode is

transformed to SLD.

complex and its element is a simplex [29]. A node is a0-simplex, an edge is a1-simplex, and a triangle

is a 2-simplex. A complete graph withp nodes represents the edges of a(p − 1)-simplex.

Definition 3: A simplicial complexK is a finite collection of simplices such that [29]

1) any face ofσ ∈ K is also inK, and

2) for σ1, σ2 ∈ K, σ1 ∩ σ2 is a face of bothσ1 andσ2.

The binary networkB(X, ǫ) is a simplicial complex consisting of0-simplices (nodes) and1-simplices

(edges) [43]. There are various simplicial complexes. One of them is theRips complex.

Definition 4: Given a point cloud dataX, the Rips complexR(X, ǫ) is a simplicial complex whose

k-simplices correspond to unordered(k + 1)-tuples of points which are pairwise within distanceǫ [38].
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While the binary networkB(X, ǫ) has at most 1-simplices, the Rips complex has at most(p − 1)-

simplices. So the Rips complex can have faces as well (Fig.1). Trivially we always haveB(X, ǫ) ⊆

R(X, ǫ) assuming we use the same metric in constructing the binary network and the Rips complex.

B. Multiscale network as graph filtration

So far we treated the networkB(X, ǫ) at a fixed thresholdǫ as a simplicial complex. When we change

the threshold, we obtain a sequence of networks

B(X, ǫ0),B(X, ǫ1),B(X, ǫ2), · · · .

We will explore the relationship among these networks.

When ǫ increases, the subsequent Rips complex becomes larger thanall the previous Rips complex.

Therefore, we have

R(X, ǫ0) ⊆ R(X, ǫ1) ⊆ · · · ⊆ R(X, ǫn)

for ǫ0 ≤ ǫ1 ≤ · · · ≤ ǫn. The nested sequence of the Rips complexes is called aRips filtration, which is

the main theme of persistent homology [29]. Similarly, we also havegraph filtration for the case of the

sequence of nested binary networks [44]

B(X, ǫ0) ⊆ B(X, ǫ1) ⊆ · · · ⊆ B(X, ǫn)

for ǫ0 ≤ ǫ1 ≤ · · · ≤ ǫn. This is the reason why we introduce the Rips complex in the first place. We need

the basic mathematics of Rips complex in building graph filtration, which is a subset of Rips filtration.

As illustrated in Fig.2 (b), as the filtration valueǫ changes, the topological characteristic of the Rips

complex changes. The topological change of the filtration can be visualized using thebarcode, which is

constructed by plotting the changing topological featuresover different filtration values. The topological

feature is displayed using a bar which starts and ends when the feature appears and disappears. The

barcode represents the changes in topological features when the filtration value changes.

Among the many topological features, the zeroth Betti number β0 counts the number of connected

components in a network. We formally define the connected component in networks and simplicial

complexes.

Definition 5: In a simplicial complex, a path between the two nodes is a sequence of nodes such that

from each of its nodes there is an edge to the next node in the sequence. The connected component in

the simplicial complex is a subset of which any two nodes are connected to each other by paths.

Since thep-th Betti number is estimated by thep- and (p + 1)-simplices, the binary networkB(X, ǫ)

contains enough information to computeβ0 [29]. In Fig. 2 (f), we plotted the zeroth Betti numberβ0

(vertical) of the Rips complex over the filtration value (horizontal) [38]. The barcode is basically a

decreasing function showing when the connected componentsare merging to form a bigger component.

The change ofβ0 shows the topological change of a network before all nodes are connected. Until now,

many brain network studies have concerned about the networkproperties after all nodes are connected. It

is because they have focused on finding the small-worldness,scale-freeness or modularity. In this paper,
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we are interested in how the nodes are connected before all nodes are connected by observing the change

of β0.

C. Multiscale network as dendrogram

The barcode represents the global topological changes of a network visually; however, it lacks the

geometric information of where the changes occur. That is the limitation of the barcode representation.

By including an additional geometric information of node positions in the barcode, it is possible to

transform the barcode into a dendrogram which provides a richer visual representation of how a brain

network changes.

Consider the Rips filtration{R(X, ǫk)|k = 0, 1, · · · }. Let Sk
m andSk

n be the two disconnected compo-

nents of the Rips complexR(X, ǫk). Suppose that there are two nodesxi ∈ Sk
m and xj ∈ Sk

n such that

the distanced betweenxi andxj is less than the next filtration valueǫk+1, i.e. d(xi, xj) < ǫk+1. ThenSk
m

andSk
n will be connected atǫk+1. In other words, the componentsSk

m andSk
n will be connected atǫk+1 if

d(Sk
m, Sk

n) = min
xi∈Sk

m,xj∈Sk
n

d(xi, xj) < ǫk+1. (2)

Note thatd(Sk
m, Sk

n) is thesingle linkage distancebetween the clustersSk
m andSk

n often used in hierarchical

clustering [40], [41]. Hence, the sequence of how components are merged during the Rips filtration is

identical to the sequence of the merging in the dendrogram construction. To emphasize our main finding,

we write it as a proposition.

Proposition 1: The sequence of how connected components are merged during the Rips filtration is

identical to the sequence of the clustering in the single linkage dendrogram. The filtration valueǫk+1 at

which the two connected componentsSk
m andSk

n are merged is determined by the single linkage distance

d(Sk
m, Sk

n).

Fig. 2 (f) and (g) show the schematic of the relationship between the Rips filtration and the SLD

construction. We usedd(xi, xj) = cX(xi, xj) as the single linkage distance between the nodes. At each

filtration value, the connected components are identified bythe circles with different colors in (b). If

we rearrange the bars in the barcode and connect the bars according to the node indexing and the Rips

filtration, we obtain SLD (see the color of lines in (f-g)).

The barcode shows the global topological characteristics of when the components are merged while

SLD shows the local network characteristics of what subnetworks are clustered together. Note that SLD

is invariant under the permutation on node indices. Regardless of which nodes we start building SLD, our

framework can always produce the consistent SLD. This is a useful property for a data set with extremely

large number of nodes. The single linkage clustering is the only method that satisfies the uniqueness

theorem for clustering algorithms and it is sufficiently stable for small perturbations in the metric [40],

[41], [45].

D. Single linkage matrix

Given the network(X, cX), we were able to construct SLD. Then using SLD, we can recompute the

distance between the nodes in the network using the single linkage distancedX . We can view the original
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distancecX as the observed distance while the single linkage distancedX as the model predicted distance

using SLD. Let{xi = w0, · · · , wk = xj} be a path betweenxi andxj . Then thesingle linkage distance

dX is formally given as

dX(xi, xj) =

min
{

max
l=0,··· ,k−1

cX(wl, wl+1)
∣

∣xi = w0, · · · , wk = xj

}

. (3)

The minimum is taken over every possible path betweenxi andxj . For simplicity,dX = [dX(xi, xj)]∀i,j

is called as a single linkage matrix (SLM). Fig.2 (e) shows the SLMdX , which can be decomposed into

the sequence of matrices representing the connected components in (d).

SLD can be easily understood through information diffusionduring the filtration. Suppose that each

node has its own information. At the filtration valueǫ = 0, the information starts to diffuse simultaneously

from each node over the network. If the information meets by connecting edges, the information is mixed

and the nodes belonging to the same connected component willshare the mixed information. In this way,

the single linkage distance between two nodes can be thoughtas the smallest diffusion rate to mix the

information starting from the two nodes. The single linkagehierarchical clustering (dendrogram) visualizes

this diffusion process by a tree diagram that depends on the filtration value.

IV. D ISTANCE BETWEEN NETWORKS

Traditionally, the network comparison is performed by determining the difference between the graph

theoretic measures such as assortativity, betweenness centrality, small-worldness and network homogeneity

[12], [46], [47]. In persistent homology, there are various metrics that have been proposed to measure

the distance between the two topological spaces. Probably the most widely used metric is the bottleneck

distance that is often used in measuring the distance between the two persistence diagrams [48]. GH

distance is also proposed to measure the distance between dendrograms [40], [41].

A. Graph theoretic measures

In this study, we considered seven most widely used graph measures: assortativity, betweenness central-

ity, clustering coefficient, characteristic path length, small-worldness, modularity and network homogeneity

[49], [50], [51], [52], [47]. Other several network similarity measures such as the vertex similarity, graphlet

degree distribution or P-Rank were not included [53], [54], [55]. While the first seven measures are defined

in the both weighted and binary networks, the last three measures are only defined in the binary network.

To compare the performance under the same condition, we onlyused the graph measures defined in the

weighted network. Here we briefly explain the graph measuresfor completeness.

Assortativity is the correlation between the degrees of connected nodes [49]. Betweenness centrality is

the average of the ratio of all shortest paths which pass through each node [50]. The clustering coefficient is

the average of the fraction of triangles around each node andthe characteristic path length is the average

of the shortest path length between each pairwise nodes [51]. The fraction of the average clustering

coefficient over the characteristic path length defines the small-worldness [51]. The modularity measures
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how the network can be subdivided into modules or communities [52]. When the number of edges within

a module is larger while the number of edges between modules is smaller, the modularity becomes higher.

Each graph measure reflects a different topological characteristic of the brain network. For example, the

clustering coefficient and characteristic path length are related to the small-worldness. The assortativity

and betweenness are related to the scale-freeness. The modularity is related to the community structure

[56], [46]. The network homogeneity is a node-wise measure obtained by the mean correlation of the any

given node with every other node within a given network [47].

Except for the characteristic path length, small-worldness and modularity, the other measures are defined

in each node or edge in the network. Since we need a single scalar value representing the network for

the comparison, we estimated the average assortativity, betweenness centrality and clustering coefficient.

The global network homogeneity was obtained by calculatingthe sum of the network homogeneity scores

[47].

Each graph measure is an algebraic invariant representing its own topological characteristic of the net-

work. Using their Euclidean distances, we know whether the networks have similar topological properties

or not.

B. Bottleneck distance

The bottleneck distance was originally defined for measuring the distance between two sets in the same

metric space.

Definition 6: Let X, Y be point cloud sets in the metric space(Z, d). Each element ofX is paired

with at least one element ofY . The bottleneck distancedB betweenX andY is then given by

dB(X, Y ) = min
f :X→Y

max
x∈X

|x − f(x)|. (4)

If we plot the birth and death time of a chosen topological feature over the filtration in the horizontal and

vertical axes respectively, we obtain thepersistence diagram[29]. The bottleneck distance is applied to

measure the difference between two persistence diagrams.

In this study, we are interested in how the number of the connected components as the main topological

feature of interest. In the graph filtration, the zeroth Betti number β0 always decreases and no new

component is born. Hence the birth time is always fixed at the filtration value0 and only the death time is

varying. Since the number of nodes is fixed for all brain networks, the number of connected components

is identical in each network. Then, the one-to-one functionf from X to Y is simply determined by

the death time. The bottleneck distance for the brain network is the maximum difference between two

sequences of the ordered single linkage distances, i.e., filtration values when the two disjoint components

are connected.

C. Gromov-Hausdorff distance

The Hausdorff and bottleneck distances are usually defined for different point sets in the same metric

space. However, this is not a useful metric in measuring the distance between networks because each
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Fig. 3. Simulated results. (a)10 probability maps for sampling the data points. Each map is composed of1, 4, 9, . . . 100 bivariate normal

distributions from left to right and they are denoted as C1, C2, . . . , C10, respectively. We sampled100 data points from each probability

map like the blue dots in each panel. (b) The distance matrices, (c) SLMs, (d) SLDs and (f) barcodes ofβ0 of the sampled datasets. In

(d) and (e), the horizontal axes represent the filtration value and the vertical axes represent the index of connected component and one of

nodes, respectively. The slope of barcodes become more steep going from C1 to C10.20 datasets with100 datapoints are generated from

each probability map. The total number of datasets is20× 10 = 200. We computed their SLMs using20× 10 datasets and GH distances of

all pairwise SLMs. Then,200 × 200 GH distance matrix are obtained as shown in (e). When we clustered200 SLMs using Ward’s cluster

analysis, the clustering accuracy was82.5%.

network will have its own metric. So what we need is a new metric, GH distance, that can be used to

measure the distance between different metric spaces [57]. In computing the GH distance, we need to

determine the correspondence between two different metricspaces,X andY . In our brain network model,

the node setsX andY is given in the fixed identical locations in the template. Therefore, the nodexi ∈ X

is simply mapped toyi ∈ Y [44], [57]. Therefore, GH-distance can be trivially discretized as

dGH(X, Y ) =
1

2
max

xi∈X,yj∈Y
|dX(xi, xj) − dY (yi, yj)|.

The GH distance is the maximum difference between two SLMs when the order of column and row vector

is fixed. While the bottleneck distance finds when the difference is maximized between two networks

during the changing of the number of connected components, the GH distance finds where the difference

is maximized between networks.
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V. APPLICATION TO SIMULATION DATA

We applied the proposed method to the simulation data shown in Fig. 3 (a). For replicating our results,

we have provided the simulation data and MATLAB codes at

http://sites.google.com/site/hkleebrain/home/persistent-homology-2. We used10 probability maps which

are composed of1, 4, 9, 16, . . . , 100 bivariate normal distributions. We denoted the probability maps from

left to right panels as C1, C2,. . . , C10. 100 data points are sampled from each probability map (blue

dots). Each data point is considered as a node and the Euclidean distances is used for edge weights. Then,

their distance matrices, SLMs, SLDs and barcodes ofβ0 are computed and shown respectively in (b),

(c), (d) and (f). The distance matrices and SLMs are inR
100×100. In the dendrogram (d), the horizontal

and vertical lines represent the connected components and the merging of two connected components.

Its color is varied according to the distance to the giant component, which is a connected component

when all nodes are connected. We set the distance from giant component to giant component as one.

Whenever the component is divided into two smaller components, the distance increases one by one. The

colorbar for the distance to the giant component is shown in the left. We illustrated the barcode ofβ0 as

the decreasing function in (f). The color of each line is varied according to the corresponding datasets,

C1, . . . , C10. When the dataset is changed from C1 to C10, the barcode has flatter peak, lighter tail and

steeper slope. We generated200 datasets by sampling20 datasets per probability map. We estimated the

distance between all pairwise SLMs using GH metric. The obtained 200× 200-dimensional GH distance

matrix is shown in (e). Using GH distance matrix, we clustered 200 SLMs into 10 clusters based on

Ward’s linkage cluster analysis. During the clustering, weassumed that the group labels of all SLMs are

unknown. After clustering, the clustered labels are compared to the true labels. The clustering accuracy

is 82.5%. Most of the mis-clustering occurred in C9 and C10.

VI. A PPLICATION TO BRAIN NETWORK MODEL

In this paper, we applied the proposed framework in constructing functional brain networks with 103

ROIs extracted from FDG-PET data. FDG-PET measures glucosemetabolism, which is associated with

neuronal activity [58]. The interregional metabolic correlation between brain regions was used to reflect

functional connectivity during the resting state [59], [60], [61]. While the resting state fMRI records the

blood oxygenation level dependent (BOLD) signal every 2 or 3seconds, FDG-PET records the FDG

uptake for 30 minutes after 20 minutes from the injection. Thus, FDG-PET data at the resting state is

more stationary and invariant to the noise compared to fMRI studies.

A. Subjects

FDG-PET was scanned from three groups. They were recruited from Child and Adolescent Psychiatric

Outpatient Clinic of Seoul National University Hospital, Seoul, South Korea. Twenty-four children with

ADHD (19 boys and 5 girls, mean age: 8.2± 1.6 years) were examined. They were diagnosed by a

board certified child and adolescent psychiatrist using DSM-IV diagnostic criteria, Korean version of

ADHD rating scale IV (K-ARS) and, Korean version of Kiddie-Schedule for Affective Disorders and

http://sites.google.com/site/hkleebrain/home/persistent-homology-2
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Schizophrenia-Present and Lifetime version (K- SADS-PL).Twenty-six children with ASD (24 boys and

2 girls, mean age: 6.0± 1.8 years). They were diagnosed by the Korean version of the Autism Diagnostic

Interview-Revised (K-ADI-R) and the Korean version of the Autism Diagnostic Observation Schedule

(ADOS). The pediatric controls comprised 11 children (7 boys and 4 girls, mean age: 9.7± 2.5 years).

They visited our clinic but failed to meet the criteria of anypsychiatric disorder or visited a Child and

Adolescent Psychiatric Outpatient Clinic of Seoul National University Hospital for IQ evaluation only.

This study was approved by the Institutional Review Board ofSeoul National University College of

Medicine.

B. PET image acquisition and preprocessing

All PET scans were obtained using an ECAT EXACT 47 (Siemens-CTI, Knoxville, USA) PET scanner

with an intrinsic resolution of 5.2 mm FWHM. An emission scanwas obtained with FDG dose of 0.3

mCi/kg for 30 minutes during resting state, after a transmission scan measured by 68Ge rod sources for

attenuation correction. All participants were scanned under normal environmental noise of the scanner

room. A filtered back-projection algorithm (Shepp-Logan filter at a cutoff frequency of 0.3 cycles/pixel as

128× 128× 47 matrices of size 2.1× 2.1× 3.4 mm) was used for transaxial image reconstruction. PET

images were spatially normalized to the Korean standard template space after converting to Analyze format

and smoothed with a Gaussian filter of 16 mm FWHM using Statistical Parametric Mapping (SPM 2,

University College of London, UK), implemented in the Matlab 6.5 (Mathworks Inc., USA) environment

[62]. To minimize the any ethnic differences, we used Korean standard PET and MR templates developed

using the normal Korean volunteers [62]. The procedure for obtaining the FDG-values from 103 ROIs is

as follows:

1) The ROIs were manually parcellated in high resolution MRIand the weighted probabilities of ROIs

were estimated based on the population.

2) The ROIs drown in MR image were warped into Korean PET template registered to Korean MR

template, which is called as Korean statistical probabilistic anatomical map (KSPAM). It provides

effective tools for quantifying the regional intensity of FDG uptake of PET data. In this way, we

have probabilistic ROIs in PET template space.

3) All PET images were then normalized to PET template using the affine transformation.

4) The FDG-value of ROI in PET template space were extracted by the weighted averaging with the

weights given by the weighted probability.

The value of FDG uptake was globally normalized to the individuals total gray matter mean count.

This normalized value was obtained from 103 ROIs as follows:20 frontal, 20 parietal, 30 temporal, 16

subcortical, 14 occipital and 3 cerebellar regions. The ageeffect was factored out from 103 ROIs using

a general linear model.

VII. RESULTS

Using the predefined 103 ROIs, we constructed the brain networks following the proposed framework.

We will also validate our proposed framework with more available graph theoretic approaches.
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Fig. 4. (a) Procedure for constructing the correlation-based distance mapcX (1) using the given dataset. (b-d) The obtained distance maps

for ADHD, ASD and PedCon groups. F, P, T, S, O and C represent frontal, parietal, temporal, subcortical, occipital and cerebellar regions.

L and R indicate the left and right hemispheres.

A. Multiscale brain networks

We computed the correlation-based distancecX (1) for ADHD, ASD and PedCon groups in Fig.4.

The multiscale brain networks were constructed using the graph filtrations on ADHD, ASD and PedCon

populations.

The distance metric we used is 1-correlation. So the distance is always between 0 and 2. The negative

correlation corresponds to the distance larger than 1. However, during the filtration, almost all nodes are

connected before epsilon value reaches 1 in our data set without exception. The nodes merge together

quickly in the filtration to form a single giant connected component. So we did not really consider negative

correlations and the filtration is done between 0 and 1.

The graph filtrations at8 different valuesǫ = 0.05, 0.1, 0.15,. . . , 0.35 are shown in Fig.5 (a) ADHD,

(b) ASD and (c) PedCon. The color of node is changed accordingto the connected component to which

the node belongs. Atǫ = 0, the color of nodes (connected components) is shown in the colorbar. Whenǫ

increases, the color of node is changed. We also illustratedthe barcodes for the three groups in (d). The

maximum single linkage distances of ADHD, ASD and PedCon are0.40, 0.51, and0.47.

In the barcode forβ0, the decreasing slopes are364, 300, and314 for ADHD, ASD and PedCon. The

single linkage distance matrices for ADHD, ASD and PedCon were also computed in Fig.6 (a-c). The

single linkage dendrograms within a network were illustrated in Fig. 6 (d-f). The color of lines in the

dendrogram represents the distance to the giant component for each connected component. The maximum

distances to the giant component are25, 31 and26 for ADHD, ASD and PedCon, respectively.

B. Performance against other network measures

The 3D static PET image is obtained one per subject. Since we do not have multiple PET scans per

subject, we couldn’t generate a single network per subject.So we used the Jackknife resampling technique

to generate additional networks. For a group withn subjects, one subject is removed and the remaining

n − 1 subjects are used to construct a network. This process is repeated for each subject to producen

networks for the group. Therefore, we were able to simulate 24, 26 and 11 networks for ADHD, ASD and

PedCon groups. For all(24+ 26 + 11) networks, we estimated the SLM, barcode ofβ0, slope of barcode
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Fig. 5. Graph filtration of (a) ADHD, (b) ASD and (c) PedCon at the filtration valuesǫ = 0.1, 0.15, 0.2, . . . , 0.45. The color of nodes

at ǫ = 0 is shown in the colorbar. If the nodes belong to the same connected component, they are colored identically. The barcodesβ0 of

ADHD, ASD and PedCon are shown in (d).

β0, average assortativity, average node betweenness centrality, average clustering coefficient, characteristic

path length, small-worldness, modularity and the global network homogeneity. Then, the GH distance was

computed between all pairwise SLMs. The bottleneck distance was computed similarly for all barcodes.

For the other8 graph theoretic measures, all pairwise differences were also computed. We obtained total10

distance matrices between the networks. The result is summarized in Fig.7, where each distance matrix is

normalized with the maximum value1. The size of the distance matrices is(24+26+11)×(24+26+11),

which corresponds to the number of simulated networks in thethree groups. We clustered the simulated

networks into 3 groups using the Ward’s cluster analysis using each computed distance matrix. During the

clustering we assume that the true group labels are unknown.Then, we evaluated the clustering accuracy by

comparing the assigned labels with the true labels. The obtained clustering accuracies are100%, 44.26%,

86.89%, 80.33%, 85.25%, 80.33%, 96.72%, 93.44%, 60.66% and 96.72% for GH distance, bottleneck

distance, slope of barcodeβ0, assortativity, betweenness centrality, clustering coefficient, characteristic

path length, small-worldness, modularity and global network homogeneity, respectively.

We conclude that the GH-distance based approach shows the best performance against 10 available

methods. Surprisingly the bottleneck distance predominantly used in persistence homology performed

poorly possibly due to the fact that it ignored the geometricinformation of network nodes.
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Fig. 6. (a-c) SLMsdX of ADHD, ASD and PedCon obtained from the original correlation-based distancecX in Fig. 4 (b-d). Compared

to the correlation-based distancecX , we have better group separation in the single linkage distance dX . F, P, T, S, O and C represent

frontal, parietal, temporal, subcortical, occipital and cerebellar regions. L and R indicate the left and right hemispheres. (d-f) Single linkage

dendrograms of ADHD, ASD and PedCon. The vertical and horizontal axes represent the node index and filtration value. The color of lines

shows the distance to the giant component. The distance to the giant component of the giant component is1. Whenever the connected

component is divided into the smaller components, the distance increases one by one.

VIII. D ISCUSSION

A. Summary

In this paper, we proposed a new framework for modeling brainconnectivity using the persistent

homology. The proposed framework avoids the traditional thresholding of connectivity matrices in ob-

taining binary networks. Instead of trying to find an optimalthreshold, which may not be optimal for

other networks, we constructed networks for every possiblethreshold. Then we determined the persistent

topological features over the evolution of the network changes at every scale.

In developing a unified mathematical framework, we borrowedheavily from the persistent homology. In

this paper, we showed that binary networks are the subsets ofthe Rips complex, and the collection of the

networks over different scales forms the Rips filtration. For the visualization of the multiscale networks,

we used the barcode and the dendrogram, and explored the relationship between the two representations.

For quantification, we used the single linkage distance and GH-distance. We showed that the GH-
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Fig. 7. Comparison of 11 different methods: (a) GH distance,(b) bottleneck distance, (c) slope of barcodeβ0, (d) assortativity, (e)

betweenness centrality, (f) clustering coefficient, (g) characteristic path length, (h) small-worldness, (i) modularity and (j) global network

homogeneity. In each distance matrix, the3 diagonal block matrices with the size24 × 24, 26 × 26 and 11 × 11 measure the distance

between networks within a group and the off-diagonal block matrices measure the distance between groups. The clustering accuracy using

the Ward’s cluster method was also performed. From (a) to (j), the clustering accuracies are100%, 44.26%, 86.89%, 80.33%, 85.25%,

80.33%, 96.72%, 93.44%, 60.66% and96.72%. The GH-distance shows the best performance.

distance has better discriminating power than the bottleneck distance and many other graph theoretic

measures.

B. Network findings

In Fig. 5 (d), the slopes of barcodeβ0 are ASD< PedCon< ADHD with the significance level.05

based on the Wilcoxon rank-sum test using the resampled datasets. The filtration values when all nodes

are connected is generated are ADHD≈ PedCon< ASD with the significance level.05. It implies that

ASD has longer heavy tail in the shape of barcode (globally disconnected until the larger filtration values)

and sharper peak (locally connected at the smaller filtration values) compared to PedCon and ADHD. The

sharp peak and long heavy tail of ASD is related to local over-connectivity and global under-connectivity,

respectively [63].

For pairwise comparisons of the single linkage distances (Fig. 6), the Wilcoxon rank-sum test was

used with Bonferroni’s correction. We found that ASD showedloosely connected between left inferior

prefrontal regions such as BA44 and BA45 and other brain regions (correctedp < .05). The loose coupling

of inferior frontal area 44/45 might be reflected the behavioral symptom in ASD [64]. We found that

ADHD showed loosely connected pattern between sensorimotor region and various frontoparietal regions

including anterior cingulate compared to PedCon (corrected p < .05). This loose connected pattern might

reflect the deficits of cognitive attentional control [65] and sensori-motor integration [66]. Also, ASD and



17

ADHD have commonly abnormal connected structure in cerebellum (correctedp < .05). Cerebellum is

one of the pathophysiological regions in ADHD and ASD. In this way, the single linkage distance using

network filtration could be an another indicator for characterizing abnormal brain network.

C. Future works

In this paper, we considered the graph filtration. and only the zeroth Betti numberβ0 was used as

the topological invariant. However, since the functional brain network itself is not in the3-dimensional

Euclidean space where the nodes are embedded but in a higher dimensional space, we also need to

consider higher degree Betti numbers beyond the zeroth by extending the concept of network filtration to

the Rips complex.

For a network with an extremely large number of nodes, the construction of the Rips filtration and the

corresponding single linkage dendrogram is time consuming. Since the construction of a single linkage

dendrogram is equivalent to that of the minimum spanning tree (MST) [44], it is possible to speed up the

computation by using either the Prim’s or Kruskal’s algorithm that are often used in finding MST. The

relationship between MST and our persistent homological framework is also left out for a future study.
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[14] G. Marrelec, A. Krainik, H. Duffau, M. Pélégrini-Issac, S. Lehéricy, J. Doyon, and H. Benalia, “Partial correlation for functional brain

interactivity investigation in functional MRI,”NeuroImage, vol. 32, pp. 228–237, 2006.

[15] A. R. McIntosh and F. Gonzalez-Lima, “Structural equation modeling and its application to network analysis in functional brain

imaging,” Hum. Brain Mapp., vol. 2, pp. 2–22, 1994.



18

[16] W. D. Penny, K. E. Stephan, A. Mechelli, and K. J. Friston, “Comparing dynamic causal models,”NeuroImage, vol. 22, pp. 1157–1172,

2004.

[17] O. Sporns,Networks of the Brain. The MIT Press, 2010.

[18] M. E. Newman,Networks: An Introduction. Oxford University Press, 2010.

[19] Y. He, Z. Chen, and A. Evans, “Structural insights into aberrant topological patterns of large-scale cortical networks in alzheimers

disease,”J. Neurosci., vol. 28, pp. 4756–4766, 2008.

[20] B. C. M. Wijk, C. J. Stam, and A. Daffertshofer, “Comparing brain networks of different size and connectivity density using graph

theory,” PLoS ONE, vol. 5, p. e13701, 2010.

[21] J. W. Bohland, H. Bokil, C. B. Allen, and P. P. Mitra, “Thebrain atlas concordance problem: Quantitative comparisonof anatomical

parcellations,”PLoS ONE, vol. 4, p. e7200, 2009.

[22] L. Ferrarini, I. M. Veer, E. Baerends, M.-J. van Tol, R. J. Renken, N. J. van der Wee, D. J. Veltman, A. Aleman, F. G. Zitman, B. W.

Penninx, M. A. van Buchem, J. H. Reiber, S. A. Rombouts, and J.Milles, “Hierarchical functional modularity in the resting-state

human brain,”Hum. Brain Mapp., vol. 30, pp. 2220–2231, 2009.

[23] M. Rubinov, S. A. Knock, C. J. Stam, S. Micheloyannis, A.W. Harris, L. M. Williams, and M. Breakspear, “Small-world properties

of nonlinear brain activity in schizophrenia,”Hum. Brain Mapp., vol. 30, pp. 403–416, 2009.

[24] R. Salvador, J. Suckling, M. R. Coleman, J. D. Pickard, D. Menon, and E. Bullmore, “Neurophysiological architecture of functional

magnetic resonance images of human brain,”Cereb. Cortex, vol. 15, pp. 1332–1342, 2005.

[25] S. Achard and E. Bullmore, “Efficiency and cost of economical brain functional networks,”PLoS Comput. Biol., vol. 3, p. e17, 2007.

[26] M. A. Kramer, E. D. Kolaczyk, and H. E. Kirsch, “Emergentnetwork topology at seizure onset in humans,”Epilepsy Res., vol. 79,

pp. 173–186, 2008.

[27] M. P. Van den Heuvel, C. J. Stam, R. S. Kahn, and H. E. Hulshoff Pol, “Efficiency of functional brain networks and intellectual

performance,”J. Neurosci., vol. 29, pp. 7619–7624, 2009.

[28] D. S. Bassett, A. Meyer-Lindenberg, S. Achard, T. Duke,and E. Bullmore, “Adaptive reconfiguration of fractal small-world human

brain functional networks,”P. Natl. Acad. Sci. USA, vol. 103, pp. 19 518–19 523, 2006.

[29] H. Edelsbrunner and J. Harer,Computational Topology: An Introduction. American Mathematical Society Press, 2009.
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