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Abstract

The brain network is usually constructed by estimating thranectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we dohawe any generally accepted criteria for determining
a proper threshold. Thus, we propose a novel multiscalednark that models all brain networks generated over
every possible threshold. Our approach is based on pearsistenology and its various representations such as
the Rips filtration, barcodes and dendrograms. This newigtens homological framework enables us to quantify
various persistent topological features at differenteah a coherent manner. The barcode is used to quantify
and visualize the evolutionary changes of topologicaluest such as the Betti numbers over different scales.
By incorporating additional geometric information to thartode, we obtain a single linkage dendrogram that
shows the overall evolution of the network. The differenedween the two networks is then measured by the
Gromov-Hausdorff distance over the dendrograms.

As an illustration, we modeled and differentiated the FDEFased functional brain networks of 24 attention-
deficit hyperactivity disorder children, 26 autism spewtrdisorder children and 11 pediatric control subjects.
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. INTRODUCTION

Many functional brain connectivity studies have often feed on verifying the topological characteristics
of the network such as the small-worldness, scale-freesras®dularity using well-known graph measures
[11, [2], [3], [4]. [S], [€]. [7], [8], [9], [10.

The connectivity of the human brain, also known as humanectome, is usually represented as a graph
consisting of nodes and edges connecting the notls The nodes are mainly predefined anatomical
regions of interest (ROIs). The edges are determined bywsriechnique such as correlation methods,
structural equation modeling or dynamic causal modelRjg[[L2], [13], [14], [15], [16], [17].

In the correlation approaches, depending on whether wehhblé the correlation at a certain level or
not, we obtain either weighted or binary networl§][ [17]. Since the weighted brain network is difficult
to interpret and visualize compared to the binary netwdrk, kinary brain network has more been often
used [L9], [20]. However, depending on where to threshold the correlatioa binary network changes.
To obtain the proper threshold, the multiple comparisomemtion over every possible edge can be also
applicable 1], [3], [22], [23], [24], [20]. However, depending on whatvalue to threshold, the resulting
graph also changes.

Others tried to control the sparsity of edges in the netwdHe sparsity of a graph is defined as the
ratio of the number of edges to the number of all possible €d&¥, [26], [6], [27], [20]. Fixing the
sparsity needs an educated guess; therefore, two diffesgwbrks are compared in the preselected range
of sparsity R5], [28], [19]. Since this approach is also problematic, in the end, tledifferent networks
are compared at the maximum sparsity.

Until now, there are not widely accepted criteria for thi@dding networks. Instead of trying to come
up with a proper threshold for network construction that may work for different clinical populations
or cognitive conditions40], why not use all networks for every possible threshold? ivdéed by this
guestion, we developed a novel multiscale hierarchicalvod modeling framework that traces the
evolution of network changes over different thresholdac8iwe are using networks constructed at every
threshold, we practically bypass the problem of deterngirtime optimal threshold. However, one main
technical huddle of using every possible network at difiergcales is the inherent computational burden
of handling significantly many networks. The persistent btogy, a new branch of the algebraic topology,
provides a clue for efficiently handling and analyzing nadsile networks by identifying the persistent
topological features over changing scal2g][ [30], [31].

The concept of persistent homology has been previouslieappd medical image analysi8Z], [33],
[34], [35]. In particular, Singh, et. al. applied the persistent htwgy to the electrocorticography-based
connectivity in primary visual cortex of macaque previgusl4]. They tried to find the proper threshold
for connectivity matrix using persistent homology. On thbes hand, in this paper, we will show that



it is also possible to do network modeling without determgnthe threshold within the same persistent

homology framework.

The brain network corresponds to tRgs complexwhich is the main algebraic representation used in
persistent homology, and the multiscale networks cormedpdo theRips filtration which is the sequence
of the nested Rips complexes over different scal&d.[The main topological features are tlBetti
numbers Among the Betti numbers, the first three Betti numbers, Witcunt the number of connected
components, holes and voids, would be of interest in practit this paper, we will mainly focus on the
zeroth Betti numbef,, which measures the number of the connected components.

The changes of the Betti numbers over the Rips filtration carvibualized using théarcode[37],
[38]. The barcode is a topologically invariant representatdrthe network change over the filtration.
So it does not have geometric information of node posititingie incorporate the node indexing to the
barcode, surprisingly we obtain tlsingle linkage dendrogram (SLI39], [40], [41]. Since the distance
between two different SLDs can be measured using@hlmmov-Hausdorff (GH) distandel(], [41], we
can directly measure the distance between any two networks.

The two main contributions of this paper are:

(1) We propose a new multiscale network modeling frameworkbirain connectivity that avoids using
a single fixed threshold. The proposed method basically neesorks generated at every possible
threshold. The computational challenge of handling sigaifily many networks was addressed by
introducing the concept ajraph filtrationin the persistent homology framework.

(2) We show that, if we add the geometrical information of @addexing to the barcode, we obtain
SLD. The difference between two different SLDs can be meabusing the GH distance. Hence, our
method provides the first unified mathematical frameworkni@asuring brain network differences.

The proposed method is applied in differentiating the abmadrresting glucose metabolic networks
using 103 ROIs extracted from FDG-PET of 24 attention-deffigperactivity disorder (ADHD), 26 autism
spectrum disorder (ASD) and 11 pediatric controls (PedCduojnerical experiments show that our graph
filtration framework can differentiate the populationstbethan most known graph theoretic approaches
as well as the previous persistent homology framework.

[I. BRAIN NETWORK CONSTRUCTION

Consider FDG-PET measurements obtaineg iselected ROIs im subjects. Each ROI serves as a
node in the brain network. We have the FDG-PET measuremeait:-th node. The measurement set is
denoted asY = {z1,---,z,}. The measurement; is assumed to be normally distributed with mean zero
and the variancé. This condition can be guaranteed by centering and noringlithe measurements.
We define the distancey between the measurementsandz; through the Pearson correlation:

cx (i, ;) = 1 —corr(z;, x;). (1)

The functional brain network is represented using measemérsetX and the distancey, which form
the metric spacéX, cx).
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Fig. 1. Construction of binary network and Rips complex. Rajnt cloud dataX (b) The balls of radiug/2 centered at each point. (c)
The binary networkB(X, ¢). (d) The Rips compleR (X, ¢).

Let us more formally define the network constructed by tho&ihg correlations between the nodes.

Definition 1: We connect the nodes and j with an edge if the distancey(z;,z;) < € for some
thresholde. The collection of all those edges is denoted lasThen thebinary network B(X,e¢) at
thresholde is a graph consisting of the node détand the edge sef.

All previous studies on brain network modeling used the Ieirfixed threshold: [19], [18], [17], [20]
while we are trying to avoid using a fixed threshold using tkesistent homology framework.

[1l. PERSISTENT NETWORK HOMOLOGY AND CLUSTERING

In this section, we introduce the basic concepts used ingbens homology and relate them to brain
network modeling.

A. Network as simplicial complex

The shape of an object can be approximated by the point clated(dode setk consisting ofp points.
If we connect points of which distance satisfies a given icaite the connected points start to recover the
topology of the object. Therefore, we can represent the nlyidg topologyas a collection of the subsets
of X that consist of nodes which are connectd][[42]. Denote the collection of all possible subsets
as2¥. There are2? possible subsets of that can be a possible topology. Here we provide the formal
definition of the topology 29].

Definition 2: If &/ C 2%, (X,U) is a topological space on the finite s&tif

1) 0, X CcU,

2) ui,uy C U implieswu; Uuy C U and

3) urNuy CU.
Note that every metric space is a topological space. Hehedyihary network3( X, ¢) is also a topology.
In general, given a point cloud data setwith a rule for connections, the topological space is a sicrgil
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Fig. 2. The schematic of the multiscale network modeling h@code and dendrogram. (a) Node &etand metriccx. (b) The Rips
filtration at the filtration values 0, 1, 2 and 2.7. (c) The esponding adjacency matrices of the Rips filtration. (d) Gtrenected component
matrices representing the connected components throtfghedit colors. (e) The single linkage distanég. (f-g) The topological changes
are visualized by the barcode and the single linkage denaimo@SLD). The vertical axis of the barcode represents thetlzdBetti number
Bo, and one of dendrogram represents the indices of nodesr fbezontal axes represent the filtration value. If we raage the bars
according to the node indices, and connect them followingg hew connections were introduced in the Rips filtration, bieecode is
transformed to SLD.

complex and its element is a simpleX9]. A node is a0-simplex, an edge is &simplex, and a triangle
is a2-simplex. A complete graph with nodes represents the edges dfa- 1)-simplex.

Definition 3: A simplicial complexX is a finite collection of simplices such th&d]

1) any face ofo € K is also in/C, and

2) foroy,09 € K, 01 N0y is a face of bothr; andos,.
The binary networkB(X,¢) is a simplicial complex consisting df-simplices (nodes) and-simplices
(edges) 43]. There are various simplicial complexes. One of them isRifes complex.

Definition 4: Given a point cloud dat&, the Rips compleXR (X, ¢) is a simplicial complex whose
k-simplices correspond to unorderékl+ 1)-tuples of points which are pairwise within distancg3g].



While the binary networkB(X,e) has at most 1-simplices, the Rips complex has at njpst 1)-
simplices. So the Rips complex can have faces as well (BigTrivially we always haveB(X,e) C
R(X,e) assuming we use the same metric in constructing the binavyonle and the Rips complex.

B. Multiscale network as graph filtration

So far we treated the netwolk( X, ¢) at a fixed threshold as a simplicial complex. When we change
the threshold, we obtain a sequence of networks

B(X, 60),B(X, 61),B(X, 62), cee

We will explore the relationship among these networks.
When ¢ increases, the subsequent Rips complex becomes largealihténe previous Rips complex.
Therefore, we have
R(X,e) CR(X,e1) C--- CR(X,€,)

for eg < ¢ < --- <€, The nested sequence of the Rips complexes is callRga filtration which is
the main theme of persistent homolod@g]. Similarly, we also havegraph filtration for the case of the
sequence of nested binary networkdgl][

B(X7€0) - B(X7€1) c..-C B(X7€n)

foreg <€ <--- <e¢,. Thisis the reason why we introduce the Rips complex in thé pisce. We need
the basic mathematics of Rips complex in building graphatibm, which is a subset of Rips filtration.

As illustrated in Fig.2 (b), as the filtration value changes, the topological characteristic of the Rips
complex changes. The topological change of the filtratiam lsa visualized using thkearcode which is
constructed by plotting the changing topological featuwesr different filtration values. The topological
feature is displayed using a bar which starts and ends wherfetliture appears and disappears. The
barcode represents the changes in topological features thieefiltration value changes.

Among the many topological features, the zeroth Betti numkecounts the number of connected
components in a network. We formally define the connectedpoorant in networks and simplicial
complexes.

Definition 5: In a simplicial complex, a path between the two nodes is aesmpiof nodes such that
from each of its nodes there is an edge to the next node in thgesee. The connected component in
the simplicial complex is a subset of which any two nodes amnected to each other by paths.

Since thep-th Betti number is estimated by the and (p + 1)-simplices, the binary network (X, ¢)
contains enough information to computg [29]. In Fig. 2 (f), we plotted the zeroth Betti numbei,
(vertical) of the Rips complex over the filtration value (fzontal) [38]. The barcode is basically a
decreasing function showing when the connected compomeatmerging to form a bigger component.

The change ofj, shows the topological change of a network before all nodesannected. Until now,
many brain network studies have concerned about the netgroperties after all nodes are connected. It
is because they have focused on finding the small-worldsesse-freeness or modularity. In this paper,



we are interested in how the nodes are connected beforedsdkrere connected by observing the change
of Bo.

C. Multiscale network as dendrogram

The barcode represents the global topological changes atwork visually; however, it lacks the
geometric information of where the changes occur. That éslithitation of the barcode representation.
By including an additional geometric information of nodespiions in the barcode, it is possible to
transform the barcode into a dendrogram which provides lzerizisual representation of how a brain
network changes.

Consider the Rips filtratio R (X, €, )|k = 0,1,--- }. Let S* and S* be the two disconnected compo-
nents of the Rips compleR (X, ¢;). Suppose that there are two nodesc S* andz; € S* such that
the distancel betweenz; andz; is less than the next filtration valug,, i.e. d(z;, z;) < €x41. ThenSk
and S* will be connected aty . ;. In other words, the componen$§, and S* will be connected at;, ,; if

d(S¥. SFY = min  d(zy,x;) < €pr 2

meen z,€Sk, x;€5k
Note thatd(S* , S¥) is thesingle linkage distancketween the cluster§’, andS* often used in hierarchical
clustering §Q], [41]. Hence, the sequence of how components are merged dumn@igs filtration is
identical to the sequence of the merging in the dendrogramstoaction. To emphasize our main finding,
we write it as a proposition.

Proposition 1: The sequence of how connected components are merged dhangips filtration is
identical to the sequence of the clustering in the singlkalje dendrogram. The filtration valug,; at
which the two connected componeitt andS* are merged is determined by the single linkage distance
d(S*, Sk).

Fig. 2 (f) and (g) show the schematic of the relationship between Rips filtration and the SLD
construction. We used(x;, z;) = cx(x;, x;) as the single linkage distance between the nodes. At each
filtration value, the connected components are identifiedhey circles with different colors in (b). If
we rearrange the bars in the barcode and connect the bandimgrcto the node indexing and the Rips
filtration, we obtain SLD (see the color of lines in (f-g)).

The barcode shows the global topological characteristiowh®n the components are merged while
SLD shows the local network characteristics of what subogts/are clustered together. Note that SLD
is invariant under the permutation on node indices. Regasdbf which nodes we start building SLD, our
framework can always produce the consistent SLD. This isséuliproperty for a data set with extremely
large number of nodes. The single linkage clustering is thiy enethod that satisfies the uniqueness
theorem for clustering algorithms and it is sufficientlydéafor small perturbations in the metrid(],

[41], [45].

D. Single linkage matrix

Given the network X, cx), we were able to construct SLD. Then using SLD, we can rectenthe
distance between the nodes in the network using the sintkade distancéy. We can view the original



distancecy as the observed distance while the single linkage distdrcas the model predicted distance

using SLD. Let{z; = wy,--- ,w; = x;} be a path between; andz;. Then thesingle linkage distance
dx is formally given as

dx (i, v5) =

min { z:(g,r.l-?:}/iq cx(wl,wlﬂ)‘xi = wp, -, Wy = xj}. (3)

The minimum is taken over every possible path betweeandz;. For simplicity, dx = [dx(x;, z;)]vi,;
is called as a single linkage matrix (SLM). Fig(e) shows the SLMIx, which can be decomposed into
the sequence of matrices representing the connected cemigoin (d).

SLD can be easily understood through information diffustluming the filtration. Suppose that each
node has its own information. At the filtration valae= 0, the information starts to diffuse simultaneously
from each node over the network. If the information meets dynecting edges, the information is mixed
and the nodes belonging to the same connected componershaikk the mixed information. In this way,
the single linkage distance between two nodes can be thagytite smallest diffusion rate to mix the
information starting from the two nodes. The single linkaggrarchical clustering (dendrogram) visualizes
this diffusion process by a tree diagram that depends on Ithetitin value.

V. DISTANCE BETWEEN NETWORKS

Traditionally, the network comparison is performed by deiaing the difference between the graph
theoretic measures such as assortativity, betweennesaltgnsmall-worldness and network homogeneity
[12], [46], [47]. In persistent homology, there are various metrics thatehaeen proposed to measure
the distance between the two topological spaces. Probhblynbst widely used metric is the bottleneck
distance that is often used in measuring the distance bettheetwo persistence diagramé8]. GH
distance is also proposed to measure the distance betwednodeams 40], [41].

A. Graph theoretic measures

In this study, we considered seven most widely used graplsunes: assortativity, betweenness central-
ity, clustering coefficient, characteristic path lengtinadi-worldness, modularity and network homogeneity
[49], [50], [5]], [52], [47]. Other several network similarity measures such as thiexesimilarity, graphlet
degree distribution or P-Rank were not includ&d][ [54], [55]. While the first seven measures are defined
in the both weighted and binary networks, the last three oreasare only defined in the binary network.
To compare the performance under the same condition, weusdg the graph measures defined in the
weighted network. Here we briefly explain the graph meastmesompleteness.

Assortativity is the correlation between the degrees ohected nodes4P]. Betweenness centrality is
the average of the ratio of all shortest paths which passitiireach nodes0]. The clustering coefficient is
the average of the fraction of triangles around each nodetadharacteristic path length is the average
of the shortest path length between each pairwise no8l#ls The fraction of the average clustering
coefficient over the characteristic path length defines thallsworldness $1]. The modularity measures



how the network can be subdivided into modules or communjig]. When the number of edges within
a module is larger while the number of edges between modsile®aller, the modularity becomes higher.
Each graph measure reflects a different topological cheniatit of the brain network. For example, the
clustering coefficient and characteristic path length atated to the small-worldness. The assortativity
and betweenness are related to the scale-freeness. Thdanmitydis related to the community structure
[56], [46]. The network homogeneity is a node-wise measure obtaiggtidomean correlation of the any
given node with every other node within a given netwofk]|

Except for the characteristic path length, small-worldreasd modularity, the other measures are defined
in each node or edge in the network. Since we need a singlarsealue representing the network for
the comparison, we estimated the average assortativityele@ness centrality and clustering coefficient.
The global network homogeneity was obtained by calculatimegsum of the network homogeneity scores
[47].

Each graph measure is an algebraic invariant represensirayin topological characteristic of the net-
work. Using their Euclidean distances, we know whether #t®varks have similar topological properties
or not.

B. Bottleneck distance

The bottleneck distance was originally defined for meagyitire distance between two sets in the same
metric space.

Definition 6: Let X, Y be point cloud sets in the metric spac8, d). Each element ofX is paired
with at least one element &f. The bottleneck distancés betweenX andY is then given by

dp(X,Y) = min max|z— f(z)|. (4)
If we plot the birth and death time of a chosen topologicatdemover the filtration in the horizontal and
vertical axes respectively, we obtain thersistence diagran29]. The bottleneck distance is applied to
measure the difference between two persistence diagrams.

In this study, we are interested in how the number of the cciedecomponents as the main topological
feature of interest. In the graph filtration, the zeroth Batimber 3, always decreases and no new
component is born. Hence the birth time is always fixed at ttration value0 and only the death time is
varying. Since the number of nodes is fixed for all brain nekspthe number of connected components
is identical in each network. Then, the one-to-one functfofrom X to Y is simply determined by
the death time. The bottleneck distance for the brain ndtvisithe maximum difference between two
sequences of the ordered single linkage distances, iteatith values when the two disjoint components
are connected.

C. Gromov-Hausdorff distance

The Hausdorff and bottleneck distances are usually defioedifferent point sets in the same metric
space. However, this is not a useful metric in measuring fe@mce between networks because each
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Fig. 3. Simulated results. (a0 probability maps for sampling the data points. Each map mpmsed ofl, 4,9, ...100 bivariate normal
distributions from left to right and they are denoted as C2, C., C10, respectively. We sampldd0 data points from each probability
map like the blue dots in each panel. (b) The distance matri@ SLMs, (d) SLDs and (f) barcodes g of the sampled datasets. In
(d) and (e), the horizontal axes represent the filtratiomevalnd the vertical axes represent the index of connecte¢pament and one of
nodes, respectively. The slope of barcodes become more gtéeg from C1 to C1020 datasets withl00 datapoints are generated from
each probability map. The total number of datase®0is 10 = 200. We computed their SLMs usingp x 10 datasets and GH distances of
all pairwise SLMs. Then200 x 200 GH distance matrix are obtained as shown in (e). When weeared200 SLMs using Ward's cluster
analysis, the clustering accuracy w&s5%.

network will have its own metric. So what we need is a new met@H distance, that can be used to

measure the distance between different metric spagds Ih computing the GH distance, we need to

determine the correspondence between two different msgtaces, X andY . In our brain network model,

the node setX andY is given in the fixed identical locations in the template. fEfere, the node; € X

is simply mapped tg; € Y [44], [57]. Therefore, GH-distance can be trivially discretized as
don(X.Y) =5 max |dx(ai, ;) = dy (31|

The GH distance is the maximum difference between two SLManithe order of column and row vector

is fixed. While the bottleneck distance finds when the difieeeis maximized between two networks

during the changing of the number of connected compondmsGH distance finds where the difference

is maximized between networks.
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V. APPLICATION TO SIMULATION DATA

We applied the proposed method to the simulation data showv#gi 3 (a). For replicating our results,
we have provided the simulation data and MATLAB codes at
http://sites.google.com/site/hkleebrain/home/p&rishomology-2 We used10 probability maps which
are composed of, 4,9, 16, ..., 100 bivariate normal distributions. We denoted the probabitiaps from
left to right panels as C1, C2, ., C10. 100 data points are sampled from each probability map (blue
dots). Each data point is considered as a node and the Earcldistances is used for edge weights. Then,
their distance matrices, SLMs, SLDs and barcodegi,ofre computed and shown respectively in (b),
(c), (d) and (f). The distance matrices and SLMs ar&if’*1%, In the dendrogram (d), the horizontal
and vertical lines represent the connected componentshandhérging of two connected components.
Its color is varied according to the distance to the giant ponent, which is a connected component
when all nodes are connected. We set the distance from giampanent to giant component as one.
Whenever the component is divided into two smaller comptsehe distance increases one by one. The
colorbar for the distance to the giant component is showménleft. We illustrated the barcode @f as
the decreasing function in (f). The color of each line is @draccording to the corresponding datasets,
Cl, ..., C10. When the dataset is changed from C1 to C10, the barcasléatter peak, lighter tail and
steeper slope. We generat2@) datasets by samplin®) datasets per probability map. We estimated the
distance between all pairwise SLMs using GH metric. Theiabth200 x 200-dimensional GH distance
matrix is shown in (e). Using GH distance matrix, we cluste?60 SLMs into 10 clusters based on
Ward's linkage cluster analysis. During the clustering, assumed that the group labels of all SLMs are
unknown. After clustering, the clustered labels are combdo the true labels. The clustering accuracy
is 82.5%. Most of the mis-clustering occurred in C9 and C10.

VI. APPLICATION TO BRAIN NETWORK MODEL

In this paper, we applied the proposed framework in constrgdunctional brain networks with 103
ROIs extracted from FDG-PET data. FDG-PET measures gluemtabolism, which is associated with
neuronal activity $8]. The interregional metabolic correlation between bragions was used to reflect
functional connectivity during the resting stat9][, [60], [61]. While the resting state fMRI records the
blood oxygenation level dependent (BOLD) signal every 2 ase8onds, FDG-PET records the FDG
uptake for 30 minutes after 20 minutes from the injectionu§hFDG-PET data at the resting state is
more stationary and invariant to the noise compared to fMRiliss.

A. Subjects

FDG-PET was scanned from three groups. They were recruibea €hild and Adolescent Psychiatric
Outpatient Clinic of Seoul National University Hospitaledl, South Korea. Twenty-four children with
ADHD (19 boys and 5 girls, mean age: 82 1.6 years) were examined. They were diagnosed by a
board certified child and adolescent psychiatrist using BI8SMliagnostic criteria, Korean version of
ADHD rating scale IV (K-ARS) and, Korean version of Kiddiet®dule for Affective Disorders and
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Schizophrenia-Present and Lifetime version (K- SADS-Piyenty-six children with ASD (24 boys and
2 girls, mean age: 6.8 1.8 years). They were diagnosed by the Korean version of thisi Diagnostic
Interview-Revised (K-ADI-R) and the Korean version of theitkm Diagnostic Observation Schedule
(ADOS). The pediatric controls comprised 11 children (7 eynd 4 girls, mean age: 94 2.5 years).
They visited our clinic but failed to meet the criteria of apgychiatric disorder or visited a Child and
Adolescent Psychiatric Outpatient Clinic of Seoul Natiobaiversity Hospital for 1Q evaluation only.
This study was approved by the Institutional Review BoardSebul National University College of
Medicine.

B. PET image acquisition and preprocessing

All PET scans were obtained using an ECAT EXACT 47 (Siememnk-Enoxville, USA) PET scanner
with an intrinsic resolution of 5.2 mm FWHM. An emission scaas obtained with FDG dose of 0.3
mCi/kg for 30 minutes during resting state, after a transmais scan measured by 68Ge rod sources for
attenuation correction. All participants were scannedeuntbrmal environmental noise of the scanner
room. A filtered back-projection algorithm (Shepp-Logatefilat a cutoff frequency of 0.3 cycles/pixel as
128 x 128 x 47 matrices of size 2.% 2.1 x 3.4 mm) was used for transaxial image reconstruction. PET
images were spatially normalized to the Korean standar@lemspace after converting to Analyze format
and smoothed with a Gaussian filter of 16 mm FWHM using StesisParametric Mapping (SPM 2,
University College of London, UK), implemented in the M&tl&.5 (Mathworks Inc., USA) environment
[62]. To minimize the any ethnic differences, we used Koreandded PET and MR templates developed
using the normal Korean volunteei®?]. The procedure for obtaining the FDG-values from 103 R@Is i
as follows:

1) The ROIs were manually parcellated in high resolution MRdl the weighted probabilities of ROIs

were estimated based on the population.

2) The ROIs drown in MR image were warped into Korean PET tatepiegistered to Korean MR
template, which is called as Korean statistical probaimslianatomical map (KSPAM). It provides
effective tools for quantifying the regional intensity oD& uptake of PET data. In this way, we
have probabilistic ROIs in PET template space.

3) All PET images were then normalized to PET template udirgaiffine transformation.

4) The FDG-value of ROl in PET template space were extracjethé weighted averaging with the
weights given by the weighted probability.

The value of FDG uptake was globally normalized to the irdinals total gray matter mean count.
This normalized value was obtained from 103 ROIs as folla@@@&sfrontal, 20 parietal, 30 temporal, 16
subcortical, 14 occipital and 3 cerebellar regions. The eftgrt was factored out from 103 ROIs using
a general linear model.

VIl. RESULTS

Using the predefined 103 ROIs, we constructed the brain mksafollowing the proposed framework.
We will also validate our proposed framework with more aaalié graph theoretic approaches.
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Fig. 4. (a) Procedure for constructing the correlationebadistance mapx (1) using the given dataset. (b-d) The obtained distance maps
for ADHD, ASD and PedCon groups. F, P, T, S, O and C representdt, parietal, temporal, subcortical, occipital andebetlar regions.
L and R indicate the left and right hemispheres.

A. Multiscale brain networks

We computed the correlation-based distange(1) for ADHD, ASD and PedCon groups in Fid.
The multiscale brain networks were constructed using thglgfiltrations on ADHD, ASD and PedCon
populations.

The distance metric we used is 1-correlation. So the distéalways between 0 and 2. The negative
correlation corresponds to the distance larger than 1. Mekveluring the filtration, almost all nodes are
connected before epsilon value reaches 1 in our data sebwrittkception. The nodes merge together
quickly in the filtration to form a single giant connected quonent. So we did not really consider negative
correlations and the filtration is done between 0 and 1.

The graph filtrations a8 different values = 0.05, 0.1, 0.15,...,0.35 are shown in Fig5 (a) ADHD,

(b) ASD and (c) PedCon. The color of node is changed accortdirige connected component to which
the node belongs. At = 0, the color of nodes (connected components) is shown in tloel@y. Whene
increases, the color of node is changed. We also illustridtedbarcodes for the three groups in (d). The
maximum single linkage distances of ADHD, ASD and PedCon0ate, 0.51, and0.47.

In the barcode forj,, the decreasing slopes a3é4, 300, and314 for ADHD, ASD and PedCon. The
single linkage distance matrices for ADHD, ASD and PedComevwaso computed in Figs (a-c). The
single linkage dendrograms within a network were illugdain Fig.6 (d-f). The color of lines in the
dendrogram represents the distance to the giant compameaaéh connected component. The maximum
distances to the giant component afe31 and 26 for ADHD, ASD and PedCon, respectively.

B. Performance against other network measures

The 3D static PET image is obtained one per subject. Sinceoveotl have multiple PET scans per
subject, we couldn’t generate a single network per subfarive used the Jackknife resampling technique
to generate additional networks. For a group witlsubjects, one subject is removed and the remaining
n — 1 subjects are used to construct a network. This process eateg for each subject to produce
networks for the group. Therefore, we were able to simuldte28 and 11 networks for ADHD, ASD and
PedCon groups. For a4 + 26 + 11) networks, we estimated the SLM, barcodedgf slope of barcode



14

L ¥y «*
Ot - ‘1-08' .:
¢ ¥ % ¢
F uu- i T =]
ADHD, B,
P d ASD, By .
“US PedCon, Bg |
T ° |
o
S g _
0 z = ‘ ;
C 0.3 0.4 0.5

Filtration value

(d)

Fig. 5. Graph filtration of (a) ADHD, (b) ASD and (c) PedCon he ffiltration values = 0.1,0.15,0.2,...,0.45. The color of nodes
at e = 0 is shown in the colorbar. If the nodes belong to the same atedecomponent, they are colored identically. The barcgtiesf
ADHD, ASD and PedCon are shown in (d).

0o, average assortativity, average node betweenness adgnaaérage clustering coefficient, characteristic
path length, small-worldness, modularity and the glob&lvne homogeneity. Then, the GH distance was
computed between all pairwise SLMs. The bottleneck digtamas computed similarly for all barcodes.
For the otheB graph theoretic measures, all pairwise differences weea@mputed. We obtained tofdl
distance matrices between the networks. The result is suizedan Fig.7, where each distance matrix is
normalized with the maximum value The size of the distance matriceg2 +26+11) x (244264 11),
which corresponds to the number of simulated networks inthihee groups. We clustered the simulated
networks into 3 groups using the Ward’s cluster analysisgusach computed distance matrix. During the
clustering we assume that the true group labels are unkribwen, we evaluated the clustering accuracy by
comparing the assigned labels with the true labels. Therwdeaclustering accuracies aré0%, 44.26%,
86.89%, 80.33%, 85.25%, 80.33%, 96.72%, 93.44%, 60.66% and 96.72% for GH distance, bottleneck
distance, slope of barcod&, assortativity, betweenness centrality, clustering fateht, characteristic
path length, small-worldness, modularity and global nekwlmomogeneity, respectively.

We conclude that the GH-distance based approach shows #tepédormance against 10 available
methods. Surprisingly the bottleneck distance predontiparsed in persistence homology performed
poorly possibly due to the fact that it ignored the geomatrformation of network nodes.
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Fig. 6. (a-c) SLMsdx of ADHD, ASD and PedCon obtained from the original corr@atbased distancex in Fig. 4 (b-d). Compared
to the correlation-based distance, we have better group separation in the single linkage nistdx. F, P, T, S, O and C represent
frontal, parietal, temporal, subcortical, occipital aretebellar regions. L and R indicate the left and right heheses. (d-f) Single linkage
dendrograms of ADHD, ASD and PedCon. The vertical and hatalcaxes represent the node index and filtration value. Bha& of lines
shows the distance to the giant component. The distanceet@itint component of the giant componentlisWhenever the connected
component is divided into the smaller components, the niigtdncreases one by one.

VIIl. DISCUSSION
A. Summary

In this paper, we proposed a new framework for modeling brainnectivity using the persistent
homology. The proposed framework avoids the traditionaégholding of connectivity matrices in ob-
taining binary networks. Instead of trying to find an optintlateshold, which may not be optimal for
other networks, we constructed networks for every possibkeshold. Then we determined the persistent
topological features over the evolution of the network demat every scale.

In developing a unified mathematical framework, we borroweavily from the persistent homology. In
this paper, we showed that binary networks are the subsébtedRips complex, and the collection of the
networks over different scales forms the Rips filtrationr fe visualization of the multiscale networks,
we used the barcode and the dendrogram, and explored thiemstdap between the two representations.

For quantification, we used the single linkage distance ahdd@tance. We showed that the GH-
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Fig. 7. Comparison of 11 different methods: (a) GH distar{®®, bottleneck distance, (c) slope of barcodg (d) assortativity, (e)
betweenness centrality, (f) clustering coefficient, (gareleteristic path length, (h) small-worldness, (i) modtjaand (j) global network
homogeneity. In each distance matrix, thealiagonal block matrices with the sizal x 24, 26 x 26 and 11 x 11 measure the distance
between networks within a group and the off-diagonal blockrives measure the distance between groups. The clgst&eouracy using
the Ward’s cluster method was also performed. From (a) tothff) clustering accuracies at€0%, 44.26%, 86.89%, 80.33%, 85.25%,
80.33%, 96.72%, 93.44%, 60.66% and96.72%. The GH-distance shows the best performance.

distance has better discriminating power than the bottlertistance and many other graph theoretic
measures.

B. Network findings

In Fig. 5 (d), the slopes of barcod&, are ASD < PedCon< ADHD with the significance level05
based on the Wilcoxon rank-sum test using the resampledetatarhe filtration values when all nodes
are connected is generated are ADHDPedCon< ASD with the significance leveD5. It implies that
ASD has longer heavy tail in the shape of barcode (globaligahnected until the larger filtration values)
and sharper peak (locally connected at the smaller filmatadues) compared to PedCon and ADHD. The
sharp peak and long heavy tail of ASD is related to local @gmectivity and global under-connectivity,
respectively $3].

For pairwise comparisons of the single linkage distanceg. &), the Wilcoxon rank-sum test was
used with Bonferroni’s correction. We found that ASD showedsely connected between left inferior
prefrontal regions such as BA44 and BA45 and other brairoregcorrecteg < .05). The loose coupling
of inferior frontal area 44/45 might be reflected the behaligymptom in ASD §4]. We found that
ADHD showed loosely connected pattern between sensormegion and various frontoparietal regions
including anterior cingulate compared to PedCon (corcegte .05). This loose connected pattern might
reflect the deficits of cognitive attentional contr6b] and sensori-motor integratio®]. Also, ASD and
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ADHD have commonly abnormal connected structure in cehatme(correctedp < .05). Cerebellum is
one of the pathophysiological regions in ADHD and ASD. Irsthiay, the single linkage distance using
network filtration could be an another indicator for chagaizing abnormal brain network.

C. Future works

In this paper, we considered the graph filtration. and onby 2broth Betti numbep, was used as
the topological invariant. However, since the functionedib network itself is not in th&-dimensional
Euclidean space where the nodes are embedded but in a highengional space, we also need to
consider higher degree Betti numbers beyond the zeroth tendg the concept of network filtration to
the Rips complex.

For a network with an extremely large number of nodes, thesttoation of the Rips filtration and the
corresponding single linkage dendrogram is time consunfsiigce the construction of a single linkage
dendrogram is equivalent to that of the minimum spanning (MST) [44], it is possible to speed up the
computation by using either the Prim’s or Kruskal’s algamit that are often used in finding MST. The
relationship between MST and our persistent homologi@hé&work is also left out for a future study.
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