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Abstract

A novel systematic framework of medical image analysis, weighted Fourier series

(WFS) analysis is introduced. WFS is a combination of Fourier series and heat

kernel smoothing. WFS effectively reduces the Gibbs phenomenon, improves

the signal to noise ratio, and increases normality of the estimated errors in the

WFS-based generalized linear models.

In estimating the parameters of WFS, the least squares estimation of WFS

has been widely used but it is computationally inefficient. To address the com-

putational inefficiency in the least squares estimation, much faster but less ac-

curate iterative residual fitting (IRF) method has been proposed. The proposed

adaptive iterative regression (AIR) technique inherits the computational effi-

ciency of IRF and improves accuracy of IRF. AIR partitions the function space

into a set of subspaces, and performs an extra orthogonalization procedure to

reduce the bias of IRF estimation. A complimentary tool, the fast weighted

Fourier analysis method computes the coefficients of WFS efficiently and chooses

the significant frequencies of WFS representations automatically. As a model

selection tool, its accuracy is comparable with other model selection methods.

Its computational efficiency outperforms other classic model selection methods.

For robust and accurate curvature estimation, we propose a new curve cur-

vature calculation method. This method is independent of parametrization so
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that it can be applied to improve curve parametrization. Then a curvature-based

non-linear curve registration is proposed. Surface curvatures are calculated an-

alytically using the recurrence properties of the derivatives of Legendre polyno-

mials. A new curvature-based surface alignment is proposed. It is equivalent to

the affine alignment using coordinates of the surfaces, but is computationally

more efficient.

Keywords: Autism, Eigenvalues and eigenfunctions, Fast Fourier transform,

Fourier series, Fourier transform, Full width half maximum, Gaussian and mean

curvature, Gradient vector flow snakes, Heat kernel, Hilbert space, Model selec-

tion, Nonlinear registration, Random field theory, Spherical harmonics, Spheri-

cal transform, Threshold and Weighted Fourier series.
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Chapter 1

Introduction

Medical image analysis and acquisition techniques are experiencing an explo-

sive growth due to the advancement of computer technology. Modern medical

images provide physicians a remarkably detailed vision of the anatomical struc-

tures in vivo. This brings a dramatic increase of using medical images to help

answer key questions that arise in human anatomical studies, disease diagnoses

and drug development processes (Pien et al., 2005). For instance, various hard

and soft tissue structures in the vocal tract area, whose measurements were

unavailable in the past, can be measured at different ages using magnetic res-

onance images (MRI) and their growth patterns can be examined (Vorperian

et al., 1999, 2005). Nacewicz et al. (2006) evaluated amygdala volumes using

MRI and examined whether the variations in amygdala volume are related to

the severity of autism. MRI has been used to study heart structure and function

and to assess plaque composition and its regression in the coronary vasculature

(Choudhury et al., 2002). Biochemical imaging biomarkers are being developed

for the identification of “vulnerable plaque” for studies of primary prevention

(Frank and Hargreaves, 2003). In these studies, the imaging biomarkers were

treated as multivariate random variables. Multivariate statistical analysis can
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be conventionally applied.

In the meantime, infinite-dimensional data, such as curves, surface and vol-

umes, are also increasingly collected in medical image analysis. We usually

refer to these infinite-dimensional data as functional data (Ramsay and Silver-

man, 1997, 2002). In practice, it is necessary for functional data analysis to

achieve some form of dimension reduction so that one can reduce the infinite-

dimensional data to finite and tractable dimensions. Fourier series decompose

an L2 function into a set of simple functions, which may be sines and cosines

and complex exponentials. A cutting-off of high frequencies of a Fourier series

usually gives a good smooth approximation of a periodic curve. Therefore, it has

been applied to functional data analysis for the purpose of curve modeling and

dimension reduction (Bracewell, 1999; Bosi and Goldberg, 2003). Recently, the

spherical harmonics (SPHARM) (Sternberg and Smith, 1946; Hobson, 1955; By-

erly, 1959), which is a higher dimensional Fourier series, has been widely applied

to computer graphics and medical imaging for surface structure representations.

Detailed remarks and historical references of SPHARM can be found in Groemer

(1996). Brechbuehler et al. (1995) extended the concept of elliptical Fourier de-

scriptor of closed curves and used a global parametrization to expand the object

surface into a series of SPHARM functions. Gerig et al. (2001) and Shen et al.

(2004) used SPHARM to represent the hippocampus and amygdala surfaces

and statistical inference was made based on SPHARM representations. Kele-

men et al. (1999), Gu et al. (2004) and Chung et al. (2006b) applied SPHARM
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to characterize more complex cortical surfaces. Kazhdan et al. (2003) presented

a novel tool that transforms rotation dependent shape descriptors into rotation

independent SPHARM representations. The coefficients of SPHARM give a

unique representation of the given anatomical structures. A direct application

of this property can be found in Shen et al. (2004). They registered hippocam-

pus surfaces based on the degree one SPHARM (an ellipsoid) and then applied

principal component analysis (PCA) of the coefficients for detecting schizophre-

nia. In this dissertation, we refer to both classic Fourier series and SPHARM

as Fourier series in general.

Even though Fourier Series have been widely used in medical image analy-

sis, they have several drawbacks. Firstly, Gibbs (ringing) phenomenon occurs

when using Fourier series to approximate a curve with sharp corners. Its oscil-

lation patterns will not die with the increasing order of Fourier series as shown

in Figure 1. The second drawback of Fourier series is that it is theoretically

complicated and computationally time-consuming to estimate the smoothness

of the approximation, which is crucial for the statistical inference using ran-

dom field theory (Worsley, 1996; Cao and Worsley, 1999; Kiebel et al., 1999).

One also has to be extremely careful about the normality assumption of the

Fourier series-based generalized linear models. Improper choices of the degrees

of Fourier series can cause violation of the normality assumption of estimated

errors in the literature (Shen et al., 2004; Chung et al., 2008a).

We propose a novel systematic framework of weighted Fourier series (WFS)
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Figure 1: A demonstration of Gibbs phenomenon of Fourier expansions of degree
4, 14, 24, 44. The black curves are the original curve with sharp corners and
the blue curves are the Fourier expansions of the original curve.

analysis (Chung, 2006a; Chung et al., 2006b, 2008a) that addresses many short-

comings associated with the traditional Fourier series analysis. WFS is closely

related to heat kernel smoothing (Chung et al., 2005), which was applied as

a novel data smoothing and analysis framework for cortical thickness data de-

fined on the brain cortical manifold (Chung et al., 2005). It was pointed out

that it is more natural to assign the weights based on the geodesic distance

along the surface. A framework of using heat kernel smoothing detecting the

regions of abnormal autistic cortical was developed via random field based mul-

tiple comparison correction. This paper built the ground work for the procedure

of medical image analysis using kernel methods. WFS was first proposed and

applied to the problem of detecting abnormal cortical regions in a clinical popu-

lation by Chung et al. (2006a). For the smooth parametrization, they developed
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a novel weighted spherical harmonic (SPHARM) representation. A theoretical

framework for the weighted Fourier analysis was presented and how it could

be used in the tensor-based morphometry was introduced. Chung and his col-

leagues also presented a novel multi-scale voxel-based morphometry using the

WFS representation to address the optimal amount of registration that should

be used in voxel-based morphometry (Chung et al., 2006b). Chung et al. (2007a)

applied weighted Fourier analysis in quantifying the amount of gray matter in

a group of high functioning autistic subjects. Most recently, Weighted Fourier

series were also applied to detect abnormal cortical regions in the group of high

functioning autistic subjects (Chung et al., 2008a). The authors also showed

that a WFS is the least squares approximation to the solution of an isotropic

heat diffusion on the unit sphere.

Even though weighted Fourier analysis of medical images is well defined the-

oretically and numerically, the implementation of Fourier series is not trivial as

it looks, especially for the models that involve large data (e.g. cortical surfaces).

Traditionally, Fourier series or SPHARM was derived from the least-squares es-

timation (LSE) (Gerig et al., 2001; Shen et al., 2004). But LSE requires the

inversion of large matrices. The computation of large inverse matrices is in

general very time-consuming. To deal with this problem, Shen and Chung

(2006) and Chung et al. (2006b) proposed an iterative residual fitting (IRF)

algorithm to improve the computational efficiency by decomposing the Hilbert

space L2(S2) into a direct product of a set of subspaces (i.e., by partitioning a
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large design matrix into small submatrices in the linear model settings), then

iteratively performing LSE using each small submatrix on the residuals. IRF

greatly improves the computation efficiency. But IRF assumes that the subma-

trices are linearly independent pairwisely. In practice, this linear independency

can not be achieved. The linear dependency between submatrices is always not

negligible for the estimation of WFS. Therefore the tradeoff of fast computation

of IRF is the loss of accuracy of the estimation. In this dissertation, we propose

the adaptive iterative regression (AIR) method to address this issue. AIR in-

herits the idea of IRF by partitioning the function space into a set of subspaces.

But AIR carries out an extra correction step to improve the orthogonality be-

tween two contiguous subspaces. The improved orthogonality reduces the bias

in the WFS estimation. Our simulations show that computational efficiency of

AIR is comparable with IRF, but its estimation is more accurate than IRF.

The studies of autism (Berument et al., 1999; Scott et al., 2002; Yeargin-

Allsopp et al., 2003; Dalton et al., 2005a), recently attracted great interest in

medical imaging studies. Autism is a neuro-developmental disorder affecting

behavioral and social cognition, which manifests in delays of social interaction,

language as used in social communication, or symbolic or imaginative play with

onset prior to age 3 years. About 14 out of 10,000 children have autism or a

related condition in the United States. The causes of autism are full of debates

and controversy and there is no definite cure of autism. However, recent imag-

ing studies showed connections between autism and various regions or tissue
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structures of the brain, such as prefrontal cortex, medial and ventral temporal

lobe, superior temporal sulcus, corpus callosum, amygdala hippocampus, cere-

bellum and so forth. Abell et al. (1999) used the voxel-based morphometry

in high functioning autism to show decreased gray matter volume in the right

paracingulate sulcus, the left occipito-temporal cortex, increased amygdala and

periamygdaloid cortex. Vidal et al. (2003) showed reduced callosal thickness in

the genu, midbody, and splenium in autistic children. Hoffmann et al. (2004)

showed curvature difference in the midbody between autistic and normal sub-

jects. Chung et al. (2004) applied a 2D version of voxel-based morphometry

in differentiating the white matter concentration of the corpus callosum for

the group of 16 high functioning autistic and 12 normal subjects. Dalton et al.

(2005a) found that the activation in the fusiform gyrus and amygdala was strong

and positively correlated with the time spent fixating the eyes in the autistic

group. In Alexander et al. (2007), diffusion tensor measurements in corpus cal-

losum were investigated in a large group of high-functioning autistic patients

compared to matched controls.

To show the framework of WFS analysis of medical images, we are going

to apply WFS analysis to the study of autism. Two data sets are used for the

study:

• Corpus Callosum data: MR midsagittal slice images (as shown in Figure

2) of 15 high functioning autistic subjects and 12 normal controls. All

subjects are right-handed males as shown in Figure 2.
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Figure 2: The corpus callosum data: all 27 mid-sagittal slice images, which
include 15 high functioning autistic subjects and 12 normal controls.

• Amygdala data: MR volume images of 16 autistic subjects and 14 normal

controls. Each subject includes a left and a right amygdala. There are

total 60 images.

The two data sets were provided by the scientists from the Waisman Labo-

ratory for Brain Imaging and Behavior at the University of Wisconsin. They

were originally used to study the underlying relationships between autism and

neuro-anatomical structures (Nacewicz et al., 2006). Cortical surface data and

mandible surface data, which were provided by Waisman Laboratory for Brain

Imaging and Behavior and Vocal Tract Development Laboratory at the Uni-

versity of Wisconsin, are also used for the illustration and simulations of our

methods.

The general pipeline of WFS analysis framework is shown in Figure 3, which
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Figure 3: The pipeline of WFS analysis of medical images.

usually has the following steps: first, the boundaries of interest are extracted by

manual or automatic segmentation methods; second, a parametrization proce-

dure is proposed to find the optimal one-to-one mapping between the boundaries

and unit sphere (parametrization) for mathematical modeling; WFS represen-

tations are calculated based on the parametrization results; a curvature-based

affine alignment is applied, and then a curvature-based non-linear registration is

carried out to further improve the registration results; final statistical analysis

is made by using various tools and models.

The main contributions of this dissertation are:

• We extended the systematic theoretical framework of weighted Fourier

analysis. We formulated the weighted Fourier analysis into the frame of

the classic functional analysis and partial differential equations.
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• We proposed an AIR method for the estimation of weighted Fourier series.

This method was proved to be computationally efficient and numerically

accurate by various simulations and studies.

• We proposed an AIR-based method to choose the optimal degrees of WFS

using the F -statistics.

• We proposed a novel curve curvature estimation method, which is more

robust and accurate than the finite difference method.

• We designed a curvature-based non-linear curve registration method.

• We proposed a WFS-based method of the surface curvature estimation

and a curvature-based surface alignment method.

• We proposed a fast weighted Fourier analysis method, which provides fast

estimation of WFS and chooses the significant frequencies automatically.

The structure of this dissertation is designed as follows: we briefly introduce

the background of WFS, the basic content and structure of the dissertation in

Chapter 1; in Chapter 2, we introduce the WFS representation as a solution to a

Cauchy problem, and show that the WFS representation is a natural smoothing

procedure, which not only improves the signal to noise ratio but also improves

normality of the estimated errors; a series of important theoretical properties

of WFS are stated and proved; we then numerically implement WFS with the

AIR algorithm to improve the computational efficiency and accuracy; in Chap-

ter 3, we design curvature-based curve and surface registrations based on the
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proposed curvature estimation methods; in Chapter 4, we propose a novel fast

weighted Fourier analysis method for WFS model selections; in Chapter 5, we

apply the WFS image analysis techniques to the study of autism; we propose a

decision tree-based automated diagnosis of autism using corpus callosum data;

we find local difference between autistic and normal subjects in right amygdala

by using random field theory; and we also apply fast weighted Fourier analysis

to the study of growth patterns of mandible surfaces; Finally, we summarize

our works in weighted Fourier analysis and discuss the possible approaches of

future research in statistical shape analysis of anatomical structures in Chapter

6.
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Chapter 2

Weighted Fourier Analysis

With technological advances in measurement devices and computational method,

infinite-dimensional data, such as curves, surface and volumes, are increas-

ingly collected in medical image analysis. We usually refer to these infinite-

dimensional data as functional data (Ramsay and Silverman, 1997, 2002). Func-

tional data analysis has to deal with functions and function spaces. Therefore,

the concept of infinite-dimensional Hilbert space, L2 in most cases, arises nat-

urally and frequently for medical image analysis. Since this concept is a gen-

eralization of Euclidean space, geometric intuition plays an important role in

many aspects of the Hilbert space theories. Analogous to Cartesian coordinates,

an element of a Hilbert space can be uniquely characterized by its coordinates

with respect to an orthonormal basis. In Euclidean spaces, the eigenvectors of

a Hermitian matrix can be used to form such an orthonormal basis. Similar to

the extension of vectors to functions, we replace matrices by linear operators

in functional data analysis, in particular, Hermitian matrices are replaced by

self-adjoint linear operators. In this chapter, we study a weighted Fourier series

representation of the element in the Hilbert space based on the eigenfunctions

of a self-adjoint linear operator. This weighted Fourier series representation can
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be derived as a solution to the associated Cauchy problem.

2.1 Introduction to weighted Fourier series

2.1.1 The derivation of weighted Fourier series

In medical image analysis, one always deals with subjects that have a one-to-one

mapping (isomorphism) to a circle, a sphere or a solid ball, which we consider

as 1-dimensional, 2-dimensional or 3-dimensional unit spheres in the following

context. Based on the one-to-one mapping, one considers the coordinates of

these subjects as functions on the unit sphere, which encourages us to explore

the characteristics of these functions and the properties of their related Hilbert

spaces.

We start with a Hilbert space defined on a manifold (Stoker, 1969; Jost, 2002;

Dragomir, 2006). A manifold is an abstract topological space in which every

point locally resembles Euclidean space. Let M ∈ Rd be a compact manifold.

The squared-integrable function space, L2(M), is the Hilbert space defined on

M with the inner product,

〈f1, f2〉 =

∫
M

f1(x)f2(x)dµ(x), for any f1, f2 ∈ L2(M),

where µ is the Lebesgue measure defined on M. The proof of the completeness

of L2(M) is a classic result in functional analysis (Halmos, 1978; Conway, 1985;

Rubin, 1991). In addition, L2(M) is separable. Therefore, any element in
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L2(M) can be represented by a countable number of elements. This property

guarantees the existence of the countable orthonormal basis.

For seeking an appropriate orthonormal basis, non-degenerate self-adjoint

linear operators on L2(M) are of special interest. On a finite-dimensional inner

product space, a self-adjoint operator L can be defined by its corresponding

Hermitian matrix ML (ML is equal to its conjugate transpose). By similarity

transformation,

ML = U−1diag(λ1, λ2, · · · , λn)U (1)

where U is the unitary matrix whose columns are the eigenvectors of ML and

λj, j = 1, 2, · · · , n are the eigenvalues of ML. The operator L (or matrix)

can be represented as a diagonal matrix diag(λ1, λ2, · · · , λn) with entries in

the real numbers in the space spanned by the columns of U . The self-adjoint

operators on infinite dimensional Hilbert spaces essentially resemble their finite

dimensional counterparts.

A linear operator L : L2(M) → L2(M) is self-adjoint if

〈Lf1, f2〉 = 〈f1,Lf2〉,

where the overline indicates the complex conjugate. From the definition, self-

adjoint operators are “symmetric”. Just like symmetric matrices, self-adjoint

operators can be diagonalized. Therefore a self-adjoint operator can be deter-

mined completely by its eigenvalues and eigenfunctions. In particular, these

eigenvalues are real. Let {λi} and {φi} (i = 1, 2, · · · ) be the eigenvalues and
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eigenfunctions of L such that

Lφi = λiφi.

Then {φi}∞i=1 is a complete orthonormal basis of L2(M). Similar to (1), one can

write a self-adjoint operator in the form of a Hilbert-Schmidt kernel (Courant

and Hilbert, 1953; Berezankii, 1968),

KL(p, q) =
∞∑
i=1

λiφi(p)φi(q).

This is the infinite-dimensional version of ML in (1).

For Hilbert spaces, one common choice of basis is the Fourier basis. Under

moderate computation, one can derive the Fourier series and spherical harmon-

ics (SPHARM) as the eigenfunctions of a self-adjoint operator, the negative of

the Laplacian L = −4 (which makes the operator non-negative), defined on

the unit sphere. If M = S1, the unit circle, then

L = −∂2/∂θ2,

where L has eigenvalues {l2, l = 0, 1, · · · , }. That Lfli = l2fli, i = 1, 2 derives

the Fourier basis

f0 =
1√
2π

, fl1 =
sin lθ√

π
, fl2 =

cos lθ√
π

, l = 1, 2, · · · ,

where θ ∈ [0, 2π]. Similarly, if M = S2, SPHARM can be derived as a solution

to the system
4Ylm = λlYlm, l = 1, 2, · · · , −l ≤ m ≤ l,

4 = ∂
sin θ∂θ

(sin θ ∂
∂θ

) + ∂2

sin2 θ∂2φ
,

λl = l(l + 1),
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Figure 4: Plots of SPHARM basis functions of degrees from 0 to 3. The color
indicates the magnitude of the function. The x-axis and y-axis show the corre-
spondence of the degrees and the orders of the SPHARM basis functions.

which is

Ylm =



√
(2l+1)(l−|m|)!

2π(l+|m|)! P
|m|
l (cos θ) sin(|m|φ), −l ≤ m ≤ −1,√

(2l+1)(l−|m|)!
4π(l+|m|)! P 0

l (cos θ), m = 0√
(2l+1)(l−|m|)!

2π(l+|m|)! P
|m|
l (cos θ) cos(|m|φ), 1 ≤ m ≤ l,

where θ ∈ [0, π] is the zenith angle (also known as polar angle), which starts

from the z-axis, and φ ∈ [0, 2π] is the azimuth angle, which starts from the

x-axis, and P
|m|
l is the associated Legendre functions of degree l and order m.

Ylm is called the SPHARM of degree l and order m. SPHARM basis functions

of degree 0 to 3 are plotted in Figure 4, which shows that the distribution of

SPHARM is in the form of a pyramid. Gerig et al. (2001); Bulow (2004); Gu

et al. (2004); Shen et al. (2004) used the complex-valued SPHARM, which is



17

from the original definition of spherical harmonics. Even though real-valued

and complex-valued SPHARMs are essentially equivalent, the coefficients of the

real-valued SPHARM are more meaningful and interpretable for the generalized

linear models that we will specify later.

Fourier series was invented to express the solution of the heat equation

(Fourier, 1822). In our work, we are going to introduce weighted Fourier series

as a solution to the Cauchy problem, a generalized form of the heat equation.

Suppose we have a smooth manifold M (M is called a Cauchy surface). A

Cauchy problem consists of finding the solution g(p, t) of the differential equa-

tion which satisfies
∂g(p,t)

∂t
+ Lg(p, t) = 0, t ≥ 0, p ∈M

g(p, 0) = f(p).
(2)

Equation (2) becomes a heat equation with given initial condition when L =

−4. Equation (2) defines a natural smoothing procedure with input function

f(p) (the initial condition). t controls the amount of smoothing and is termed

as the bandwidth. The existence and uniqueness of the solution to the Cauchy

problem is stated in the following theorem, which was first presented and proven

in Chung et al. (2007a).

Theorem 2.1. Given that the eigenvalues {λj}∞j=1 and eigenfunctions {φj}∞j=1

of L are known, the unique solution to (1) is given as

g(p, t) =
∞∑

j=0

e−λjt〈f, φj〉φj(p). (3)

if L is non-degenerate, compact and self-adjoint.
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Proof. The Cauchy-Kowalevski theorem (Cauchy, 1842; Kowalevski, 1875; Gor-

bachuk, 1998; Nakhushev, 2001) gives the proof of the uniqueness and existence

of the Cauchy problem for a general linear operator, L. In this proof, only

self-adjoint operators are considered. If a self-adjoint linear operator, L, has

non-zero eigenvalues, then it is non-degenerate, i.e., it has infinitely many eigen-

functions and its eigenfunctions consist of a complete basis of L2(M) (Aupetit,

1991). Since {φj}∞j=1 are complete and orthonormal,

g(p, t) =
∞∑

j=0

〈g(x, t), φj〉φj(p).

By Lφj = λjφj, then equation (2) becomes

∂t(
∞∑

j=0

〈g, φj〉φj(p)) =
∞∑

j=0

λj〈g, φj〉φj(p)

where the exchangeability of differentiation and summation is based on the

fact that a Fourier series is uniformly convergent in L2 (Rudin, 1976). By the

orthonormality of {φj}∞j=1, we have

∂t(〈g, φj〉φj(p)) = λj〈g, φj〉φj(p), j = 1, 2, · · ·

Now one only needs to solve a much simpler partial differential equation for

each j that has the form as ∂tg +λg = 0 with initial condition g(x, 0) = f . The

solution simply is g(x, t) = e−λtf . Therefore,

〈g(x, t), φj〉φj(p) = e−λjt〈f, φj〉φi(p).

By putting all terms together, we have

g(p, t) =
∞∑

j=0

e−λjt〈f, φj〉φi(p),
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which is a solution to (2).

To prove the uniqueness of the solution, let f̃ =
∑∞

j=0 ajφj(p). Then, we

plug f̃ − g(p, t) into (2) to get aj = e−λjt〈f, φj〉 for every j, which shows that

the solution is unique.

We call g(p, t) the weighted Fourier series (WFS) of function f since it

has an extra weight term for every coefficient comparing with the Fourier series

representation. Similar to heat kernel smoothing (Chung, 2006b), WFS provides

a method of kernel smoothing. It is easy to verify that WFS has the basic

properties of a smoothing process.

Theorem 2.2. Let {φi}∞i=0 be a Fourier basis or SPHARM basis and assume f

is bounded on the compact support M. If the bandwidth t → 0, WFS defined in

(3) converges to a Fourier series or SPHARM representation pointwisely

lim
t→0

g(p, t) =
n∑

i=0

〈f, φ〉φi, for every p,

and

lim
t→∞

g(p, t) → 1

µ(M)

∫
M

f(p)dµ(p), for every p.

Proof. We first prove that g(p, t) defined in (3), pointwisely converges to its

Fourier series representation as t → 0. Since ‖φi‖2 = 1 and M is compact, φi

is bounded on M. Note that as λi →∞ as i →∞. By Hölder’s inequality,

|e−λit〈f, φ〉φi| ≤ |e−λitφi| · ‖f‖2 · ‖φi‖2

= C0e
−λit,
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where C0 is a constant that is independent of i. Since
∑∞

i=0 C0e
−λit is convergent.

Then by bounded convergence theorem (Rudin, 1976), for any fixed p, one can

switch the limit and the summation

lim
t→0

g(p, t) =
∞∑
i=0

lim
t→0

e−λit〈f, φ〉φi

=
∞∑
i=0

〈f, φ〉φi,

and

lim
t→∞

g(p, t) =
∞∑
i=0

lim
t→∞

e−λit〈f, φ〉φi

= 〈f, φ0〉φ0

=
1

µ(M)

∫
M

fdµ.

This lemma also tells us that the Fourier series is a special case of WFS

(with bandwidth 0). Thus with an appropriately chosen bandwidth, WFS is

usually a better choice than Fourier series.

2.1.2 The heat kernel

WFS is directly related to heat kernel smoothing. The heat kernel is the gener-

alization of the Gaussian kernel defined in the Euclidean space to an arbitrary

Riemannian manifold (Rosenberg, 1997; Chung et al., 2005, 2007a). We can

construct the heat kernel on the compact Riemannian manifolds and represent
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Figure 5: Plots of heat kernel Kk
t (p, q) on S1 with degree = 1, 5, 10, 15 for

every bandwidth t=0, 0.01, 0.1, where (p, q) ∈ [0, 2π]× [0, 2π].

the heat kernel as

Kt(p, q) =
∞∑
i=1

e−λitφi(p)φi(q). (4)

In practice, heat kernels with finite terms,

Kk
t (p, q) =

k∑
i=1

e−λitφi(p)φi(q),

are often used to approximate the underlying heat kernel. Here k is called

the degree of the heat kernel. Figure 5 shows plots of heat kernels on S1 for

different degrees with different bandwidths. From this figure, one can also see

that WFS gives a good smooth approximation of the heat kernel with different

bandwidths. Selecting the optimal degree and bandwidth of a WFS kernel will

be an interesting topic. Generalized cross-validation (GCV) (Wahba, 1990) and
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the discrepancy principle (DP) (De Nicolao et al., 1997; Sparacino et al., 2001;

Toffolo et al., 2001) can be good candidates for certain cases. But GCV and DP

are in general computationally expensive for large image data. We are going to

address this issue using an F -statistics based model selection method.

WFS kernel is indeed an integral kernel. One can define a heat kernel

smoothing operator T : L2(M) → L2(M) as

Tt(f(p)) =

∫
M

Kt(p, q)f(q)dµ(q).

By Ascoli-Arzela theorem (Rubin, 1991), one can prove that the operator T

is compact and self-adjoint. Therefore, the heat equation becomes a special

case of the famous Sturm-Liouville problem with initial conditions. The WFS

representation of initial condition f is automatically a solution to (2) as

g(p, t) = Tt(f(p)) =

∫
M

Kt(p, q)f(q)dµ(q).

For any fixed q, Kt(p, q) is a probability distribution function centered at q,

which is also shown in Figure 5. One can also easily check that∫
M

Kt(p, q)du(q) = Tt(1) = 1

where the second equality is derived from the fact that the WFS of 1 is 1. This

coincides with Gaussian kernel smoothing.

Furthermore, using the harmonic addition theorem (Wahba, 1990; Chung

et al., 2007b), one can further simplify the heat kernel on S2 as

Kt(p, q) =
k∑

l=0

2l + 1

4π
e−l(l+1)tP 0

l (cos γ) (5)
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Figure 6: The FWHM of Gaussian kernel.

where γ is the angle between p and q. This step will make the calculation of

the full width at half maximum (FWHM) of the heat kernel relatively easy. The

FWHM is very important to characterize the smoothness of images in random

field theory (Worsley, 1996; Cao and Worsley, 1999). The FWHM of a function

is given by the difference between the two extreme values of the independent

variable at which the dependent variable is equal to half of its maximum value.

The FWHM of a Gaussian kernel (as shown in Figure 6) can be explicitly given

as

FWHM = 2
√

log 2σ.

where σ is the bandwidth of the Gaussian kernel.

To calculate the FWHM of the heat kernel, we fix p in equation (5) to be

the north pole and vary γ = cos−1(pq). The maximum is obtained at γ = 0.
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Figure 7: The heat kernels with t =0.005, 0.01, 0.05, 0.2, and k=15.

The FWHM is solved numerically for γ in

1

2

k∑
l=0

e−l(l+1)t · 2l + 1

4π
=

k∑
l=0

e−l(l+1)t · 2l + 1

4π
P 0

l (cos γ). (6)

The heat kernels with different bandwidths are shown in Figure 7. The rela-

tionship between FWHM and bandwidth t can be derived from equation ( 6).

Similarly to Gaussian kernel, the larger the bandwidth of weighted Fourier ker-

nel, the larger FWHM.

2.1.3 Reduction of Gibbs phenomenon

It is well-known that approximating a discontinuous function by Fourier series

results in poor accuracy due to Gibbs phenomenon (a review, general definition

and analysis of Gibbs phenomenon can be found in Gottlieb and Shu (1997)).

In Chapter 1, we pointed out that Gibbs (ringing) phenomenon happens
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Figure 8: The plots demonstrate that WFS reduces Gibbs phenomenon. The
first column shows the plots of a step function defined on (θ, φ) ∈ [0, π]× [0, 2π],
where this function is 1 if (θ, φ) ∈ [1

3
π, 2

3
π]× [2

3
π, 4

3
π], and 0 elsewhere. The 2nd

to 4th plots of the first row are SPHARM representations of the defined step
function with degrees 5, 15, 25. The 2nd to 4th plots of the second row are the
WFS representations of the defined step function with degrees 5, 15, 25 and
bandwidth 0.01.

when using Fourier series to approximate a curve with sharp corners. Its oscil-

lation patterns will not die with the increasing order of Fourier series as shown

in Figure 1. The typical images in applications have sharp contours giving rise

to discontinuities in the image functions. Gibbs phenomenon also happens when

using SPHARM to approximate a surface that has sharp corners (as shown in

the first row in Figure 8).

The following lemma (Gottlieb and Shu, 1997; Bronstein et al., 2002) math-

ematically characterizes the Gibbs phenomenon.

Lemma 2.1. Assume that we have a piecewise continuous function f(x), x ∈
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[0, 2π]. Let {(ak, bk)}K
j=0 be the Fourier coefficients of f(x). Then we have

max
x∈[0,2π]

|f(x)−
K∑

j=0

{ak cos(kx) + bk sin(kx)}| =
DP

2π
,

where D = maxx |f(x+)− f(x−)| and

P =

∫ 2π

0

sinx

x
dx.

Methods have been proposed to reduce the Gibbs phenomenon. Gottlieb

et al. (2000) proposed a new filter in Fourier space to enhance the accuracy

away from the discontinuities. Bronstein et al. (2002) proposed medical image

reconstruction algorithm that makes use of forward nonuniform fast Fourier

transform (NUFFT) for iterative Fourier inversion. Incorporation of total vari-

ation regularization allows the reduction of noise and Gibbs phenomena while

preserving the edges.

Therefore, an efficient way to reduce Gibbs phenomenon is to use a smooth-

ing procedure. As we can see from the definition, with the increasing degrees of

WFS, the weights are getting smaller, which means WFS reduces the amount of

high frequent noise. This property leads to one major advantage of WFS over

Fourier series: WFS can effectively reduce Gibbs phenomenon. Note that WFS

smoothing requires minimal amount of extra computation if the Fourier series

representations are available.

To show this advantage of WFS, we define a step function on (θ, φ) ∈

[0, π] × [0, 2π]. This function is 1 if (θ, φ) ∈ [1
3
π, 2

3
π] × [2

3
π, 4

3
π], 0 elsewhere,

which is shown in first column of Figure 8. The degree 15 and 25 SPHARM
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representations have spikes around the corners, while the corresponding WFS

representations show no oscillated patterns and give a better smooth approxi-

mation of the pre-specified step function.

2.1.4 The normality of assumption

For the convenience of setting up Fourier series-based models and WFS-based

models and performing hypothesis tests on medical images, the normality of

errors is usually assumed (Shen and Chung, 2006; Chung et al., 2008a). To

apply random field theory for image analysis, normality of errors is also assumed

(Worsley, 1996; Cao and Worsley, 1999; Chung et al., 2008a).

Given an observation (a curve or a surface) f , we want to represent it using

Fourier series or WFS representations. In general, one pre-specifies a subspace

HK of L2(M) with proper dimension K (Shen et al., 2004; Chung et al., 2006a).

We consider the following model,

Ef(p) =
K∑

i=1

e−λitβiφi(p),

where p ∈M. And the coefficients β = (β1, β2, · · · , βK) are estimated from the

linear model,

f = Y Λβ + ε, ε ∼ N(0, σ2I), (7)

where Λ = diag(e−λ1t, e−λ2t, · · · , e−λKt) and β = (β1, β2, · · · , βK) are the coeffi-

cients of the Fourier representation, and the design matrix of this linear model
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is

Y =


φ1(p1) · · · φK(p1)

...
. . .

...

φ1(pn) · · · φK(pn)

 . (8)

Here {φi}K
i=1 are discrete Fourier basis functions.

To show that WFS representations improve the normality assumption in

Equation (7), we fit a linear model to a noisy amygdala surface from the autism

study (Nacewicz et al., 2006), using SPHARM basis and apply the estimated

coefficient β to both SPHARM and WFS representations based on an observed

amygdala surface. We then plot the normal Quantile-Quantile (QQ) graphs

of the estimated errors to assess the normality assumption for the fittings of

different degrees. In Figure 9, we show that, for SPHARM representation, one

always needs to find the proper degree (degree 15) to satisfy the normality

assumption of the noise. Either over-smoothing (lower degrees) or over-fitting

(higher degrees) will give a severe violation of the normality assumption, which

is shown by skewed patterns in the QQ-plots. On the other hand, the normality

assumption is still valid even if WFS representations have higher degrees, in

which case the SPHARM representation will exhibit over-fitting.

In conclusion, WFS has the following properties and advantages (over Fourier

series)

• WFS is both a fitting procedure and a smoothing procedure. Fourier series

is a special case of WFS;
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Figure 9: The plots for the test of normality and an amygdala surface from
the study of autism is used for the demonstration. The first two rows are the
quantile-quantile (QQ) plot of Fourier Series (SPHARM)-based linear models
using degrees 0, 5, 10, 15, 20, 25. The last two rows are the QQ-plots of WFS-
based linear models with bandwidth 0.01.
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• WFS reduces the Gibbs phenomenon in Fourier series approximation;

• WFS is robust for the normality assumption in its related linear models;

• It is relatively easy to compute the smoothness of the WFS kernel in

applying the random field theory (Worsley, 1996; Cao and Worsley, 1999).

2.2 Adaptive iterative regression

2.2.1 Least squares estimation and stepwise regression

To estimate the coefficients of WFS, one usually minimizes the mean squared

errors (MSE),

MSE(β) = (f − Y β)′(f − Y β). (9)

MSE can also be considered as the discrete L2-distance, which gives this min-

imization a natural interpretation in functional analysis in the Hilbert space

L2(M). The estimator that minimizes MSE(β) in equation (9) is called the

least squared error (LSE) estimator. By checking the following conditions for

an optimization,

d
dβ

MSE(β) = 0,

d2

dβ2 MSE(β) > 0,
(10)

or just simply checking the first equation in (10) by using the fact that MSE is

positive and quadratic, the LSE of β is

β̂ = (Y ′Y )−1Y ′f . (11)
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β̂ is also a maximum likelihood estimator (MLE) under the normality assump-

tion.

An LSE is in general an optimal, unbiased and robust estimator (Bickel and

Doksum, 2000; Shao, 2003) as shown in the following lemma.

Lemma 2.2. Let β̂ be the LSE of (11).

1. If ε are normally, independently and identically distributed (i.i.d.), β̂ is

the uniformly minimum variance unbiased estimator (UMVUE).

2. If ε are i.i.d., β̂ is the best linear unbiased estimator (BLUE).

3. A BLUE is always robust.

Besides all these good properties in Lemma 2.2, LSE is also numerically

straightforward to implement. However, for medical image analysis, the obser-

vation f in (11) can be extremely large. For example, the number of vertices of

a brain surface mesh can be larger than 40,000 (Shen and Chung, 2006; Chung

et al., 2007b). The physical memory to store the large design matrices alone

can easily reach the limits of most personal computers. It requires as many

as 7,000 SPHARM basis functions (the columns of Y in (11)) to give a good

representation of this cortical surface. The numerical operation of the design

matrix with dimension as large as 40, 000× 7, 000 can not be processed directly

in the physical memory of a personal computer, which also makes it conceivably

difficult to compute the inverse of the large matrix in (11). To overcome the

computational difficulty, alternative methods have been developed.
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Stepwise regression methods attracted a lot of attention more than 40 years

ago (Freund et al., 1961; Goldberger, 1961; Goldberger and Jochemes, 1961).

It can be potentially applied for solving large linear systems. For the stepwise

regression, one first partitions the design matrix Y into two submatrices, Y1

and Y2. Rather than fitting the full model once and for all, one fits the simpler

model,

f = Y1β1 + ε1.

In the second step, one fits the residual ε1 using the second submatrix,

ε1 = Y2β2 + ε2.

Then the full model will be

f = Y1β1 + Y2β2 + ε2.

This two-step procedure was originally referred to as stepwise least squares

(Goldberger, 1961) or residual analysis (Freund et al., 1961). The relation-

ship between the estimation of β2 using a stepwise regression model and the

full model was derived by Freund et al. (1961) and Goldberger and Jochemes

(1961). They showed that stepwise regression always underestimates β2 in abso-

lute value. By not realizing the increasing complexity and size of the data with

the advancement of the high-speed computer, Alley (1987) falsely claimed that

“Prior to the advent of the high-speed computer, stepwise regression was used

at times as a simple method of estimating β’s in multiple regression. Stepwise
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regression is of limited value as a technique in today’s world of high-speed com-

puters”. Not only is a stepwise regression needed for analysis of large medical

image data (Shen and Chung, 2006; Chung et al., 2007b), but stepwise regression

is also valuable for the selection of important predictors when the basis func-

tions are redundant. For example, a recent algorithm, matching pursuit (Mallat

and Zhang, 1993), decomposes any time-dependent signal to a linear expansion

of waveforms that are selected from a redundant dictionary of functions by

iteratively minimizing the residuals. Selecting the most important waveforms

simultaneously is impossible since there are so many (in fact, uncountable) basis

functions to choose from that the computation becomes infeasible.

But a two-step regression does not necessarily make the estimation of WFS

coefficients simpler enough to carry out for large data such as cortical surfaces.

Shen and Chung (2006); Chung et al. (2007b) generalized two-step regression

to a K-stepwise regression fashion, which they called iterative residual fitting

(IRF). The IRF procedure is described as following:

1. Partition the design matrix into submatrices as Y = (Y1, Y2, · · · , YK),

where submatrix Yi is a set of consecutive columns of Y .

2. Regress f on the first submatrix β1 = (Y ′
1Y1)

−1Y ′
1f . Save the first resid-

ual vector, e1 = f − Y1β1.

3. For 1 ≤ j < K, compute the coefficients on the submatrix Yj+1,

βj+1 = (Y ′
j+1Yj+1)

−1Y ′
j+1ej
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and calculate the j-th residual

ej+1 = ej − Yj+1βj+1.

4. The estimation of the coefficients is

β = (β′1, β
′
2, · · · , β′K)′,

and our fit will be

f̂ =
K∑

j=1

Yjβj.

Simple calculations can show that IRF is computationally more efficient than

LSE. For a design matrix Y with dimension N × P , LSE needs to compute

the inverse of Y ′Y , whose dimension is P × P . For the most widely used

algorithms of matrix inversion, such as Gauss-Jordan elimination (Lipschutz

and Lipson, 2001; Strang, 2003), LU decomposition (Horn and Johnson, 1985;

Okunev and Johnson, 1997), QR decomposition (Becker et al., 1988) and so

forth, the arithmetic computation is O(P 3). For IRF, one needs to compute

the inverse of K submatrices with dimension P/K × P/K. Therefore, the

arithmetic computation for IRF is O(K × (P/K)3), i.e. O(P 3/K2). So for

K ≥ 2, the computation of IRF is always faster than that of LSE. For large K,

the computational efficiency can be improved dramatically by IRF.

2.2.2 Adaptive iterative regression

As we are going to show in the later context, IRF is computationally efficient by

being exempted from putting the entire design matrix into the physical memory
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of the computer, and free of calculating the inversion of large matrices. But

IRF estimation is always biased, thus it is not as accurate as LSE since IRF

does not consider the possible linear dependency between submatrices in the

numerical implementation of WFS. Without realizing the cause of inaccuracy

of IRF estimation, Shen and Chung (2006) pointed out that IRF creates less

accurate reconstruction by giving an example where the IRF implementation

changes the topology of the original surface. We first explore the cause of linear

dependence between submatrices of the IRF setting, then we show why LSE

and our proposed method give more accurate estimation.

Theoretically, Fourier basis functions are orthonormal. In practical prob-

lems, one uses the inner product of the discretized Fourier basis to approximate

the theoretical inner product by the definition of the Remannian integral as

follows:

〈f1, f2〉 = 1
µ(M)

∫
M f1f2dµ ≈ 1∑

∆i

N∑
i=1

f1(xi)f2(xi)4i, (12)

where 4i is the area element. Therefore the orthonormality of the discretized

Fourier basis functions highly depends on the partition of the support of all the

basis functions. Since the perfect partition never exists, there is more or less

linear dependency between discretized basis functions.

Due to the effects of area elements, the parametrization of the curves and

the surfaces can also make the goodness of approximation (12) vary widely.

For example, the area-preserving surface parametrization method (Brechbuehler
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Figure 10: The process of area-preserving parametrization of a given amygdala
surface. The original amygdala surface is extracted by Marching-cube method
(Lorensen and Cline, 1987). After 50 iterations, the parametrization procedure
reaches its tolerance limit and stops.

et al., 1995; Styner et al., 2006) gives nonuniform area elements. Given an area-

preserving parametrization, one can check the orthonormality of the Fourier

basis generated from this parametrization. We use the inner product matrix of

the Fourier basis as

Min = (〈φi, φj〉)K×K ,

where {φi}K
i=1 are the Fourier basis. Theoretically, if {φi}K

i=1 are orthonormal,

Min should be an identity matrix. In practice, there will always be some noise

off the diagonal of Min as shown in Figure 11. We see that with the optimized

parametrization (that after 50 iterations), there are still some noises off the

diagonal of Min.

We can theoretically explore the reasons and the influence of non-orthogonality

on the stepwise regression using a simple example. Let Y , X1, X2 ∈ R2 as

shown in Figure 12. It is clear that X1 is not orthogonal to X2. Using IRF,
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Figure 11: The plots of inner product matrices. The first plot corresponds to
the initial parametrization, the second plot corresponds to the parametrization
after 10 iterations and the third plot corresponds to the final parametrization
after 50 iterations in Figure 10.

one calculates the first residual vector by

E1 = (I −X1(X
′
1X1)

−1X ′
1)Y .

The second residual vector is

E2 = (I −X2(X
′
2X2)

−1X ′
2)E1.

But if we use the LSE estimation based on predictor X = (X1, X2), we know

that the residual,

E = (I −X(X ′X)−1X ′)Y = 0,

since the space spanned by X1 and X2 is R2 and the projection of Y onto

the (X1, X2)-spanned space is Y itself. E′
2E2 is the variation that can not be

explained by the model using IRF.

From Figure 12, E1 is in the subspace spanned by X∗
2 since these two vectors

are parallel. Therefore

E∗
2 = (I −X∗

2 ((X∗
2 )′X∗

2 )−1(X∗
2 )′)E1 = 0.
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This inspires us to notice that if one replaces X2 with X∗
2 , then the IRF result

will be identical to that of the LSE. Actually one can derive X∗
2 from X1, X2:

X∗
2 = (I −X1(X

′
1X1)

−1X ′
1)X2,

where X∗
2 is the projection of X2 onto the complement of the subspace spanned

by X1. One can check the orthogonality,

〈X1, X
∗
2 〉 = X ′

1X
∗
2

= X ′
1(I −X1(X

′
1X1)

−1X ′
1)X2

= X ′
1X2 − (X ′

1X1)(X
′
1X1)

−1X ′
1X2

= X ′
1X2 −X ′

1X2

= 0,

which proves that X1⊥X∗
2 . This fact encourages us to carry out extra correc-

tions in the second and later steps of IRF to make all the submatrices orthogonal

and thus achieve the same accuracy as LSE. Given a matrix X, we denote SPX

as the subspace spanned by the columns of X, and PX = X(X ′X)−1X ′, the

projection matrix of X since PXf gives the projection of f onto SPX . We de-

sign an adaptive regression algorithm based on the idea of the correction shown

in Figure 12:

1. We partition the design matrix into submatrices such that

Y = (Y1, Y2, · · · , YK),

where {Yj, j = 1, 2, · · · , K} are a set of submatrices of Y .
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Figure 12: The plots for the example showing why the IRF causes bias. The
first plot shows the first step of IRF. The second plot shows the second step of
IRF and shows the bias of IRF (E2).

2. We orthogonalize the submatrices using the following procedure:

Ỹ1 = Y1

Ỹ2 = (I − PỸ1
)Y2

· · · = · · ·

ỸK = (I −
K−1∑
j=1

PỸj
)YK .

Note that Ỹi⊥Ỹj, for 1 ≤ i 6= j ≤ K.

3. We apply IRF on {Ỹj}K
j=1.

Note that if the dimensions of the submatrices are all 1, the correction step in

the new method is exactly the Gram-Schmidt orthonormalization.

Let’s denote the residual sequence for IRF as {ej}K
j=1, and that for the new

method as {ẽj}n
j=1. We also denote the coefficients estimated by the new method
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as {β̃j}K
j=1. We next show

e′jej ≥ ẽ′jẽj, j = 1, 2, · · · , K,

which proves that the new method is more accurate than IRF. By using equation

(4.4) of Freund et al. (1961), we have

β2 = PY2e1.

Consequently,

e1 = Y2β2 = PY2(I − PY1)Y2β̃2 = PY2 .ẽ1

We decompose ẽ1:

ẽ1 = PY2 ẽ1 + (I − PY2)ẽ1.

Hence,

e′2e2 − ẽ′2ẽ2 = e′1e1 − ẽ′1ẽ1

= ((I − PY2)ẽ1)
′(I − PY2)ẽ1

= ẽ′1(I − PY2)ẽ1.

This quantifies the difference between two residuals of the second step of IRF

and the new method and shows that the new method has a smaller residual.

Similarly, we have the difference between two residuals of the third step of IRF

and the new method, and so forth. Finally, we have the difference between the

final residuals of IRF and the new method as

e′KeK − ẽ′K ẽK =
K∑

j=2

ẽ′K−1(I − PYj
)ẽK−1 ≥ 0. (13)
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Therefore, the residual of sum squares (RSS) of IRF is larger than that of the

new method, which means that the new method provides more information and

has a better fitting based on the same observation and predictors.

One can see that the difference comes from the non-orthogonality between

submatrices. But if Yj0⊥Yj1 , ∀j0, j1, then

(I − PYj0
)ẽj1 = (I − PYj0

)PYj1
PYj1

β̃j1 = 0.

This indicates that the equality in (13) holds. Therefore, IRF and the new

method are identical if and only if

Yj0⊥Yj1 , ∀1 ≤ j0 6= j1 ≤ K.

Since the new method completely orthonormalized all the submatrices, we call

it a complete adaptive iterative regression (cAIR) method. cAIR avoids calcu-

lating the inverse of a large design matrix. When using cAIR, one does not have

to read the entire design matrix into the computer’s memory. The computa-

tion becomes more flexible and reliable. Therefore, the implementation is either

free of overflow problems or exempted from the loss of accuracy for numerical

approximation of the inverse of a large matrix. But sometimes, cAIR is still

time-consuming since it is a complete orthogonalization procedure. The same

problem happens to Gram-Schmidt orthogonalization in Yeo (2005), in which

the author is trying to carry out a Gram-Schmidt orthogonalization procedure

for every SPHARM basis function. Gram-Schmidt orthogonalization is a spe-

cial case of cAIR when the dimension of the submatrices is exactly 1. By our
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Figure 13: The plots of inner product matrices with corrected design matrices
using cAIR and AIR with depth M = 1. The first row: the plots of those inner
product matrices using cAIR; the second row: the plots of those inner product
matrices using AIR. To improve the contrast for the plots, the absolute values
of the inner product matrices are used.

experience, one does not have to do a complete orthogonalization. One can

only carry out the orthogonalization between neighboring submatrices, and in

the meantime, still manage to improve the accuracy. In practice, we design an

incomplete adaptive iterative regression (AIR), which is trying to eliminate the

linear dependence of M(M ≤ K) neighboring submatrices to allow a incom-

plete correction. AIR not only maintains the computational efficiency, but also

improves the accuracy. We replace the correction step in cAIR by the following

partial correction procedure

ỸM = (I −
M−1∑
j=1

PỸj
)YK ,

ỸM+1 = (I −
M−1∑
j=2

PỸj
)YM+1.
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We call M the depth of AIR. IRF is a special case of AIR if M = 0. The plots

of inner product matrices of design matrices, and their corrected counterparts

using cAIR and AIR are shown in Figure 13. One can choose the depth M

correction of AIR for specific problems. For our experience, M = 1 will be

sufficient and will be used in the following context.

2.2.3 Automated degree selection using F -statistics

Increasing the degree of WFS will reduces the residuals. But it increases the

number of predictors quadratically. Increasing the degree of WFS also increases

the risk of over-fitting. Therefore, it is necessary to find the optimal degree that

balances the goodness-of-fit and the number of predictors.

In previous Fourier series literatures (Gerig et al., 2001, 2002; Bulow, 2004;

Gu et al., 2004; Shen and Chung, 2006), the optimal degree selection has not

been addressed. The degrees were simply selected based on a pre-specified error

bound that depends on the size of anatomical structure. Even though complex

stopping rules exist (for instance, those using GCV and DP), F -statistics are

used to determine the stopping rules for stepwise methods since they are easy

to implement and have a good intuitive interpretation. One can stop iterations

of IRF and AIR when the contribution of certain submatrix is not significant

using the hypotheses

H0 : βk = 0

Ha : at least one βk,i 6= 0, i = 1, 2, · · · , nk,
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where βk = (βk,1, βk,2, · · · , βk,nk
), and nk is the number of columns of submatrix

Yk. Chung et al. (2007b) proposed using the following F -statistic based on the

IRF algorithm:

F =
(e′k−1ek−1 − e′kek)/nk

e′kek/(n−
∑k

j=1 nj)
. (14)

This F -statistic has an intuitive interpretation. The numerator is the improve-

ment in fitting using the last submatrix; the denominator is the estimate vari-

ance in response. The F -statistic compares the improvement of each submatrix

with the variation of the data.

The same F -statistic of a 2-stepwise regression (k = 2 in (14)) was proposed

and discussed in Freund et al. (1961); Goldberger (1961) and Alley (1987). Since

there is a linear dependency between submatrices Yk−1 and Yk, ek−1 and ek are

not linearly independent, or e′k−1ek−1−e′kek is not a quadratic form. Therefore

it does not have a non-central χ2-distribution. The linear dependency between

submatrices also makes e′k−1ek−1−e′kek and e′kek not statistically independent.

As a consequence, the F -statistics for IRF are unlikely to have a non-central F -

distribution. Therefore, the comparison of F with the tabulated F -distribution

may thus not be very informative for the purpose of assessing significance.

One can also see that the denominator of the test statistic in (14) is always

larger than that of AIR and the numerator is always smaller. Therefore, using

the F -statistic in (14), for a given threshold Fα,nk−1,n−(k+1)2 and a significance
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level α,

P
((e′k−1ek−1 − e′kek)/nk

e′kek/(n−
∑k

j=1 nj)
≥ Fα,nk−1,n−(k+1)2

)
= α,

will result in small k. Therefore, IRF is usually conservative in model selection

based on the F - statistic in (14).

Similar F -statistic can be defined for AIR:

F̃ =
(ẽ′k−1ẽk−1 − ẽ′kẽk)/nk

ẽ′kẽk/(n−
∑k

j=1 nk)
. (15)

Note that, for AIR, ẽk−1⊥ẽk. Then by Pythagorean theorem, ẽ′k−1ẽk−1 − ẽ′kẽk

will be a quadratic form. ẽ′k−1ẽk−1−ẽ′kẽk and ẽ′kẽk are statistically independent.

Therefore, F̃ will follow a non-central F -distribution with degrees of freedom

(nk−1, n−
∑k

j=1 nk).

For each k, we have

(ẽ′k−1ẽk−1 − ẽ′kẽk)/nk

ẽ′kẽk/(n−
∑k

j=1 nj)
≥

(e′k−1ek−1 − e′kek)/nk

e′kek/(n−
∑k

j=1 nj)
.

Let R be the rejection region. It is straight forward to see that the power

function of the test based on AIR

P (F̃ ∈ R) ≥ P (F ∈ R),

under the alternative hypothesis, where P (F ∈ R) is the power function of the

tests based on IRF. Then we have the following lemma:

Lemma 2.3. The F -tests based on equation (15) is more powerful than the ones

using equation (14).
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Figure 14: The CPU time of LSE, IRF, AIR representations of a cortical surface
with 40962 vertices. The LSE representation met an “out of memory” error with
Matlab and stopped if degree is larger than 39 (1600 basis functions). A personal
desktop computer with the Pentium 4, 3.2 G Hz CPU and 1 GB memory is used.

2.2.4 Methods comparison

AIR and IRF are specifically designed for large image data. We first assess the

capability of the LSE, AIR and IRF representations of large surfaces. A cortical

surface (Chung et al., 2006a) with 40962 vertices is used to test the performance

of the methods. For this comparison, one only cares about how far (how many

basis functions the three methods can use) the three methods can go. We track

the CPU time (in the units of seconds) of the three methods for representing

the given cortical surface (Figure 14). The experiment is run on a Dell personal

computer with Pentium 4, 3.2 G Hz CPU and 1 GB physical memory. LSE ran

into an “out of memory” problem in Matlab if one tries to fit a WFS surface

with degree larger than 39 (i.e., dimension of its design matrix > 40962×1600).
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While by using IRF and AIR, one does not have to load the entire design matrix

into the memory. We load the 1 submatrix (for IRF) or 2 submatrices (for AIR)

at a time into the memory iteratively. By doing this, actually, one can represent

the cortical surfaces using AIR and IRF up to arbitrary degrees. In Figure 14,

we represent the cortical surfaces by IRF and AIR using up to 10,000 basis

functions, but we can definitely go further. By this experiment, we show that

one does not have to worry about the problem of loading and computing large

matrices using IRF and AIR, which is a real advantage over LSE.

Using the same cortical surface, we also evaluate the efficiency of the F -

statistics of IRF and AIR using different bandwidths. As we will see in Figure 15,

using the larger bandwidth, IRF and AIR will choose fewer basis functions. For

bandwidth t = 0.1 and t = 0.001, both IRF and AIR give over-smoothed

results. The p-value curves of IRF in Figure 15 always go up earlier than

those of AIR, which shows that IRF is always a little more conservative than

AIR by stopping the iterations earlier and choosing fewer basis functions, even

with very well-parameterized data (Chung et al., 2007b). We found that using

bandwidth t = 0.0001 and 5750 basis functions, AIR seems to give a very good

representation of the given cortical surface.

Now we compare the computational efficiency and accuracy of LSE, IRF and

AIR methods. We are going to apply three methods to both the simulated data

and the amygdala data. From Section 2.2.2, we see that the difference among

the three methods is due to the relationship between the submatrices of IRF



48

15 20 25 30 35 40 45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t=0.1

number of base functions

p−
va

lu
e

IRF AIR

800 1000 1200 1400 1600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t=0.001

number of base functions

p−
va

lu
e

IRF AIR

5000 5500 6000 6500 7000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t=0.0001

number of base functions

p−
va

lu
e

IRF AIR

Figure 15: The top 3 rows are the p-value curves using IRF and AIR for band-
width t = 0.1, 0.001, 0.0001. The bottom three cortical surfaces are chosen by
AIR for the three pre-specified bandwidths.
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and AIR. If the submatrices are not correlated, then the fitted surfaces of the

three methods are identical. Therefore, in the simulation, we are interested in

the various structures of the design matrices in the related linear models and the

correlations between the submatrices generated from the design matrices. We

are particularly interested in how different design matrices and their submatrices

influence the results and performance of LSE, IRF and AIR. We use residual

sum of squares (RSS) for a given observation f

RSS =
n∑

i=1

(f̂i − fi)
2

and

R2 = cor2(f̂ , f)

to test the goodness of fits, where f̂ is the estimation of f . CPU computing

times are used to compare the computational efficiency.

In the simulation study, the correlations between the submatrices will be

random in order to compare the three methods under different conditions. One

should notice that the central idea of this simulation is trying to use different

design matrices, since only the variation among design matrices makes the per-

formance of the LSE, IRF and AIR different. The simulation procedure is as

follows:

1. A design matrix Y of dimension 2000 × 240 is randomly generated and

fixed.
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2. The “true” coefficients β0 are given (can also be randomly generated).

We assume the true signal

f = Y β0.

Our observation is

f = Ef + ε = Y β0 + ε

where ε ∼ N(0, σ2I).

3. LSE, IRF, AIR are applied to find the estimation of the signal using the

design matrix Y and observation f . For IRF and AIR, one is going to

choose the number of submatrices from the set {1, 5, 8, 10, 15, 20, 24, 30,

40, 60, 80, 120, 240} one at a time. In this simulation we assume that all

submatrices have the same dimension. The RSS, R2, and CPU time are

saved for each of the three methods.

4. This procedure is repeated for 100 times.

The simulation results are summarized in Figure 16. Note that cAIR and LSE

have the same RSS and R2 values. But the CPU time for cAIR is much higher

than those of LSE and IRF and AIR, especially when the numbers of the sub-

matrices are large. When number of submatrices equals 240, the CPU time for

cAIR is 5 ± 0.65 seconds, which is much larger than for the other three meth-

ods. For a better comparison among LSE, AIR and IRF, we did not include the

result of cAIR in Figure 16.
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Figure 16: The RSS plot is on the top, R2 plot is in the middle and CPU time
is on the bottom for LSE, IRF and AIR using the simulated data. The curves
shows the average values of 100 observations for every number of submatrices
from {1, 5, 8, 10, 15, 20, 24, 30, 40, 60, 80, 120, 240}. The error-bars are also
added to each curves to show the consistency of the estimation and a rough
comparison at each point (number of submatrices).



52

As we expected, LSE is always the most accurate method with the smallest

RSS and the largest R2-values, which tells us that the LSE estimation provides

most information based on the available predictors. AIR’s performance on 3

categories is in the middle. The accuracy of AIR is not as good as that of

LSE, but is better than IRF. IRF is the fastest method, but with the worst

accuracy. The error-bars show the estimated standard errors for estimations.

At each point, by viewing the error-bars, one can have a rough idea about what

a simple t-test will tell us. For example, from the plot of RSS, the error-bars

of the three groups are not overlapped anymore if the number of submatrices

is larger than 50, which tells us the difference in the performance of the three

methods is significant if using simple t-test. Similarly, the difference in the

performance of the three methods is significant if the number of submatrices is

larger than 30. If the number of the submatrices is larger than 50, we do not see

a significant difference in CPU time between AIR and IRF, even though IRF is

slightly faster than AIR.

We also apply the three methods to the amygdala surfaces from the study

of autism. CPU time, RSS and R2 are recorded. The comparison results are

summarized in Table 1. The comparison on the amygdala data is similar to

that of the simulation study.

From Figure 16 and Table 1, we conclude that IRF is the most computation-

ally efficient and LSE is the least. When the number of submatrices is large,

the computational efficiency of AIR is very close to IRF. The order of accuracy
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Methods CPU time ± Std Err RSS ± Std Err R2± Std Err
LSE 16.18 ± 1.24 79.91 ± 13.62 0.997 ± 0.053
IRF 1.33 ± 0.10 160.17 ± 37.45 0.991 ± 0.061
AIR 5.17 ± 0.43 110.52 ± 18.86 0.993 ± 0.058

Table 1: The summary of method comparison of LSE, AIR and IRF on amygdala
data of the autism study. the CPU times are in the units of seconds. For every
amygdala surface, 256 basis functions are used (up to degree 15 SPHARM basis).
For IRF and AIR estimations, each submatrix has 16 columns (so there are 16
submatrices).

of the three methods are LSE, AIR and IRF from the best to the worst.
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Chapter 3

Curvature-based Registration

Image registration plays a key role in medical image analysis. It is a process of

matching two or more images by minimizing the pre-specified distance between

the images. It is a necessary step to remove the translation and orientation

difference between images before any comparison and modeling of images could

be correctly made. For example, the corpus callosum boundaries are extracted

using GVF snakes (Xu and Prince, 1997) as shown in Figure 17. There are both

phase and amplitude variations due to the differences of the sizes and positions

of the original MR images. The variation is also from the extraction of the

corpus callosum boundaries using GVF snakes due to different initialization

and image quality. Therefore we need a curve registration procedure to factor

out the orientational and translational difference.

One of the major issues of many image registration methods is that it is

computationally intensive (Fischer and Modersitzki, 2004). There are various

attempts for efficient registrations. Viola and Wells (1995) presented a method

based on a formulation of the mutual information between the model and the

image using the informative projections of high-dimensional data. Bro-Nielsen

and Gramkow (1996) offered a new fast algorithm for non-rigid viscous fluid
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Figure 17: The plots of all the 27 extracted (by GVF snakes (Xu and Prince,
1997)) boundaries of the corpus callosums from the study of autism.

registration of medical images that is based on a linear elastic deformation of the

velocity field of the fluid. Fischer and Modersitzki (2004) introduced a new non-

linear registration model based on a curvature type smoother. They developed

a stable and fast implementation of the new scheme based on a real discrete

cosine transformation. One of the key features of these efficient registration

schemes is data dimension reduction so that one can represent the data in a

parsimonious form, without sacrificing the key features and information of the

original data. The data dimension reduction can be done by using the curvature

representations. By the first fundamental theorem of plane curves and Bonnet’s

existence and uniqueness theorem (Stoker, 1969; doCarmo, 1976; Hsiung, 1981;

Rubin, 1991), curvature information is independent of locations and rotations
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and gives a unique representation of a plane curve or a surface. Curvature

functions give a suitable lower dimensional representation. This enables us to

design a curvature-based registration method, which is computationally more

efficient than those only using coordinates information.

3.1 Curve registration

3.1.1 Curvature estimation

A parametric closed curve C(s) = (x(s), y(s)), can be described by two func-

tions, x(s) and y(s). To simplify the closed curves without losing any key fea-

ture, we are going to use the curvature functions to represent the corresponding

closed curves. The curvature function of a close curve C(s) is defined as

k(s) =
x′(s)y′′(s)− x′′(s)y′(s)

((x′(s))2 + (y′(s))2)3/2
. (16)

If C(s) is an arc-length parameterized curve, then (x′(s))2 +(y′(s))2 = 1. Equa-

tion (16) can be simplified as

k(s) = x′(s)y′′(s)− x′′(s)y′(s).

By the first fundamental theorem of plane curves, two curves with the same

curvature only differ on a rigid-body motion. The corresponding closed curve

can be reconstructed from the curvature function by x(s) = x(s1) +
∫ s

s1
cos(θ(s))ds,

y(s) = y(s1) +
∫ s

s1
sin(θ(s))ds,
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where θ(s) =
∫ s

s1
k(s)ds.

In practice, a closed curve can be represented as a set of ordered points

around the curve, where the first and the last points are identical. Let {pi}n
i=1

be a discrete closed curve. In previous studies (Coxter, 1969; Kreyszig, 1991;

Casey, 1996; Gray, 1997; McKeague, 2005), the finite difference methods were

used to estimate the underlying curvature functions using equation (16), where

the first and second derivatives were approximated by:

x′i(s) =
xi+1 − xi

si+1 − si

,

y′i(s) =
yi+1 − yi

si+1 − si

,

x′′i (s) =
xi+1 − 2xi + xi−1

(si+1 − si)2
,

y′′i (s) =
yi+1 − 2yi + yi−1

(si+1 − si)2
.

A parametrization {si}n
i=1 is necessary for the calculation of the first and second

derivatives. A natural choice of the parametrization of the given curve (Coxter,

1969; Kreyszig, 1991; Casey, 1996; Gray, 1997; McKeague, 2005) is:

si = si−1 + ‖pi − pi−1‖, i = 2, 3, · · · , n, (17)

where s1 = 0. Therefore, the finite difference method of the curvature estimation

highly depends on the parametrization of the closed curves, which can introduce

extra errors to the estimation.

We propose a curvature estimation method, which is independent of curve
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Figure 18: The plots shows the intuition of calculation of curvatures based on
the radius of the circle through three consecutive points. 1/R is the curvature at
point P2 for both cases. The left plot shows the case where (18) gives very good
approximation of the curvature since all the three points are ideally located
and spaced. The right plot shows the case that the three point are not ideally
located and spaced, the estimation could be a little bit off the true value.

parametrization. The curvature at pi is calculated as

ki = sign · 4A(pi−1, pi, pi+1)

‖pi−1 − pi‖ · ‖pi+1 − pi‖ · ‖pi+1 − pi−1‖
(18)

where A(pi−1, pi, pi+1) is the area of triangle with vertices pi−1, pi, pi+1 and “sign”

is 1 if the triangle is inside the closed curve and -1 otherwise. This method is

fairly intuitive. The curvature ki is defined as the inverse of the radius of

the circle going through this point and its two neighboring points as shown in

Figure 18. It is fairly straight-forward to prove that the estimated curvature

using (16) converges to the true underlying curvature.

Theorem 3.1. Suppose that the second derivative of a closed curve C(s) is

continuous at pi. The underlying curvature of C(s) at pi

k(pi) = lim
pi+1,pi−1→pi

sign · 4A(pi−1, pi, pi+1)

‖pi−1 − pi‖ · ‖pi+1 − pi‖ · ‖pi+1 − pi−1‖
.
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Proof. Let θ be the angle between pi−1 − pi and pi+1 − pi (same angle can be

defined between p1 − p2 and p3 − p2 in Figure 18). Gonzalez and Maddocks

(1996); Wang (2003) showed

4A(pi−1, pi, pi+1) =
1

2
|pi−1 − pi||pi+1 − pi|| sin θ|.

This equation shows the intuitive connection between the radius of the circle

going through the triangle vertices and the standard sine value of θ from ele-

mentary geometry. Therefore,

lim
pi+1,pi−1→pi

sign · 4A(pi−1, pi, pi+1)

‖pi−1 − pi‖ · ‖pi+1 − pi‖ · ‖pi+1 − pi−1‖
= lim

pi+1,pi−1→pi

pi+1 − pi−1

2 sin θ
.

Let r(pi−1, pi, pi+1) denote the radius of circle going through pi−1, pi, pi+1. Then,

lim
pi+1,pi−1→pi

pi+1 − pi−1

2 sin θ
= lim

pi+1,pi−1→pi

1

r(pi−1, pi, pi+1)
.

We finish the proof by the definition of curvature.

To assess the efficacy of curvature estimation using (18), we introduce a

class of closed curves: hypotrochoids (Lockwood, 1961; Lawrence, 1972). A

hypotrochoid is determined by three parameters a, b, and h: x(s) = (a− b) cos s + h cos(a−b
b

s),

y(s) = (a− b) sin s− h sin(a−b
b

s).
(19)

The class of hypotrochoids includes a variety of curves (see Figure 19). The

hypotrochoid curvature function has a closed form:

k(s) =
b3 − (a− b)h2 + (a− 2b)bh cos(as/b)

|a− b|(b2 + h2 − 2bh cos(as/b))3/2
.
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Figure 19: The plots of curvature estimations of 4 special hypotrochoids. The
first column is the plots of smoothed or noisy hypotrochoids; the second column
is the plots of estimated curvatures of smooth and regularly-spaced curves; the
third column is the plots of estimated curvatures of smooth but irregularly-
spaced curves; the last column is plots of estimated curvatures of the noisy and
irregularly-spaced curves. In the legend, “old” indicates the finite difference
method and the “new” indicates our proposed method.
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Therefore, the ground truth of hypotrochoid curvatures is always known, which

makes it appropriate for assessing the proposed methods of curvature estima-

tion.

For every simulation, three types of hypotrochoids are used to evaluate the

proposed curvature estimation method (18): the smooth hypotrochoids with

regularly-spaced t’s that are calculated directly using (19), the smooth hy-

potrochoids with irregularly-spaced t’s and noisy hypotrochoids with irregularly-

spaced t’s. The last two types of curves are closer to the real curves obtained in

medical image analysis. The results of one simulation are shown in Figure 19.

For each hypotrochoid, the true curvature functions, the estimated curvature

functions using the finite difference method and the estimated curvature func-

tions using our proposed method are also shown in Figure 19.

Figure 19 shows that our method is clearly better than the finite difference

method in curvature estimation for some cases. For the other cases, it is hard

to tell the difference. To characterize the goodness of curvature estimation, we

use an L2-norm of the difference between estimated curvature k̂ and the true

curvature k as

‖k̂ − k‖2 =

√∫
Ω

(k̂(s)− k(s))2ds,

where Ω is the range of parameter s.

We repeat the simulation one hundred times. We record all the L2-norms.

The boxplots of the L2-norms are shown in Figure 20, which shows that our

proposed method gives more accurate estimations (with smaller means in the
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boxplots) and more robust (with smaller variance) than the finite difference

based method.

3.1.2 Curvature-based curve registration

For curve registration, one usually minimizes a pre-specified target functional of

the given curve and a template curve (Silverman, 1995; Ramsay and Li, 1997).

The WFS representations of the curvature functions are given as {ki(s)}27
i=1.

To estimate the registered curvature functions using a dynamically adjusted

template function, one can apply global shift registration method (Ramsay and

Silverman, 1997, 2002), in which one is trying to find {k∗i (s)}27
i=1 that minimizes

registration sum squares of errors:

REGSSE =
27∑
i=1

∫ 2π

0

[ki(s + δi)− µ̂(t)]2ds

=
27∑
i=1

∫ 2π

0

[k∗i (s)− µ̂(t)]2ds

where the dynamically adjusted template µ̂(t) is the mean curve of {k∗i (s)}27
i=1.

Therefore, our measure of curve registration is the global sum of squared vertical

discrepancies between the shifted curves and the estimated mean curve.

The minimization can be solved iteratively by Newton-Raphson algorithm

since ∂REGSSE
∂δi

and ∂2REGSSE
∂δ2

i
have closed forms for this particular case.

In practice, the process usually converges within one or two iterations. The

registered curvature functions are shown in Figure 21.

The global shift registration does not change the shape of the curvature
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Figure 20: The boxplots of the estimated L2-norm of the difference between
the estimated curvature functions and the true curvature functions. The first
column is the boxplots of the L2-norm of smooth and regularly-spaced curves;
The second column is the boxplots of the L2-norm of smooth and irregularly-
spaced curves; The third column is the boxplots of the L2-norm of noisy and
regularly-spaced curves. For the horizontal coordinates, “old” indicates the
finite difference method and the “new” indicates our proposed method.
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Figure 21: The original curvature functions of 27 GVF snakes (left) and the
curvature functions after global shift registration.

function, thus it is equivalent to a global affine alignment. From Figure 21, we

see that all the curvature functions are nicely registered. After the global shift

registration, the updated cross-sectional average becomes

k̄∗(t) =
27∑
i=1

k∗i (t).

Then we can use this average as a new target (Ramsay and Li, 1997) for comput-

ing registered curvature functions. But for the curvature functions in Figure 21,

this step seems unnecessary and the improvement is negligible. As pointed out

in Ramsay and Li (1997), the curve registration should take place at the level

of some derivatives of certain orders rather than the curves itself. Our reg-

istration exactly satisfies this criterion. The curvature-based registration not
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only reduces the dimensions of the data, but also matches the most important

geometric features.

After global shift registration, to further improve the alignment results, one

can apply an elastic curve warping method. For a given template curve k0, we

consider the problem of estimating a time-warping function h that minimizes a

measure of the penalized L2-norm

Vλ =

∫
‖k0(s)− k(h(s))‖2dt + λ

∫
(h′′(s))2

h′2(s)
ds (20)

where h is from a smooth monotone increasing function family and y is the curve-

to-be-registered. Similar settings can be found in Ramsay and Li (1997) and

McKeague (2005) with minor differences. In (20), h′′ controls the smoothness

and 1/h′ prevents h′(s) = 0 and therefore controls the monotonicity of the

warping function. Therefore, this setting ensures the warping function to be

monotone and not too wiggly.

The curvature functions are aligned using elastic warping defined in (20).

The alignment results are shown in Figure 22. From the plots, we see that all

the curves are almost perfectly aligned. The warping functions are also shown in

this Figure. From the warping functions, one can see that most of the variability

occurs at the beginning of the curves since the warping functions vary the most

at this part. But it seems that the elastic warping does not improve the global

shift registration results a a lot. We see the one-to-one mapping of two curves

after registration in Figure 23. One can also find all the registered snakes and

the mean curves of the autistic and normal control groups after registration in
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Figure 22: The elastic warping results of the curvatures functions. The warping
functions (on the right) are also shown.

Figure 23. The mean plot indicates that there is some difference in the shapes

of corpus callosum between autistic and normal control groups.

3.2 Surface registration

Due to the curse of dimensionality, surface registration is always much more

complex than curve registration (Audette et al., 2002, 2003), which makes the

dimension reduction even more important for surface registration. Similar to

the curvature of plane curve, Gaussian and mean curvature are invariant under

rigid-body motion for the closed surfaces (Stoker, 1969; Hsiung, 1981). A reg-

ular parametric surface can be uniquely reconstructed from the Gaussian and
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Figure 23: The first plot shows the mapping between two registered snakes; the
middle is the plot of all the registered snakes; the last plot shows the mean
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mean curvatures at each point (Hsiung, 1981; Fan and Nevatia, 1986; Rubin,

1991). Curvatures are frequently used to characterize the local shape of surfaces

(Stevens, 1981; Klette and Rosenfeld, 2004; Tong and Tang, 2005). One does

not lose any information of the original surface in using only curvatures. The

curvature representation of a surface needs only two functions (Gaussian and

mean curvature function). But it takes three functions (x, y, and z coordinates)

to represent the surface by using the coordinates. Therefore curvature functions

give more concise and efficient representations of the surfaces, which makes the

surface registration more computationally efficient. WFS representation gives

global and analytical forms of the surfaces. This enable us to calculate the

Gaussian and mean curvature analytically. We start this section by introducing

the first and second fundamental forms of surfaces.
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3.2.1 Gaussian and mean curvatures

In spite of the extensive studies and many literatures of surface curvature es-

timation, results are still not very satisfactory. One of the techniques is to fit

a local surface patch and compute partial second derivatives from this patch

(Besl and Jain, 1986; Sander and Zucker, 1986; Vemuri et al., 1986; Shi et al.,

1994). Derivative computation is very sensitive to noise, therefore it is unstable

for real data. Fan and Nevatia (1986) computed the principal curvatures by

collecting the four directional curvatures. This method also relies on accurate

derivative computation. Shi et al. (1994) fitted a quadric surface locally using

the estimated normals. Page et al. (2002) assumed that the surfaces meshes

are approximations of piecewise-smooth surfaces derived from range or medical

imaging systems. They proposed a normal vector voting algorithm that uses

an ensemble of triangles in the geodesic neighborhood of a vertexinstead of its

simple umbrella neighborhood to estimate the orientation and curvature of the

original surface at that point. Tang (2005) proposed a curvature estimation

method based on a local directional curve sampling of the surface where the

sampling frequency can be controlled. Unfortunately, the normal estimation

requires the surface fitting to be consistent throughout the whole surface. The

nature of these algorithm can cause artifact that usually corrupt the output.

Piecewise smoothing implies that curvature discontinuities are present where

two or more smooth surfaces join, which requires careful consideration. Extra

effort has to be made. Using the WFS representation of a surface, one has a
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global smooth parametric surface, which makes the derivative estimation ro-

bust. One also does not have to worry about the orientation problem of the

surfaces associated with the methods that use local fitting. The orientation

of a surface is automatically determined by the estimated Gaussian and mean

curvatures (Hsiung, 1981).

Many differential geometry textbooks introduce Gaussian and mean curva-

tures (K, H) using the principle curvatures k1, k2 (Stoker, 1969; doCarmo, 1976;

Hsiung, 1981; Rubin, 1991; Kuhnel, 2000; Toponogov, 2006):

K = k1k2, H =
k1 + k2

2
.

But for a parametric surface, Gaussian and mean curvatures are usually explic-

itly derived from the first and second fundamental forms. Actually, (K,H) are

the only invariants of the surface obtained algebraically from the two funda-

mental forms under rigid-body motion (Hsiung, 1981).

Let r(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))τ be the WFS representation of a given

surface. Define rθ ≡ ∂r/∂θ and rφ ≡ ∂r/∂φ. The first fundamental form of

the surface is written as

dr2 = Edθ2 + 2Fdθdφ + Gdφ2. (21)

The first fundamental form defines a metric on the surface, therefore, it is also

known as the “metric form”. E, F and G are also called as Rienmannian metric

tensors and the element of area can be defined as (Stoker, 1969; Hsiung, 1981)

dS =
√

EG− F 2.
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Using the element of area one can compute the total area of the surface as

A(S) =

∫ 2π

0

∫ π

0

dS sin θdθdφ.

The unit normal to the surface can be written as

n =
rθ × rφ

‖rθ × rφ‖
=

rθ × rφ

dS
. (22)

The second fundamental form can be written as

dr2 = edθ2 + 2fdθdφ + gdφ2. (23)

where

e = n · rθθ = −nθ · rθ, (24)

f = n · rθφ = −nθ · rφ, (25)

g = n · rφφ = −nφ · rφ, (26)

where “·” denotes the inner product. The Gaussian curvature K and the mean

curvature M can be written based on the first and second fundamental forms

K =
eg − f 2

EG− F 2
, H =

eG− 2fF + Eg

2(EG− F 2)
. (27)

Bonnet’s existence and uniqueness theorem for surfaces (Hsiung, 1981; Rubin,

1991) says

Theorem 3.2. A space surface is uniquely determined by its Gaussian and

mean curvatures under rigid-body motion.
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From Theorem 3.2, the Gaussian and mean curvatures represent all the key

information of a parametric surface. To calculate the curvatures, one simply

needs to estimate the first and the second derivatives of r. We start with the

estimation of derivatives of WFS representations of general cases.

For the convenience of computation, we simplify the degree K WFS repre-

sentation of f as,

f̂ =
K∑

l=0

l∑
m=−l

e−λltβl,mYl,m =
K∑

l=0

l∑
m=−l

αl,mYl,m (28)

where λl’s are the eigenvalues of WFS kernel and βl,m’s are the coefficients of

SPHARM. We start with the derivative of the Legendre polynomials

∂P
|m|
l

∂θ
=

lxP
|m|
l (x)− (l + |m|)P |m|

l−1

1− x2

= l cot θP
|m|
l (x)− csc θ(l + |m|)P |m|

l−1 (29)

where x = cos θ. Equation (29) is also called the recurrence property of Legendre

polynomials. We then derive the derivatives of SPHARM basis recursively

∂Yl,m

∂θ
= l cot θYl,m − csc θ(l + |m|)Yl−1,m (30)

where Yl,m = 0 if m > l. The derivative of φ is relatively easy. We have

∂Yl,m

∂φ
= −mYl,−m. (31)
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Thus

∂f̂

∂θ
= (

K∑
l=0

l∑
m=−l

lαlmYl,m) · cot θ

+(
K−1∑
l=0

l∑
m=−l

√
(2l + 3)((l + 1)2 −m2)

2l + 1
αl+1,mYl,m) · csc θ, (32)

∂f̂

∂θ
=

K∑
l=0

l∑
m=−l

mαl,−mYl,m. (33)

Therefore one can compute the first derivative purely based on the coefficients

of WFS for given (θ, φ). Thus the computation is in general straightforward

and fast.

The derivation procedure of the second derivatives of WFS is a little involved.

But the formulas turn out not very messy

∂2f̂

∂θ2
= −(

K∑
l=0

l∑
m=−l

lαl,mYl,m) · csc2 θ + (
K∑

l=0

l∑
m=−l

l2αl,mYl,m) · cot2 θ

−(
K−1∑
l=0

l∑
m=−l

2(l − 1)A1
l,mαl+1,mYl,m) · csc θ

+(
K−2∑
l=0

l∑
m=−l

A2
l,mαl+2,mYl,m) · csc2 θ, (34)

∂2f̂

∂θ∂φ
= (

K∑
l=0

l∑
m=−l

lmαl,−mYl,m) · cot θ

+(
K−1∑
l=0

l∑
m=−l

mA1
l,mαl+1,−mYl,m) · csc θ, (35)

∂2f̂

∂φ2
= −

K∑
l=0

l∑
m=−l

m2αl,mYl,m. (36)
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where

A1
l,m =

√
(2l + 3)((l + 1)2 −m2)

2l + 1
,

A2
l,m =

√
(2l + 5)((l + 2)2 −m2)((l + 1)2 −m2)

2l + 1
.

The Gaussian and mean curvatures can be computed based on the first and

second derivatives explicitly by (27). But one has to pay attention to that there

are 1/ sin2 θ terms in the formulas of computing second derivatives, which can

cause “being divided by zero” problem in numerical implementation at south

and north pole (θ = 0 and θ = π) of the parameter space.

The problem of estimating the second derivatives can be avoided. Formulas

(24) and (25) tell that we can estimation the second fundamental form via

e = −nθ · rθ,

f = −nθ · rφ,

g = −nφ · rφ.

Therefore, to compute the second fundamental form, instead of computing the

second derivatives of r, we compute the first derivatives of n using the same

procedure based on its WFS representation.

To evaluate our proposed curvature estimation method, we use a family

of closed surfaces, meta-spheres, which are a generalization of basic harmonic

curves and have been used to generate phantoms (vonSeggern, 1994; Xu, 1999).
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A meta-sphere r(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ)) is defined as

x(θ, φ) = (a1 + b1 cos(m1θ) cos(n1φ)) sin θ cos φ,

y(θ, φ) = (a2 + b2 cos(m2θ) cos(n2φ)) sin θ sin φ,

z(θ, φ) = (a3 + b3 cos(m3) cos(n3)) cos(θ).

where (θ, φ) ∈ [0, π] × [0, 2π], and a = (a1, a2, a3) is the meta-sphere ra-

dius in the directions of the three axes, b = (b1, b2, b3) is the ripple ampli-

tude of harmonic components on the meta-sphere, and m = (m1, m2, m3) and

n = (n1, n2, n3) are the ripple frequencies. One can also bend the meta-sphere

using a simple transformation of the coordinates. For example, a meta-sphere

(x(θ, φ), y(θ, φ), z(θ, φ)) can be bent in x− y plane as

x̃ = x cos(cx) + y sin(cx),

ỹ = −x cos(cx) + y sin(cx),

z̃ = z,

where c is the parameter that controls the degree of bending. Some sample

meta-spheres are shown in Figure 24.

From the definition of meta-sphere, it is conceivable that the computation of

the analytical forms of the Gaussian and mean curvature is lengthy and tedious.

But with the help of Mathematica, one can calculate the first fundamental form
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Figure 24: Some sample meta-spheres: S1: a = (2, 3, 4), b = 0, m =
0, n = 0, c = 0; S1: a = (2, 3, 4), b = 0, m = 0, n = 0, c = 0;
S2: a = (2, 2, 1), b = (0.5, 0.5, 0), m = (0, 0, 0), n = (7, 7, 7), c = 0; S3:
a = (2, 2, 1), b = (0.5, 0.5, 0), m = (0, 2, 0), n = (3, 3, 3), c = 0; S4: a =
(2, 2, 1), b = (0.5, 0.5, 0), m = (3, 4, 3), n = (0, 3, 0), c = 0; S5: a = (2, 2, 2), b =
(0.5, 0.5, 0), m = (4, 4, 4), n = (4, 4, 4), c = 0; S6: a = (2, 0.5, 0.5), b = 0, m =
0, n = 0, c = −0.4. Some of these 6 meta-spheres are used for validating the
curvature estimation method and later used for the registration method evalu-
ation.
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precisely as follows

E = (cos(θ) cos(φ)(a1) + b1 cos(m1θ) cos(n1φ))− b1m1 cos(φ) cos(n1φ)

· sin(θ) sin(m1θ)
2 + b2

3m
2
3 cos2(φ) cos2(n3φ) sin2(m3θ) + (cos(θ)

·(a2 + b2) cos(m2θ) cos(n2φ) sin(φ)− b2m2 cos(n1φ) sin(θ)

· sin(m2θ) sin(φ)2,

F = (cos(θ) cos(φ)(a1 + b1 cos(m1θ) cos(n1φ))− b1m1 cos(θ) cos(nφ)

· sin(θ) sin(m1θ))
2 + b1m1 cos(φ) cos(n1φ) sin(θ) sin(m1θ))

2 + (cos(θ)

·(a2 + b2 cos(m2θ) cos(n2φ) sin(φ)− b2m2 cos(n2φ) sin(θ) sin(m2θ)

· sin(φ))(cos(φ)(a2b2 cos(m2θ) cos(n2φ) sin(θ)− b2n2 cos(m2θ)

· sin(θ) sin(φ) sin(n1φ)) + ((a3 + b3 cos(m3θ) cos(n3φ) sin(φ)

−b3n3 cos(m3θ) cos(φ) sin(n3φ))2,

G = ((a1 + b1 cos(m1θ) cos(n1φ) sin(θ) sin(φ) + b1n1 cos(m1θ) cos(φ)

· sin(θ) sin(n1φ)2 + (cos(φ)(a2 + b2 cos(m2θ) cos(n2φ)) sin(θ)

−b2n2 cos(m2θ) sin(θ) sin(φ) sin(n2φ)2 + (a3 + b3 cos(m3θ)) sin(φ)

+b3n3 cos(m3θ) cos(φ) sin(n3φ))2.

The second fundamental form can be analogously calculated. Therefore, the

ground truth of the meta-sphere curvatures is always known. Then we use

our proposed method to estimate Gaussian and mean curvatures of the meta-

spheres. The estimated Gaussian and mean curvatures are projected to the

(θ, φ)-plane for better illustration as shown in Figure 25. One can see, the
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estimated curvatures are close to the ground truth. It is hard to tell the dif-

ference without very careful examination. But for surfaces it is difficult to put

two curvatures in one plot as we have done in the curve curvature estimation.

To characterize the difference between the estimated curvatures and the true

curvatures, we use the relative errors:

100× K̂ −K

K
% and 100× Ĥ −H

H
%,

where (K̂, Ĥ) is the estimated curvature and (K, H) are the true curvature.

The plot of relative errors are given in Figure 26. There are various patterns

of the differences since there is no randomness presented in the two estimation

methods. Considering the instability of surface curvature estimation (Besl and

Jain, 1986; Sander and Zucker, 1986; Vemuri et al., 1986; Shi et al., 1994), one

can find the relative errors of the proposed curvature estimation method are

quite small (less than 3%).

3.2.2 Curvature-based affine surface alignment

In this section, we are going to design a curvature-based surface registration.

First, Gaussian curvature and mean curvatures of a surface are computed using

the estimation of the first and second fundamental forms based on its WFS.

Even though it is well-known that a surface can be reconstructed up to second

order accuracy if the Gaussian and mean curvatures are known, the recon-

struction of the surface using curvature information is very complicated and

noise-sensitive (Fan and Nevatia, 1986). The WFS representation of a surface
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Figure 25: The estimated Gaussian and mean curvatures. The meta-spheres are
S2, S5 and S6 in Figure 24. The curvatures are projected onto the (θ, φ)-plane.
The colors indicate the magnitude of curvatures.
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Figure 26: The plots of relative errors of the our proposed curvature estimation
method versus true curvature values. The three columns correspond to the three
meta-spheres used in Figure 25 respectively.

gives an analytical form on the (θ, φ)-parameter space. The Gaussian and mean

curvatures share the same parameter space. Then we propose an alignment

method purely based on the curvature information. By the one-to-one corre-

spondence of the WFS representation and curvature functions, one can derive

the registered surface directly from the registered curvature functions.

A rotation matrix can be generated by three basic rotations about x, y and

z-axis. The rotation around the x-axis is defined as:

Rx(θx) =


1 0 0

0 cos θx sin θx

0 − sin θx cos θx


where θx ∈ [0, π] is the rotation angle. The rotation matrices are orthonormal
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matrix. Therefore, they define a transformation that does not change the size

and center location of the surfaces. Similarly the rotations around the y-axis

and z-axis are defined as:

Ry(θy) =


cos θy 0 − sin θy

0 1 0

sin θy 0 cos θy

 ,Rz(θz) =


cos θz sin θz 0

− sin θz cos θz 0

0 0 1

 .

Any 3-dimensional rotation matrix M ∈ R3×3 can be characterized by the

three angles θx, θy, and θz, and may be expressed as a product of 3 basic rotation

matrices as

M = Rz(θz) · Ry(θy) · Rx(θx).

The set of all rotations in R3, together with the operation of function composi-

tion, form the rotation group SO(3).

We can define a transformation matrix that is composed of translation, ro-

tation and scaling as a transformation matrix in the homogenous coordinate

system

TM,t,s =



s ·M11 s ·M12 s ·M13 tx

s ·M21 s ·M22 s ·M23 ty

s ·M31 s ·M32 s ·M33 tz

0 0 0 1


(37)

where M = (Mij) is the rotation matrix, t = (tx, ty, tz)
τ is the translation vector

and s is the scale parameter.
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For a given template surface rp(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ)), the affine

alignment of a given surface r(θ, φ) is to minimize the L2-distance between the

two surfaces:

arg min
M,t,s

∫ 2π

0

∫ π

0

‖rp − TM,t,s(r)‖2
2 sin(θ)dθdφ.

This alignment will minimize the orientation and translation difference between

two normalized surfaces.

The curvature field of a given parametric surface r is defined as

C(r)(θ, φ) = (K(θ, φ), H(θ, φ)),

where K and H are the Gaussian and mean curvatures. Similarly to equation

(37), one can define a 2D transformation matrix in the homogenous coordinate

system as

TM,t,s =


s ·M11 s ·M12 tx

s ·M21 s ·M22 ty

0 0 1

 .

We are looking for a transformation to minimize∫ 2π

0

∫ π

0

‖C(rp)− C(TM,t,s(r))‖2
2 sin(θ)dθdφ.

In general, smaller dimension implies faster and less error-prone solution

in optimization. Using the curvature representations, the alignment procedure

becomes an optimization problem of four parameters (M, s, tx, ty) since the two-

dimensional rotation matrix M can be determined by one parameter (the ro-

tation angle). The alignment method using the transformation matrix defined
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Figure 27: The box-plots of registration scores of the three methods. The jitter
plots (colored dots) show the distributions of the registration scores. The three
meta-spheres are from Figure 25.

in (37) has seven parameters (s, tx, ty, tz, M), where the three-dimensional rota-

tion matrix M is determined by three rotation angles (θx, θy, θz). Therefore, the

surface alignment using the coordinates is an optimization procedure of seven

unknown parameters. But the alignment using curvature information is an op-

timization of four unknown parameters, which shows our proposed curvature-

based alignment method is in general more efficient.

We compare our alignment method with PCA alignment method (Shen et al.,

2004) and Procrustes alignment (Bookstein, 1997; Styner et al., 2006). The

PCA alignment method first computes the three principle components of the

surface coordinates, then aligns the surfaces’ three principal components of the

two surfaces accordingly. Procrustes alignment directly aligns the surfaces to

minimize the displacement under rotation, translation and scaling with a set of

landmarks. To compare the curvature-based alignment method with these two
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Methods meta-sphere 1 meta-sphere 2 meta-sphere 3
PCA 5.74 ± 3.49 5.38 ± 6.21 3.16 ± 1.77

Procrustes 3.83 ± 1.96 3.40 ± 1.51 0.22 ± 0.02
Curvature-Based 3.34 ± 1.47 4.03 ± 1.96 0.29 ± 0.19

Table 2: The summary of the displacement of the alignments of PCA, Procrustes
and curvature-based methods. The entries of the table are the estimated means
± the standard errors of the displacements from the simulations.

methods, we are going to compare the displacement measures, which is defined

as ∫ 2π

0

∫ π

0

‖rp − r∗‖2 sin θdθdφ,

where rp is the target surface and r∗ is the aligned surface.

For the method comparison, the meta-spheres in Figure 25 are used. For

every given meta-sphere, the other surface is generated from this surface by

the pre-specified scaling, rotation and translation of the given meta-sphere.

Small normal errors are added to the vertices of the surface without changing

the topology of the surfaces. Then we use the three methods to align the

generated surface to the original surface (the template). After the alignment,

the displacements are recorded. This procedure is repeated 30 times for every

meta-sphere.

The simulation results can be seen in Figure 27. The registration displace-

ments of the three methods are summarized in Table 2. For meta-sphere 2, the

performances of the three methods are very close, even though the curvature-

based method and Procrustes method are slightly better than PCA method. For
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the first and third meta-spheres, the performances of curvature-based method

and Procrustes method are similar. But the curvature-based registration clearly

outperforms PCA registration. The difference in the performance of PCA is

caused by the fact that PCA does not recognize the directions of the principle

components. If the surface is symmetric (like meta-sphere 1), then PCA per-

forms better; otherwise, PCA registration can be very bad and should not be

recommended.
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Chapter 4

Fast Weighted Fourier Analysis

In Chapter 2 and 3, we have built the systematic ground work of weighted

Fourier analysis. In this chapter, we are going to introduce an alternative to

weighted Fourier analysis: the fast weighted Fourier analysis, which is closely

related to weighted Fourier analysis but approaches the problem from a different

angle by using the fast Fourier transforms (FFT).

Model selection (variable selection in regression is a special case) is a bias

versus variance trade-off and this is the statistical principle of parsimony (Burn-

ham and Anderson, 1998; Forster, 2000). Efficient and accurate estimation of

WFS could also be made via a model selection procedure. As we showed in

Chapter 2, the computation of the operations of the large design matrices will

be very tedious. But it is always required or implicated for Akaike information

criterion (AIC) method (Akaike, 1974), Bayesian information criterion (BIC)

method (Schwarz, 1978), stepwise regression method (Hocking, 1976), Mallow’s

Cp method (Mallow, 1973), LASSO (Tibshirani, 1996) and Dantzig model se-

lection (Osborne et al., 2000; Candes and Tao, 2005). It is time-consuming to

compute all the possible models and then select the best model from the model

pool. In this chapter, we are going to propose a fast Weighted Fourier model
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selection method, which is computationally efficient and gives comparable re-

sults with other classic model selection methods such as LASSO and Dantzig

model selection.

4.1 Fourier transform

Fourier transform, which was first proposed to solve PDEs, such as Laplace,

Heat and Wave equations, has many applications in physics (Greengard (1994)

gave a good survey of references for the Fourier (spherical) transform in physics),

chemistry (Martyna and Berne, 1989) and biology (Miller et al., 1994). In en-

gineering, Fourier transform is essential in understanding how a signal behaves

when it passes through filters, amplifiers and communications channels (Chown-

ing, 1973; Brandenburg and Bosi, 1997; Bosi and Goldberg, 2003). Fourier

transform can be also used as high-pass, low-pass, and band-pass filters. It can

be applied to signal and noise estimation by encoding the time series (Good,

1958; Harris, 1978; Zwicker and Fastl, 1999).

In this dissertation, we focus on the applications of Fourier transform to

image analysis. Fourier transform is a natural image processing tool on image

representation which is used to decompose an image into its sine and cosine

components. Fourier transform has been widely applied to one of most chal-

lenging problems in medical imaging: the resampling and reconstruction of

various geometries. Matej and Bajla (1990) proposed a hybrid spline-linear in-

terpolation algorithm for the direct Fourier method. They also compared the
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computational requirements of the direct Fourier method algorithm which cor-

respond to distinct interpolation schemes for CT and MR tomography, respec-

tively. Schomberg and Timmer (1995) presented a computational method for

reconstructing an n-dimensional signal from a sampled version of its Fourier

transform by using a novel gridding method. They found that due to the

smoothing effect of the convolution, evaluating the convolution of a signal using

a Gaussian kernel is much less error prone than merely interpolating on a reg-

ular grid. Hawkins (1996) presented an Fourier transform resampling (FTRS)

algorithm, which may be viewed as a generalization of the linear coordinate

transformations of standard Fourier analysis by projecting point sources at dif-

ferent transverse positions to estimate cutoff frequency. Taguchi et al. (2001)

proposed a method for the implementation of Grangeat’s algorithm using spher-

ical transform and applied the method to image reconstruction from cone-beam

projections. Bronstein et al. (2002) showed an iterative reconstruction frame-

work for diffraction ultrasound tomography. The proposed algorithm makes use

of forward nonuniform fast Fourier transform (NUFFT) for iterative Fourier in-

version with incorporation of total variation regularization. Lustig et al. (2004)

presented a fast and accurate discrete spiral Fourier transform and its inverse.

The inverse solves the problem of reconstructing an image from MRI data ac-

quired along a spiral k-space trajectory. Rowe and Logan (2004), Rowe (2005)

and Rowe et al. (2007) used Fourier transform to reconstruct signal and noise

of fMRI data utilizing the information of phase functions of Fourier transform
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Figure 28: The amplitude (middle) and phase function (right) of the Fourier
transform of g = 0.7 sin(3x) + 0.5 sin(18x) on the left.

of images.

Fourier transform has been well-established in Mathematics. As a general-

ization of Fourier series, the Fourier transform is a linear operator that maps

a function space to another function space and decomposes a function into an-

other function of its frequency components. The definition of Fourier transform

varies according to different authors (Arfken, 1985; Bracewell, 1999; Krantz,

1999; Trott, 2004). The different definitions are essentially identical with dif-

ferent scaling factors. We are using the routine in Bracewell (1999). Suppose

g ∈ L(C), C = {x + yi : x, y ∈ R}. Fourier transform is a linear operator

F : L(C) → L(C) defined as

G(w) = Fg(w) =
1√
2π

∫ ∞

−∞
g(t)e−iwtdt, w ∈ R.

If g is sufficiently smooth, it can be reconstructed from its Fourier transform
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using the inverse Fourier transform

g(x) =
1√
2π

∫ ∞

−∞
G(w)eiwtdw.

The existence of inverse Fourier transform tells us that a function can be

uniquely represented by its Fourier transform. For the purpose of interpre-

tation and visualization, Fourier transform G(w) is usually expressed in polar

coordinate as G(w) = A(w) · eip(w), where A(w) = ‖G(w)‖ is the amplitude

function and p(w) = ∠G(w) is the phase function (as shown in Figure 28).

The Fourier transform on the unit sphere S2 is also called spherical trans-

form. The spherical transform projects f ∈ L2(S2) into the space spanned by

spherical harmonics

f(θ, φ) =
∑
l≥0

∑
‖m‖≤l

flmY m
l (θ, φ) (θ, φ) ∈ [0, π]× [0, 2π], (38)

where

Y m
l (θ, φ) = klmPm

l (cosθ)eimφ,

where Pm
l is the associated Legendre function of degree l and order m and

klm is the normalization constant. Here the presentation of spherical transform

is different from SPHARM presentation in previous chapters. But they are

equivalent as we are going to show later in this chapter.
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4.2 Fast Fourier transform

Let observations {xi}N−1
i=0 be complex numbers. The discrete Fourier transform

(DFT) is defined as

Xk =
N−1∑
n=0

xne
− 2πi

N
nk, k = 0, 1, · · · , N − 1.

Computing the N sums directly would take O(N2) arithmetical operations. A

fast Fourier transform (FFT) is an efficient algorithm to compute the DFT and

gives the same result using only O(N log N) operations.

FFT, first discovered by Gauss, has been popularized by Cooley and Tukey

(Cooley and Tukey, 1965). Cooley-Tukey FFT algorithm first computes the

Fourier transform of the even-indexed numbers and that of the odd-indexed

numbers:

Xk =

N/2−1∑
m=0

x2me−
2πi
N

(2m)k +

N/2−1∑
m=0

x2m+1e
− 2πi

N
(2m+1)k

=

 Ek + e−
2πi
N

kOk if k < M

Ek−M − e−
2πi
N

(k−M)Ok−M if k ≥ M

where Ej is the DFT of the even-indexed numbers and Oj is the DFT of the odd-

indexed numbers. One then combines these two results to produce the Fourier

transform of the whole sequence. This idea can be performed recursively to

reduce the computation time to O(N log N).

The algorithm described above is called the radix-2 decimation-in-time FFT,

which is the simplest and most common form of Cooley-Tukey algorithm. One
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can also divide the algorithm into a number of transforms, which is a prime

factor of N with slightly degraded in computational speed. This method is

called the prime-factor FFT algorithm (Good, 1958). Other important FFT al-

gorithms are also available. The Rader-Brenner algorithm (Rader, 1968) is

a Cooley-Tukey-like factorization by reducing multiplications at the cost of

increased additions and reduced numerical stability. The Bruun’s algorithm

(Bruun, 1978) is based on an unusual recursive polynomial-factorization ap-

proach and is intrinsically less accurate than Cooley-Tukey in the fact of finite

numerical precision. Bluestein’s algorithm (Bluestein, 1968) computes the DFT

of arbitrary sizes (including prime sizes) by re-expressing the DFT as a convo-

lution.

The accuracy and stability of the algorithms vary. There are many contro-

versies and debates for this aspect. In this dissertation, all the FFT algorithms

are based on an open library “FFTW” (Frigo and Johnson, 2005), which uses

the most widely accepted Cooley-Tukey algorithm. The multi-dimensional FFT

is also well-defined and well-developed in this package. As a base package of

Linux operating systems, FFTW is a C subroutine library for computing DFT

in one or more dimensions. FFTW is performed on a variety of platforms, which

shows that FFTW’s performance is typically superior to that of other public

available FFT softwares, and is even competitive with vendor-tuned codes. We

are particularly interested in the FFT on the 2-sphere (Healy et al., 2003), which

uses the techniques of multi-dimensional FFT, but improves it by an efficient
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algorithm for the computation of discrete Legendre transforms.

The DFT estimation of fl,m in equation (38) is given as

f̂l,m =

√
2π

2B

2B−1∑
j=0

2B−1∑
k=0

a
(B)
j f(θj, φk)e

−imφkPm
l (cos θj),

where 0 ≤ m ≤ l < B. Notice that the direct computation of every f̂l,m requires

O(B2) arithmetic computation time and thus O(B4) in total.

Similar to 1-dimensional FFT, the more efficient algorithms use a separation

of variables approach. One proceeds by first summing over the k index and

computing the exponential summations. One may do this efficiently for all

m between −B and B (Elliott and Rao, 1982). This computation requires a

discrete Legendre transforms, which is defined as

N−1∑
k=0

[s]kP
m
l (cos(θk)) = 〈s, Plm〉,

where s is an arbitrary input vector with kth components [s]k and P m
l denotes

the vector comprised of appropriate samples of the function Pm
l (cos θ).

Healy et al. (2003) solved the subproblems recursively, by further subdivi-

sion. Then they combined their solutions to solve the original problem. The

advantage of their approach is that the cost of the smaller subproblems, to-

gether with the cost of splitting will be less than the cost of direct approach. To

insure that the splitting actually results in subproblems of reduced complexity,

the three-term recurrence of Legendre functions (this is similar to the recursive

property that we used for computing the derivatives of WFS in Chapter 3) is

applied. A smoothing and sub-sampling strategy is applied to insure that only
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l samples are needed to compute the inner product with a trigonometric poly-

nomial of degree l < B. Then this FFT algorithm requires at most O(B log2 B)

operations.

4.3 Fast weighted Fourier analysis

Even though Fourier transform and Fast Fourier transform are widely used in

the field of image analysis, how to choose the significant frequencies is not well

studied. Mezrich (1995) proposed an imaging modality that one can choose the

dimension of K-space and therefore choose the proper number of frequencies of

the observed signal. Wu et al. (1996) obtained the K-space (where MR images

are stored) using so called “short-time Fourier transform magnitude vectors”.

Lustig et al. (2004) also proposed a fast spiral Fourier transform to effectively

choose the K-space. Li and Wilson (1995) proposed Laplacian pyramid method

to filter out the high frequencies by using a uni-modal Gaussian-like kernel to

convolve with images. The problems with those model selection methods and

procedures are that they did not consider the possibility that even some low

frequencies are not necessarily significant. They simply picked all the low fre-

quencies using a brutal-force thresholding and threw away the high frequencies.

As mentioned in Chapter 2, the eigenfunctions {φj}n
j=1 of the Laplacian

operator ∆ are orthonormal. But for the numerical implementation, the discrete

eigenfunctions are only approximately orthonormal if the curve or surface is well-

parameterized. To check the orthonormality, we use the inner product matrices



94

Figure 29: The colormap of inner product matrix of 200 Fourier basis functions
based on the parametrization of a GVF snake boundary of the corpus callosum
used in the study of autism (left) and colormap of the inner product matrix
of 225 (degree 14) SPHARM basis functions based on the parametrization of a
amygdala surface.

defined in Chapter 2

M = (〈φi, φj〉)

where {φk}N1
k=1 are a set of one-dimensional Fourier series basis functions or a

set of SPHARM basis functions. The colormaps of inner product matrices are

shown in Figure 29. From the plots, we see that the matrices are dominated

by their diagonals. But there are small noises off the diagonals of the matrices,

which show that the basis functions are not exactly othornormal.

We are interested in the inverses of the inner product matrices. Actually, it

can be proved that their inverse matrices are also dominated by their diagonals.

Lemma 4.1. Let I be the n × n identity matrix and J be the matrix with all
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Figure 30: The inverse of colormap of inner product matrix of Fourier basis
functions (left) and inverse colormap of that of SPHARM basis functions. The
corresponding inner product matrices are shown in Figure 29.

the entries smaller than 1, and b = o(a). Then we have

(aI + bJ)−1 ≈ 1

a
I − b

a2
J. (39)

Note that the inner product matrices also have the format of aI + bJ , which

is dominated by the diagonals. The conclusion can be easily proven from

(aI + bJ)(
1

a
I − b

a2
J) ≈ I.

The matrix Taylor expansion of (aI + bJ)−1 gives the same result. The conclu-

sion can also be easily demonstrated by plotting the inverses of inner product

matrices as shown in Figure 30.

We next show that this property of the inner product matrices of the Fourier

basis functions is crucial for the fast weighted Fourier analysis. In weighted

Fourier analysis, the linear model we used for estimating the coefficients of
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WFS is

f = Y β + ε, ε ∼ N(0, σ2I).

The simulations in Chapter 2 show that it is appropriate to assume normal-

ity. Using the following lemma, we will establish our proposed model selection

procedure.

Lemma 4.2. Suppose that f follows a multivariate normal distribution with

mean Y β and covariance matrix σ2I, then the LSE of β

β̂ = (Y T Y )−1Y T f ∼ Np(β, (Y T Y )−1σ2). (40)

Given that the columns of Y are the Fourier basis functions or SPHARM

basis functions, the covariance matrix σ2(Y T Y )−1 is exactly the inverse of the

inner product matrix of the basis functions. Since Y T Y is dominated by its

diagonal,

(Y T Y )−1σ2 = c0I − d0J,

where c0 and d0 are constants and d0 = o(c0). This matrix is also dominated

by its diagonal. From Lemma 4.2, we have the marginal distribution,

β̂i ∼ N(βi, σ
2(c0 − d0)) i = 1, 2, · · · , K, (41)

where K is the number of the columns of Y . We are trying to eliminate the
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insignificant βi’s based on the following hypothesis tests

H0 : βi = 0,

Ha : βi 6= 0

for i = 1, 2, · · · , K. Based on the result in (41), the test statistic will be the

t-statistic

Ti =
β̂i

Std. Err. of βi

≈ β̂i

σ̂
√

c0 − d0

.

Then ‖Ti‖ ≥ t0.025,n−1 gives the threshold at 0.05 significance level

‖βi‖ ≥ b0 ≈ t0.025,n−1σ̂
√

c0 − d0.

where n is the number of observations.

Therefore, the significant frequencies of WFS can always be chosen using

their coefficients by giving a constant threshold. But for WFS based image

analysis, estimation of the coefficients is usually time-consuming. One needs

to find an alternative and faster way to compute coefficients. In the next two

sections, we are going to show that the coefficients can be computed efficiently

by fast Fourier transform (FFT).

Therefore, the framework of our model selection method is designed as fol-

lows:

1. For a given observation f , which is usually a curve or a surface, the Fourier

transform of f is computed via FFT.
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2. The coefficients of Fourier series are derived from the results of FFT.

3. The covariance matrix of β is derived from the first K basis functions

using Lemma 4.2 and σ is estimated by

σ̂ =

√
1

n−K
‖f − Y β‖2

where Y ’s columns are the K basis functions and β is estimated only

using K basis functions. Then the standard error of βi (i = 1, · · · , K) is

the ith diagonal entry of matrix (Y ′Y )−1σ̂

4. The threshold is then

b0 = λt0.025,n−1 · σ̂
√

1− b,

where λ = 1 is always applied and b is the estimated maximum of the off-

diagonal of Y ′Y . But for more flexibility, λ can be changed accordingly

to various conditions to find the suitable results.

5. The frequencies with coefficients larger than the threshold are chosen by

the method.

This procedure selects the significant coefficients βs = (β1,s, β2,s, · · · , βns,s).

Then the final WFS representation is

f̂ =
ns∑

k=1

e−λk,sβk,sφk,s

where λk,s and φk,s are the selected eigenvalues and eigenfunctions (basis func-

tions). We call this model selection procedure as fast weighted Fourier analysis.
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4.4 One-dimensional fast weighted Fourier anal-

ysis

Most of the applications and generalizations of Fourier transform are based on

the following standard properties of Fourier transform:

Lemma 4.3. For a given bounded continuous integrable function (e.g. f), we

denote the corresponding capital letter (e.g. F ) as its Fourier transform.

a. If g(x) = f(x− a), then G(w) = e−iawF (w).

b. If g(x) = f(x/λ), then G(w) = λF (λw).

c. If h = f ∗ g, the convolution of f and g, then H(w) = F (w)G(w).

d. If d(x) = f ′(x), then D(w) = iwF (w).

e. If f(x) = cos(2πw0x), then F (w) = δ(w + w0) + δ(w − w0); If f(x) =

sin(2πw0x), then F (w) = δ(w + w0) + δ(w − w0).

We derive the Fourier series using the corresponding Fourier transform.

Lemma 4.4. One-dimensional Fourier series of f ∈ L2(M) have the following

format

f(x) =
a0

2
+

∞∑
n=1

(an cos(nx) + bn sin(nx))
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we have

F (w) =
a0

2
δ(w) +

∞∑
n=1

(an(δ(w + n)− δ(w − n))

+bn(δ(w + n)− δ(w − n)))

=
a0

2
δ(w) +

∞∑
n=1

((an + bn)δ(w + n) + (an − bn)δ(w − n)). (42)

Equation (42) holds using (e) in Lemma 4.3.

In practice, we are trying to estimate signal g(x), x ∈ [0, 2π]. Only noisy

signal is observed as

g1(x) = g(x) + ε(x),

where ε(x) ∼ N(0, σ2) is the white noise. One is trying to find the Fourier series

representation to approximate the true signal

ĝ =
a0

2
+

K∑
n=1

(e−n2tan cos(nx) + bn sin(nx)),

where K is selected manually or automatically.

We are going to demonstrate the fast weighted Fouriere analysis methods

with simulated data and corpus callosum data. The first simulation is to esti-

mate the sinusoid signals. In this simulation, we let

g1(x) = 0.7 sin(7x) + sin(18x) + ε,

where ε ∼ N(0, 0.22) as shown in Figure 31.
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Figure 31: The underlying and noisy curve used in the simulation with true
signal 0.7 sin(7x) + sin(18x).

To estimate the signal g(x) using LSE, one has to generate at least 2×18+1

basis functions to capture the high frequency information (of degree 18 Fourier

basis functions). It is likely to have the over-fitting problem for LSE using

redundant predictors. On the other hand, using fast weighted Fourier analysis,

one can easily find that two basis functions are enough for our analysis. It also

provides the estimation of coefficients of the corresponding basis functions as

shown in Figure 32. When using 1000 observations, the amplitudes are not

exactly at 0.7 and 1. The main reason is the presence of noise. The other

reason is that one has finite range of observations while the Fourier transform

is defined over the whole real line. If one increases the range of observations, as

shown in Figure 32, we have a better approximations.

The threshold is computed based on the observations, which is shown as the
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Figure 32: The fast Fourier transform results using different observation ranges.
“double the range” means the the support of observed function is doubled.

dashed line in the Figure 32. Using the results of Fourier transform, the esti-

mated signal functions are shown in Figure 33. When using 1000 observations,

the estimation is over-smoothed. But if we increase the range of observations,

we have a very good estimation of the original signal.

From first simulation, we see that, for the estimation of trigonometric func-

tions or their combinations, Fourier transform will give better and faster results

than least-squares estimation. Considering that if the signal function has high

frequency component (e.g. the component sin(nx) when n is very large), the

least-squares estimation will be very inefficient and very likely to have over-

fitting problems using all the 2n + 1 basis functions.

For the second simulation, we assess the performance of fast weighted Fourier
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Figure 33: The final result of fast weighted Fourier analysis for the first simula-
tion. Two estimated curves are given: one is using 1000 observations, and the
other one is using 2000 observations.

analysis on the estimation of a more general signal. Let the true signal be

g(x) =

 x2 · (x− 2π)2, x ∈ [0, 2π]

g(x + 2π), otherwise.

Note that g(x) is periodic and smooth (its first derivative is continuous) as

shown in Figure 34. For the general curve that we defined, one still manages to

find a good approximation of the true signal as shown in Figure 35.

We can also apply our method to the corpus callosum (CC) data. GVF

snakes algorithm will provide noisy boundaries of CC’s. So a smooth CC

boundary should be achieved for statistical analysis. First, using the arc-length

parametrization method (as described in Chapter 2), for each obtained discrete
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in Figure 34.
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Figure 37: The results of FFT of function x(θ) (left) and y(θ) (right) in Fig-
ure 36. The thresholds of fast weighted Fourier analysis are given as dashed
lines.
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Figure 38: Reconstruction of the snake in Figure 36 using LSE and fast weighed
Fourier analysis.

curve {pi}n
i=1, we have

C(si) = (x(si), y(si)), 0 = s1 < s2 · · · < sn = 2π.

Then, we are going to use the fast weighted Fourier analysis on two curve x(s)

and y(s), s ∈ [0, 2π]. The estimated functions are shown in Figure 36. Figure 37

and Figure 38 show the results of fast weighted Fourier analysis give comparable

results to that of LSEs, while fast weighted Fourier analysis using fewer basis

functions.
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4.5 Two-dimensional fast weighted Fourier anal-

ysis

The Fourier transform on the 2-sphere is equivalent to SPHARM (Healy et al.,

2003). By (38), one can compute the coefficients of SPHARM using

βl,|m| =
1

2
(fl,|m| + fl,−|m|),

βl,−|m| =
1

2
(fl,|m| − fl,−|m|)

for −l ≤ m ≤ l.

4.5.1 Model estimation comparison

The computation time is related to both the number of the observation N and

the number of basis functions K as shown in Chapter 2. We first compare the

computation time of fast weighted Fourier analysis, LSE and AIR. We study

the linear model

f = Y β + ε, ε ∼ N(0, σ2I).

where Y is the N ×K design matrix whose columns are SPHARM basis func-

tions. We first compare the computation time of the three methods to estimate

the coefficients using first K basis functions. For this simulation, K ranges from

100 to 400. The comparison results are shown in Figure 39. As we predict, AIR

uses less CPU time than LSE. But fast weighted Fourier analysis absolutely

needs less CPU time than the other two methods. We then compare the ac-
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Figure 39: Comparison of CPU times of LSE, AIR and FT.

curacy of the estimations by the three methods. We set up our true model

as

f =
I∑

i=1

biφji
+ ε (43)

where {φji
}I

i=1 are selected basis function from the Fourier basis functions. Co-

efficients bi’s are pre-specified numbers. Normal errors are added to the true

model to simulate the observations. Then we estimate the true model based

on the observations using the three methods. To characterize the deviation of

the estimated model from the true model, we use a L2-norm, f̂ − f , where f̂

is the estimated model. We repeat the simulation 100 times. The box-plots of

the residual sum of squares are shown in Figure 40. We find that the accuracy
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Figure 40: The box-plot of L2 distances of the simulation that compares accu-
racy of LSE, AIR and fast weighted Fourier analysis.

of fast weighted Fourier analysis is not as good as LSE and AIR, which is the

tradeoff of fast computation. We finally apply the fast weighted Fourier analysis

to the mandible surface estimations. We compare the results of fast weighted

Fourier series analysis with LSE results. For fast weighted Fourier analysis, we

use an average 165× 3 (for x, y, z coordinates) basis functions, while LSE uses

an average of 324× 3 basis functions. We also compared the plots of mandible

surfaces obtained from the two methods as shown in Figure 41. The results of

the two methods are very close. But fast weighted Fourier analysis uses only

about half the basis functions of those for LSE.
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Figure 41: Comparison of Mandible surfaces from LSE and fast weighted Fourier
series analysis (indicated by “FT”).
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4.5.2 Model selection comparison

We also compare the fast weighted Fourier analysis with other model selection

methods. In our comparison procedure, we found that some model selection

methods, such as AIC and BIC, are extremely slow with the large number

of basis functions. Therefore, we only compare our method with two model

selection methods that worked reasonably well: LASSO and Dantzig selector

method. There are tantalizing similarities between DS and LASSO but they

produce different models. Some interesting discussions of the comparison be-

tween the two methods can be found in Bickel (2007); Efron et al. (2007).The

definition of LASSO can be expressed as an optimization method of finding

coefficient β

min
β
‖(y −Xβ)‖2 subject to ‖β‖1 ≤ s,

where ‖ · ‖2 is the l2-norm, ‖ · ‖1 is the l1-norm, y is the responses, s is a

pre-specified threshold and X is the predictor. The definition of the Dantzig

selector (DS) can be expressed as

min
β
‖X(y −Xβ)‖∞ subject to ‖β‖1 ≤ s,

where ‖ · ‖∞ is the l∞-norm. With a bound on the l1-norm, LASSO minimizes

the mean squared error while DS minimizes the maximum component of the

gradient of the squared error function. If the threshold s is large so that the

constraint has no effect. These two methods produce the identical solution.

However, for other values of s, they are somehow different.
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σ FWFA LASSO Dantzig selector
AS AN T AS AN T AS AN T

5

0.05 4.89 8.05 1.06 5 20.56 47 5 19.26 49
0.5 4.69 6.74 1.11 5 21.29 49 5 18.21 49

1 4.64 6.23 0.81 5 19.58 48 5 21.61 48
5 4.52 6.04 0.77 4.91 18.08 49 4.93 20.12 48

15 3.03 5.32 0.76 3.55 15.76 49 3.51 14.21 49

90

0.05 90 107 1.77 90 160 274 90 161 172
0.5 89.23 102 1.80 90 162 276 90 162 172

1 89.23 102 1.80 90 162 280 90 163 174
5 88.75 101 1.80 89.77 161 277 89 161 172

15 77.69 92 1.76 79.11 139 274 79 140 170

Table 3: The model selection comparison of fast weighted Fourier analysis,
LASSO and Dantzig selector. ‘FWFA’ stands for fast weighted Fourier analysis,
‘AS’ stands for average score, ‘AN’ stands for average number of predictors
selected, and ‘T’ stands for computation time.

The three methods, fast weighted Fourier analysis, LASSO and Dantzig

selector are compared via two simulation studies. In the first simulation, we

assume the true model as

Y = a1φ10 + a2φ30 + a3φ50 + a4φ70 + a5φ90.

Then the observation y = Y + σ ∗ ε, where ε ∼ N(0, I). {ai}5
i=1 are pre-

specified numbers. We are going to select the true model from the first 100 basis

functions {φj}1
j=100. To test the robustness and accuracy of our method against

various errors, We use five different σ’s (from 0.05 to 15). For every given σ,

the three model selection methods are applied to estimate the true model. We

repeat model selection procedure 100 times for every σ.
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In image analysis, the shapes of the observations are always complex. There-

fore, it requires more Fourier basis functions to give a good representation. In

the second simulation, the true model has more terms, i.e. I is large in (43).

For I = 90, we are going to select from the first 225 (=152) basis functions. We

repeat the simulation 100 times.

The results of comparison are shown in Table 3, We see that LASSO and

Dantzig selector are very conservative, but only achieve a little better average

scores. LASSO and Dantzig selector are much slower than fast weighted Fourier

analysis in model selection. Clearly, for the model selections in weighted Fourier

analysis, fast weighted Fourier analysis clearly outperforms LASSO and Dantzig

selector methods.
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Chapter 5

Medical Imaging Applications of

Weighted Fourier Series

In this chapter, we are going to apply weighted Fourier series to medical image

analysis using the techniques we introduced in previous chapters. We first ex-

plore the possibility of developing an automated diagnostic tool for detecting

autism based on MRI measurements. We then develop a systematic framework

of detecting the regions on amygdala surface where the statistically significant

difference in autism is located. A fast weighted Fourier analysis of the growth

patterns for mandible surfaces is also proceeded.

5.1 Automated diagnosis of autism

The underlying neuropathology of autism appears to be complicated and un-

determined. Various literatures suggested that the abnormalities of the corpus

callosum are involved (Piven et al., 1997; Hardan et al., 2000; Chung et al.,

2004; Waiter et al., 2005; Alexander et al., 2007). In this section, we are going

to develop a regression tree based classification method for automated diagnosis
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of autism using weighted Fourier series as a shape descriptor (Golland et al.,

1999).

5.1.1 Segmentation

With medical images playing an increasingly important role in the diagnosis

and treatment of diseases, the medical image analysis community has become

preoccupied with the challenge of extracting useful information about anatomic

structures from medical images, since almost all the interesting biomarkers have

to be derived from the image segmentation. Segmenting structures from medical

images is in general difficult due to the sheer size of the image data sets and

the complexity and variability of the images themselves. Deformable models

(Kass et al., 1987; Terzopoulos and Fleischer, 1988; McInerney and Terzopoulos,

1996) provide promising and vigorously model-based approach to computer-

assisted medical image segmentations. It is widely recognized that the potency

of deformable models stems from their ability to segment, match, and track

anatomic structures of images by exploiting constraints derived from the image

data together with a priori knowledge about the location, size, and shape of

these structures. Deformable models have been applied to edge detection (Kass

et al., 1987), segmentation (Terzopoulos and Fleischer, 1988; Xu and Prince,

1997), motion tracking (Leymarie and Levine, 1993), and nonlinear registration

(Davatzikos, 1996; Gefen et al., 2003). We are particularly interested in one

dimensional deformable models, the snakes, or the active contours (Kass et al.,



116

1987).

A snake (Kass et al., 1987; Terzopoulos and Fleischer, 1988) is a deformable

curve

C(s) = (x(s), y(s)) ∈ R2, s ∈ [0, 1],

which moves within the image and converges to the desired boundary by mini-

mizing the energy functional

E =

∫ 1

0

1

2
(α‖C ′(s)‖2 + β‖C ′′(s)‖2)ds +

∫ 1

0

Eimage(C(s))ds

= Eint + Eext,

where α and β are the weighting parameters that control the snake’s tension and

rigidity. The energy functional is divided into two parts: the internal energy

Eint, which is generated from interaction of the snakes itself and control the

smoothness of the snake; and the external energy Eext, which is derived from

the images:

Eext =

∫ 1

0

‖∇Gσ ∗ I(x(s), y(s))‖2ds

where ∇ is the gradient operator, and Gσ ∗ I denotes the image convolved with

a Gaussian smoothing filter whose bandwidth is σ.

To numerically implement the snakes, one usually tries to solve the equiva-

lent Euler equation iteratively Ct(s, t) = αC ′′(s, t)− βC(4)(s, t)−∇Eimage,

C(s, t) = C0(s)
, (44)
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Figure 42: All the 27 GVF snake segmentation results (the red curves) of the
corpus callosum data. The background images are cut from the original images
for better illustration.

where we call ∇Eimage the external force. Gradient vector flow (GVF) snakes

(Xu and Prince, 1997) introduce a new external force f , which minimizes

E =

∫ ∫
µ(‖∇v1‖2 + ‖∇v2‖2) + ‖∇f‖2‖v −∇f‖2dxdy

where v = [v1(x, y), v2(x, y)]τ = ∇Eimage. GVF snakes distinguish from tradi-

tional snakes by being able to converge to the concave parts of the boundaries

and capture the detailed information of boundaries (as shown in Figure 42).

But the tradeoff of capturing the detailed information of the corpus callosum

boundaries is that the snakes are in general noisy. Therefore, a better shape

descriptor of the snakes is needed.
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Figure 43: The plot shows the difference of the estimation of arc-length of a
curve using curvature-based method and the method using the distance between
two points.

5.1.2 WFS representation of the snakes

The curvature calculation using (18) is independent of any parametrization.

Thus we are able to use the curvature information to improve the arc-length

parametrization procedure, especially when the data is sparse. In Figure 43, let

k(pi) be the curvature at pi. Since the radius of the circle going through pi and

pi−1 is 1/k(pi), by definition,

θ = 2 arcsin(
k(pi)‖pi − pi−1‖

2
).

Therefore, the arc-length between pi and pi−1 is [1/k(pi)]θ. Clearly

‖pi − pi−1‖ <
1

k(pi)
θ

=
2

k(pi)
· arcsin(

k(pi)‖pi − pi−1‖
2

).

Therefore, the arc-length parametrization defined in (17) underestimates the

true parameters. By using the curvature information, we design an arc-length
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Figure 44: Left, simulated CC boundaries; Right, the comparison of two
parametrization results versus true parametrization where the “simple para”
stands for the simple parametrization procedure by simply adding the distances
between points.

parametrization method as

si = si +
2

k(pi)
· arcsin(

k(pi)‖pi − pi−1‖
2

), i = 1, 2, · · · , n,

where s0 = 0. This method approximates the length of the curve between pi

and pi−1 using the arc-length between the two points. The method defined in

(17) calculates the length of the straight line between pi and pi−1. Clearly our

method gives a better parametrization.

The curvature computation using the first and the second derivatives is

not applicable here since computing the first and second derivatives requires

a pre-specified parametrization. This curvature-based parametrization gives a

more accurate estimation of arc-lengths than the classic method since it uses
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higher order information of the curves (it is equivalent to second order Taylor

expansion of the plane curves (Wang, 2003)). This parametrization has an order

of convergence o(h2), while the simple classic parametrization method defined in

(17) only has an order of convergence o(h), where h is defined as the maximum

of the distances between two neighboring points. Figure 44 shows that the

simple parametrization underestimates the arc-lengths, and our method gives a

better parametrization (closer to the ground truth).

In practice, the GVF snakes result in noisy and irregularly-spaced closed

curves. For example, GVF snakes (Xu and Prince, 1997) allow elastic evolution

of curves, which makes the obtained snakes irregularly-spaced. To capture the

detailed information of the boundaries of the objects, the snakes become noisy

when trying to fit the uneven boundaries. From Figure 19, we know that the

curvature functions from noisy and irregularly-spaced curves are also noisy. So

it is natural to find their smooth representations of closed curves using WFS.

Other smoothing methods might not be applicable. For example, smoothing

splines, or local polynomial regression give smooth representations, but these

representations are not necessarily periodic (the curvature functions of closed

curves are periodic).

In Chapter 2, we introduced an F -statistic based method to choose the

proper degrees of WFS representations. For small-sized curve data, a more

sophisticated method can be applied. Discrepancy principle (DP) method is

widely used in the field of experimental medicine for the studies of the glucose
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regulation (Morosov, 1966; Eaton et al., 1980; Morosov, 1984; De Nicolao et al.,

1997; Hovorka et al., 1998; Sparacino et al., 2001; Toffolo et al., 2001). In

those studies, DP was used to choose the optimal tuning parameters of the

regularized deconvolution algorithms. For the curve fitting problem, DP chooses

the fitted curve such that the discrepancy of the fitting is just equal to the

average measurement error. Let the WFS representation of a curvature function

k(s) of degree L be

kL(s) = 〈1
2
, k(s)〉+

L∑
l=1

e−l2t〈cos(ls), k(s)〉 cos(ls)

+
L∑

l=1

e−l2t〈sin(ls), k(s)〉 sin(ls).

Under the assumption that the estimated errors are normally distributed, DP

chooses L such that

(k − kL)′Σ−1(k − kL) = N

where k and kL are discrete k and kL, Σ is the cross subjects sample covariance

and N is the number of observations.

The WFS representations of the noisy and irregularly-spaced hypotrochoids

in Figure 19 are calculated with degrees chosen by DP. The estimated smooth

curvature functions are shown in Figure 45. From the first three plots, DP

gives a very good approximation of true curvature functions. In the forth plots,

DP gives a slightly over-smoothed approximation. Overally speaking, DP gives

satisfactory results for the curvature approximation. Therefore, for every GVF
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Figure 45: The plots of the WFS representations of the curvature functions that
are calculated using DP. The hypotrochoids in Figure 19 are used.

snake (the obtained boundary of a corpus callosum), one first computes the

curvatures of the curves (the curvature is usually noisy). Then the WFS repre-

sentation of its curvature function is computed using DP as shown in Figure 46.

5.1.3 Classification using decision trees

From Figure 42, we see that the snakes are different in locations, sizes and

orientations. The snakes are also noisy. In Chapter 2, it is shown that weighted

Fourier series is a good shape descriptor. A curvature-based method aligns all

the snakes nicely. After the alignment, every snake is represented by a weighted
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Figure 46: An example of the extracted GVF snake and its corresponding cur-
vature functions.

Fourier series of their curvatures. Therefore, the coefficients of the weighted

Fourier series give a multivariate representation of the original snakes.

Decision trees (Breiman et al., 1984) contain a binary question about certain

features at each node in the tree. The leaves of the tree contain the best pre-

diction based on a training data. The basic algorithm is given a set of samples

to find the best “splits” that minimize certain cost function. The interpreta-

tion of the results summarized in a tree is straightforward. Tree methods are

nonparametric and nonlinear. Therefore, there are very few assumptions about

the data. Another advantage of decision tree methods is that they are usually

very flexible on the boundaries. For example, Figure 47 shows why the decision

trees are better than linear discriminant analysis (LDA).

Decision-tree-based classification techniques (Loh and Shih, 1997; Loh, 2002;
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Figure 47: Left: the classification result using a decision tree algorithm; right:
the classification result using LDA. The solid lines are the boundaries of two
classes. The plots show that decision trees are more flexible on the boundaries
than LDA.

Kim and Loh, 2001) were applied to determine if it is possible to differentiate

autism purely based on the shapes of CC curves. The following decision tree

packages are used: Classification Rule with Unbiased Interaction Selection and

Estimation (CRUISE) (Kim and Loh, 2001); Generalized, Unbiased, Interaction

Detection and Estimation (GUIDE) (Loh and Shih, 1997); Quick, Unbiased and

Efficient Statistical Tree (QUEST) (Loh, 2002). LDA is also used for method

comparison.

CRUISE implemented two univariate split methods and one linear combi-

nation split method to construct the classification trees with multi-way splits.

It is a much-improved descendant of an older algorithm called FACT (Loh and

Vanichsetaku, 1988). GUIDE was specifically designed to eliminate variable
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Methods LDA CRUISE GUIDE QUEST
Misclassification rate 0.25 0.22 0.15 0.37

Table 4: The automated autism diagnosis results using LDA and decision tree
methods: CRUISE, GUIDE and QUEST.

selection bias, which can undermine the reliability of inferences from a tree

structure. GUIDE controls bias by employing chi-square analysis of residuals

and bootstrap calibration of significance probabilities. In this way, GUIDE al-

lows fast computation, natural extension to data sets with categorical variables,

and automated detection of local interactions between variables. QUEST was

designed to overcome the problem with classification trees based on exhaustive

search algorithms, which tend to be biased towards selecting variables that af-

ford more splits. Each decision tree algorithm has its strength and weakness.

From the study of autism, we find that GUIDE gives the best classification

results.

30 different combinations of training sets and test sets are used in this ex-

periment. As shown in Table 4, with a small sample size of 27 subjects, we

still manage to achieve an impressive 15% average misclassification rate (85%

average correct diagnostic rate). The results are consistent with those of two

previous structural imaging studies of autism in corpus callosum (Chung et al.,

2004) and (Alexander et al., 2007). With the additional social and behavioral

measurements, the correct diagnostic rate might be further improved.



126

5.2 Autism detection in amygdala

In this section, we show a general procedure of detecting autism using weighted

Fourier analysis of amygdala images based on the procedure described in Chung

(2006a) and Chung et al. (2006b, 2008a).

5.2.1 Parametrization

High resolution magnetic resonance images (MRI) were obtained using a 3-Telsa

scanner with a quadrature head coil at the Waisman Laboratory for Brain Imag-

ing and Behavior at the University of Wisconsin, Madison. The details on image

acquisition parameters are given in Nacewicz et al. (2006); Chung et al. (2008b).

MRIs are reoriented to pathological plane (Convit et al., 1999) for optimal com-

parison with anatomical atlases. Manual segmentation was done by an expert

and the reliability of the manual segmentation was validated by two raters on 10

amygdalae resulting in intraclass correlation of 0.95. Nacewicz et al. (2006) eval-

uated amygdala volume in individuals with autism spectrum disorders and its

relationship to laboratory measures of social behavior to examine the variation

in amygdala related to the autism symptom severity. The original segmentation

results were saved in the binary format. We first apply Marching Cubes method

(Lorensen and Cline, 1987; Styner et al., 2006) to extract amygdala surfaces and

their triangulations as shown in Figure 48.

As shown in Chapter 2, a good parametrization of a surface is crucial to the

estimation of WFS using iterative regression methods, such IRF and AIR. A
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Figure 48: The results of Marching Cubes amygdala boundary extraction.

parametrization of a surface can be viewed as a one-to-one mapping from the

surface to certain domain, for example, a unit sphere. Parameterizations have

many applications in sciences and engineering, including scattered data fitting

(Eck et al., 1995), re-parametrization of spline surfaces (Duren and Hengartner,

1997), and texture mapping (Levy and Mallet, 1998; Zigelman et al., 2001). The

most important, parametrization is the foundation for mathematical modeling

of surfaces (Brechbuehler et al., 1995; Lee et al., 2002; Gotsman et al., 2003;

Styner et al., 2006). After a proper surface parametrization procedure, the

amygdala surfaces can be described as L2 functions on the unit sphere, and

thus weighted Fourier analysis can be applied.

Parameterizations almost always introduce distortion in either angles or ar-

eas and a good parametrization in applications is the one which minimizes

these distortions in some sense. The parametrization problem is in general a

constrained optimization problem. The optimal parametrization ((θ∗, φ∗)) is
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Figure 49: The process of area-preserving parametrization. the first one is a
selected amygdala surface. The second surface is the triangular mesh on the
unit sphere, which is the initial parametrization that preserves the topology and
the connection of the surface.

given by

(θ∗, φ∗) = arg min
(θ,φ)

M((θ, φ)) subject to V((θ, φ)) ≤ 0

where M is the distortion function and V is the validation function.

We use an area-preserving parametrization proposed in Brechbuehler et al.

(1995) and Styner et al. (2006), which maps every triangle to a triangle in pa-

rameter space with a proportional area and maps every quadrilateral to spheri-

cal quadrilateral (minimal distortion), and keeps the connections and topology

of triangulation (validation). For amygdala surface parametrization, we use an

area-preserving parametrization package “ShapeTool” (Styner et al., 2006). The

iterative area-preserving parametrization results are shown in Figure 49.

Optimal WFS degrees of closed surfaces (as shown in Figure 50) are chosen

by DP since the size of the amygdala surface is relatively small. Then all the

surfaces are represented by weighted Fourier series. They are properly aligned
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Figure 50: WFS representation of different degrees with t=0.0001. DP choose
the optimal degree =15.

by the curvature-based registration method as specified in Chapter 3. The affine

aligned amygdalae are shown in Figure 51.

5.2.2 Multiple comparison using random field theory

The studies investigating the development of the corpus callosum in autism have

provided mixed results (Alexander et al., 2007). The investigations into the

amygdala volumetry are not consistent either (Aylward et al., 1999; Haznedar

et al., 2000; Sparks et al., 2002; Nacewicz et al., 2006). Imaging studies (Baron-

Cohen et al., 1999; Pierce et al., 2001; Dalton et al., 2005b) have found dif-

ference in amygdala activation to faces in individuals with autism. Nacewicz

et al. (2006) examined relations between amygdala volumes and quantitative

measures of faces processing and gaze fixation. They reported the first rela-

tionship between amygdala structure and current and past measures of social

impairment in autism. In this section, we are going to detect and localize the

shape difference between the autistic and normal amygdala surfaces.

Suppose S1 and S2 are the mean surfaces of the autistic amygdala surfaces
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Right Autistic

Left Autistic

Right Control

Left Control

Figure 51: Registered amygdala surface using curvature-based method.



131

{Sj
1}m

j=1 and normal amygdala surfaces {Sj
2}n

j=1. To detect the shape difference

between autistic amygdalae and controlled amygdalae, we are interested in the

following hypothesis test:

H0 : S1 = S2;

H1 : ∃pi such that S1(pi) 6= S2(pi).

To compare surfaces, we first characterize the random variable of the differ-

ence between two multivariate random variables for every point on the surface.

In this study, Hotelling’s two-sample T 2 statistic is used to model the difference

in mean between two multivariate variables (Worsley, 1996; Cao and Worsley,

1999). It is a generalized version of t-statistic. Suppose we have two multivari-

ate samples x1, x2, · · · , xm and y1, y2, · · · , yn in R3. Hotelling’s two-sample T 2

statistic is defined as

T 2 =
mn(x̄− ȳ)′Σ−1(x̄− ȳ)

m + n
.

Hotelling’s T 2-statistic is essentially an F -statistic

m + n− p− 1

(m + n− 2)p
T 2 ∼ Fp,m+n−p−1,

where p is the dimension of the samples.

The maximum max T 2 of all T 2 over a search region (usually it is the entire

surface) is used to test for the local differences in mean at an unknown location

on the surface (Cao and Worsley, 1999). We want to choose a threshold Z0 to

exclude false positives with high probability (0.95), i.e., a small p-value

P (max T 2 > Z0) = 0.05.



132

We need to figure out how to compute the distribution of max T 2. Assuming

all points are independent and using Bonferroni correction to approximate the

distribution of max T , we have

P (T 2 > Z0) ≈
α

N
,

where α is the significance level (0.05 for this case) and N is the number of

points on the surface. But Bonferroni correction is usually too conservative,

especially when the number of points N is large. Most image surfaces are locally

correlated. Therefore the assumption of independence can not be applied.

There is no exact result for the null distribution of max T 2 (Cao and Worsley,

1999; Worsley, 2001; Taylor and Worsley, 2007). But for a high threshold Z0,

we can use the random field theory to approximate the probability that max T 2

exceeds Z0 using expected Euler Characteristic (EC) (Worsley, 1996; Cao and

Worsley, 1999). The expected EC leads directly to the expected number of

clusters above the given threshold, which can be used to approximate the p-

value P (T 2 > Z0).

It is important to find an appropriate representation for the EC at every

point of the surface. In that way, one writes the EC in locally defined terms of

certain random field. This representation comes from Morse theory (Worsley

et al., 1995). The expected EC becomes the expectation of the determinant of

the second derivatives of the random field. Worsley (1996); Cao and Worsley
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(1999) showed that, in probability one, the distribution of max T 2

P (max T 2 > z) ≈
D∑

d=0

Reselsd · ECd(z),

where D is number of maximal dimension in the search region, ECd is the

d-dimensional EC density, and Reselsd is the number of d-dimensional resels.

Resel is a measure of the “resolution size” in the statistical map,

Reselsd =
V

FWHMd
.

In Chpater 2, we showed how to calculate FWHM of heat kernel numerically.

By using the formulas of Hotelling’s T 2 field in Cao and Worsley (1999), we have

P (max T 2 > t) ≈ 2

∫ ∞

t

(ρ0(t) +
Area

FWHM2 ·
(4 log 2)

1
2

(2π)
1
2

·ρ0(t) ·
(n− 1)mt− n(m− 1)

m(1 + mt)
)dt,

where ρ0 is the density function of Fm,n-distribution. For bandwidth t = 0.01

and FWHM=0.6262, the density function of max T 2 for the amygdala surfaces

and the 0.05 significant threshold are shown in Figure 52.

Since we can calculate Hoteling’s T 2 at each point, then using the distri-

bution of max T 2, we have the corrected p-value at each point of the surfaces.

Figure 53 shows the multiple comparison results based on the distribution as

shown in Figure 52. It is very interesting to find out that there is no significant

difference in left amygdala between autistic and control groups. There are no

estimated T 2 values that are larger than the 0.05 threshold (≈ 8.5). However,

there is significant difference on right amygdala between autistic and control
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Figure 52: The density function and its 0.05 significant threshold with t=0.01
and WFS degree =15, FWHM =0.6262 and Hotelling’s T 2-distribution with
degree of freedom (3, 26).

groups since the largest T 2 is larger than 12 and the 0.05 threshold is about 8.5

as shown in Figure 52.

The results are quite interesting that we find significant difference in right

amygdala between the normal and autistic groups, which is consistent with the

result of a recent research in autism using the same amygdala data in Nacewicz

et al. (2006), who found significant difference in individual volumes between

autistic group and normal group in right amygdala.
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Figure 53: First row: left, the values of Hotelling’s T 2 on the mean left amyg-
dala surface; right, the corresponding p-values; second row: left, the values of
Hotelling’s T 2 on the mean right amygdala surface; right, the corresponding
p-values.

5.3 Mandible surface modeling using fast weighted

Fourier analysis

The oral and pharyngeal cavities and structures undergo changes in size, shape,

and relative proportions during the growth process from infancy through early

childhood and adolescence, to adulthood. Acoustic theory indicates that vocal

geometry is predictive of the spectrum shape of speech sounds (Vorperian et al.,

1999). Various biomarkers from vocal tract region are extracted and measured

using MR images (Vorperian et al., 1999). We are especially interested in the

growth patterns of the soft tissue and bony vocal tract structures. Growth

curves using various models, from piecewise linear model to polynomial fittings
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Figure 54: The age distribution of the mandible data. The red points represent
female ages and the blue ones represent male ages.

were studied (Vorperian et al., 2005, 2006). A very interesting but challenging

problem is modeling the growth pattern of 3D structures, such as mandible

surfaces.

In this section, we will study the growth pattern of mandible surfaces using

the fast weighted Fourier analysis. 19 female subjects and 33 male subjects

are used for this study. The ages of the subject are nicely distributed from 13

months old to 19 years old, which cover the time from an infant to an adult.

The distribution of the ages is shown in Figure 54. The mandibles were man-

ually segmented from the original MR images by the researchers from Vocal

Tract Development Lab, Waisman Center at the University of Wisconsin at

Madison. “ShapeTool” package (Styner et al., 2006) was used to extract the
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Male

Female

Figure 55: All the registered mandible surfaces. The male and female mandible
surfaces are separated by the dashed lines.

mandible surfaces from the segmentation results. Area-preserving parametriza-

tion method in Brechbuehler et al. (1995); Styner et al. (2006) is applied. We

then use curvature-based registration to align all the mandible surfaces. Since

this study will investigate the growth patterns of the mandible surfaces, the

sizes of the mandibles are supposed to be different from an infant to an adult.

Our model needs to characterize this difference. Therefore, the surfaces are

not normalized according to their sizes during the alignment procedure. The

registered mandible surfaces are shown in Figure 55.

After registration, we apply fast weighted Fourier analysis method to mandible

surfaces to find the WFS representations. The results of fast weighted Fourier

analysis are compared with LSE results. For fast weighted Fourier analysis, we

use an average of 165×3 (for x, y, z coordinates) basis functions, while LSE uses
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an average of 324 × 3 basis functions. We also compare the plots of mandible

surfaces obtained from the two methods as shown in Figure 41. In this figure,

we show that the fast weighted Fourier analysis gives comparable results with

that using LSE.

Unlike the biomarkers used in Vorperian et al. (2005, 2006), it is not easy to

visualize the rough growth pattern and the amount of growth from the scatter

plot. We need to define new metrics and new models to represent the amount

of growth and the growth patterns.

The registered mandible surfaces are properly aligned and centered. All the

mandible surfaces are mapped to a common parameter space. we can define

a metric that measures the growth from the mandible surface of the infants

for every point in the parameter space. For every point (x, y, z), we define the

growth metric as

M((x, y, z)) =
√

(x− xm)2 + (y − ym)2 + (z − zm)2.

where (xm, ym, zm) is the coordinate of the corresponding point of 13 months old

mandible surface (the youngest we have). We are going to study the pattern of

the amount of growth using this metric. We have the ages of all subjects {ti}n
i=1,

and the metrics of all subject {Mi}n
i=1. To estimate the underlying growth

patterns of the metrics, we fit a smoothing spline f such that f minimizes the

penalized residual sum of squares as

n∑
i=1

(f(ti)−Mi)
2 + λ

∫
(f ′′(t))2dt, (45)
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Figure 56: The colormaps of mandible metric growth for females and males.
The color indicates the amount of the metric growth. The left plot shows the
colormaps of the female mandible metric growth and the right plot shows the
colormaps of the male mandible growth. The colormaps are also shown from
different view points to give the full information of the metric growth. The units
are in millimeters.

where λ is the smoothing parameter that measure the rate of exchange between

the fit to the data and the variability of f . The most common computational

techniques for smoothing splines is using an order four B-spline (de Boor, 1978)

basis function expansion with knots at the sampling points to minimize (45) with

respect to the coefficients of the expansion (Chambers and Hastie, 1992; Ramsay

and Silverman, 2002). The smoothing spline is estimated by the generalized

cross-validation method (Wahba, 1990).

The growth metrics are fitted for every point in the parameter space. This

defines a growth metric field that varies smoothly along ages. The colormaps

on the mean mandible surfaces show different growth patterns at different parts

of the mandibles as shown in Figure 56. We see similar growth patterns at most
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Figure 57: The left plot is the predicted female mandible surfaces and the
right plot is the predicted male mandible surfaces. The mandible surfaces are
predicted at age 2, 4, 6, 10, 13, and 17 years old.

parts of the mandible surfaces for females and males. From both female and

male mandible metric growth colomaps, one can see that rapid growth happens

at outer parts of the mandibles and slow growth, or contraction happens at the

inner parts of the mandible. The mandible growth also differs between genders.

For example, one can find that the front bottom part of male mandibles grows

more than the same part of female mandibles does.

We can also characterize the geometric changes of the mandibles. For ev-

ery point, we have a vector of all x-coordinates, all y-coordinates, and all z-

coordinates from all the subjects. Similar to the study of growth pattern of

metrics, by using the age information of all the surfaces, we fit cubic smoothing

splines to find the growth patterns of x’s, y’s and z’s. From the growth pattern

models, we can predict x’s, y’s and z’s at all ages and the shapes of the mandible

at all ages, which are shown in Figure 57.
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Figure 58: The observed and fitted mandible area growth patterns.

Using the WFS representations (basis functions selected by fast weighted

Fourier analysis), one can also characterize the growth curves of mandible sur-

face areas. Surface areas are calculated for every mandible surface based on

their WFS representations. The growth curves of female and male mandible

surface areas are fitted using cubic smoothing splines as shown in Figure 58.

The fitted curves show some interesting facts. By the definitions of neural and

somatic growth curves (Scammon, 1930), the growth curve of male mandible

areas seems to be a neural growth curve and that of female mandible areas

seems to follow a somatic growth curve.
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Chapter 6

Conclusions and Discussions

6.1 Summary

In this dissertation, we investigated a systematic framework of medical image

analysis using a novel shape descriptor: weighted Fourier series (WFS). WFS is

closely related to heat kernel smoothing (Chung et al., 2005; Chung, 2006b). A

special case of WFS was formulated as the solution to the heat equation on the

unit sphere with given initial conditions (Chung et al., 2006b). We introduced

WFS as the unique solution to a more general Cauchy problem, which is based

on a non-degenerate self-adjoint linear operator. We provided the theoretical

background of WFS and characterized WFS kernel as a classic integral kernel.

By Ascolli-Arzela theorem, WFS is also the solution to a special case of Sturm-

Liouville problem with initial conditions.

We validated WFS by various simulations. WFS techniques were also ap-

plied to the study of autism for automated diagnosis and detection of autistic

regions. WFS was also applied to mandible surface modeling. We concluded

that WFS has the following properties and advantages (over Fourier series)



143

• WFS is both a fitting procedure and a smoothing procedure. Fourier series

is a special case of WFS. Therefore, WFS is more flexible than Fourier

series and can be adjusted according to various situations;

• WFS reduces the Gibbs phenomenon in Fourier series approximation by

adjusting the bandwidth;

• WFS is robust for the normality assumption in its related linear models;

• It is relatively easy to compute the smoothness of the WFS kernel in the

random field theory (Worsley, 1996; Cao and Worsley, 1999).

Even though the theoretical framework of WFS is well-established, the nu-

merical implementation and computation of WFS can be troublesome for large

data, where one has to solve a large linear system. LSE provides an optimal,

unbiased and robust estimator for general linear systems. But we showed that

LSE is computationally inefficient for solving large linear systems. A stepwise

regression algorithm, IRF decomposes a large linear system to a set of small

linear systems. IRF then estimates the coefficient of WFS iteratively. It is in

general very fast. But IRF does not consider the linear dependency between

the small linear systems, which causes inaccurate estimations. We proposed an

adaptive stepwise regression method, AIR, which is based on an extra correc-

tion step of IRF by reducing the linear dependency of the small linear systems.

AIR’s computational efficiency is comparable with IRF. But it provides more

robust and accurate results.
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In previous Fourier series literature (Gerig et al., 2001, 2002; Bulow, 2004;

Gu et al., 2004; Shen and Chung, 2006), the optimal degree selection has not

been addressed. The degrees were simply selected based on a pre-specified error

bound that depends on the size of anatomical structure. For the purpose of

finding a stopping rule and model selection, we proposed a method to select the

degrees of WFS based on an F -statistic, which uses AIR estimation. We proved

that this method is more accurate than the method using an F -statistics based

on IRF estimation. We also found that this method improves the power of

the underlying hypothesis tests for model selection methods based on stepwise

regressions.

Registration plays a key role in medical image analysis. It is a necessary

step to remove the translation and orientation difference between images before

any comparison and modeling of images could be correctly made. By the funda-

mental theorem and Bonnet’s existence and uniqueness theorem (Stoker, 1969;

doCarmo, 1976; Hsiung, 1981; Rubin, 1991), curvature information is indepen-

dent of locations and rotations and gives a unique representation of a plane

curve or a surface. More importantly, this representation is given in the form of

lower dimensions than the coordinate representations. This property is crucial

to medical image analysis that usually deals with large-sized image data. This

enables us to design a curvature-based method to make the image registration

computationally more efficient. Therefore, curvature functions represent the

data in a parsimonious form and makes the image registration computationally
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more efficient.

For curve curvature estimation, we proposed a method that purely depends

on the local geometric shapes of the curve. Therefore a curve parametrization is

not necessary. It allows us to improve the curve parametrization results by using

the curvature information. Our simulations showed that our proposed curvature

estimation method is superior to the classic method in robustness and accuracy.

For curve data, we showed that we can apply a more sophisticated discrepancy

principle degree selection method. We then applied a global shift registration

method to align all the estimated curvature functions. Since the registration

is purely based on the curvature information, it is much more computationally

efficient. To further improve the alignment results, we also applied an elastic

curve warping method, which potentially can be applied to any other curve or

surface non-linear registration.

Using the curvature information to represent the surface reduces the dimen-

sionality of the surface registration. This is even more important comparing with

curve registration since surface data are usually large and complex. Using the

recurrence properties of the WFS basis, we proposed a robust and fast curvature

estimation method, which is analytically derived from the WFS representations

of the surfaces. Then a curvature-based surface alignment is proposed. Our

simulations showed it provides comparable results with Procrustes alignment

but it is computationally more efficient.

We also introduced an alternative tool to the weighted Fourier analysis: the
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fast weighted Fourier analysis, which is closely related to weighted Fourier analy-

sis but approaches the problem from a different angle by using fast Fourier trans-

forms (FFT). We first investigated the linear dependency among the Fourier ba-

sis functions. Then we designed a model selection procedure that automatically

selects the important basis functions for WFS representation. This method re-

quires fast WFS coefficient calculation. We incorporated FFT to our coefficient

estimations. We call this procedure the fast weighted Fourier analysis, which

is not only a model selection tool, but also a curve and surface modeling tool.

Our simulations showed that fast weighted Fourier analysis provides compara-

ble results with those of LASSO and Dantzig selector, but clearly outperforms

these two methods in computational efficiency.

Finally, we showed that weighted Fourier analysis can be applied to various

medical image studies. We first explored the possibility of developing an auto-

mated diagnostic tool for detecting autism based on MRI measurements. We

then developed a systematic framework of detecting and localizing the regions

on amygdala surface where the statistically significant difference exists. A fast

weighted Fourier analysis of growth patterns of mandible surfaces was also pro-

ceeded. By using a decision tree based method, with a small sample size of 27

subjects, we still managed to achieve an impressive 15% average misclassifica-

tion rate (85% average correct diagnostic rate). The result is consistent with

the results of two previous structural imaging studies of autism in corpus cal-

losum (Chung et al., 2004; Alexander et al., 2007). With the additional social



147

and behavioral measurements, the correct diagnostic rate might be improved.

The results of automated detection of autism using amygdala data are quite

interesting that we found significant difference in right amygdala between the

normal and autistic groups. This result is consistent with the result of a recent

research in autism using the same amygdala data in Nacewicz et al. (2006),

who found that the volumetric difference between the autistic normal groups in

right amygdala is larger than that in left amygdala. Nacewicz et al. (2006) also

found significant difference in volume in both left and right amygdala, whereas

our results only found significant shape different in right amygdala. Using fast

Fourier analysis, we can characterize the growth of the mandible surface in

various ways. We measured the local growth of mandible surfaces using a pre-

specified metric. We also derived the growth process of the mandible surface

using cubic smoothing splines. Mandible surface area growth curves were also

fitted based on the observed mandible surfaces.

6.2 Discussions and future works

In Chapter 2, an adaptive regression method, AIR was proposed for the estima-

tion of WFS representations. But clearly AIR has the potential to be applied

to other large linear systems. AIR carries out an orthogonalization step further

so that it is insensitive to the design matrices. Therefore, one can combine AIR

with many model selection algorithms, such as AIC, BIC, LASSO, Dantzig se-

lector and so forth. Using the same idea, one can divide a large model selection
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problem to a set of small model selection problems. The linear dependency

between those small model selection problems can be reduced by an orthog-

onalization step. Then one first performs the model selection on every small

system as a pre-screening procedure (Fan et al., 2008), then a further selection

step can be made based on the selected models of all the small systems.

In this section, we focus on the possible future works of weighted Fourier

analysis in medical images. We focus on higher dimensional weighted Fourier

analysis and curvature-based nonlinear surface registration.

6.2.1 Higher dimensional weighted Fourier analysis

As we mentioned in Chapter 5, the parametrization process is crucial to WFS

analysis since:

1. a good parametrization gives a good approximation of the one-to-one map-

ping between two topologically equivalent manifolds, such as a genus 0

surface and a 2-sphere;

2. the goodness of parametrization results is one of the most important fac-

tors of the performance of stepwise regression methods such as IRF and

AIR.

Therefore, parametrization is the foundation of WFS analysis of 2D or 3D med-

ical images, where the geometric features are topologically equivalent to S1 or

S2. Theoretically, the topology of geometric subjects that are equivalent to S3
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is much more complex. The parametrization of such subjects is essentially the

famous Poincaré conjecture.

Theorem 6.1. Every simply connected compact 3-manifold (without boundary)

is homeomorphic to a 3-sphere.

This conjecture was first proposed in Poincaré, 1904 and subsequently gener-

alized to the conjecture that every compact n-manifold is homotopy-equivalent

to the n-sphere if and only if it is homeomorphic to the n-sphere. The gener-

alized statement reduces to the original conjecture for n = 3 (Weisstein, 2002).

This is one of the Clay Mathematics Institute’s $1 million prize problems and

many mathematicians have been working on this difficult problem for years

(Weisstein, 2002; Robinson, 2003; Collins, 2004).

Nevertheless, with all the present difficulty of higher dimensional Fourier

analysis, several groups have made effort to generate the idea of Fourier analysis

to four-dimensional space. The four-dimensional version of spherical harmonics,

hyper-spherical harmonics have long been an analytical and computational tool

for an n-body quantum system (Mitchell and Littlejohn, 1997). Matheny and

Goldgof (1995) extended the method to surface harmonics defined on domains

other than the sphere and to four-dimensional spherical harmonics. These har-

monics enable us to represent shapes which cannot be represented as a global

function in spherical coordinates, but can be in other coordinate systems. Bon-

vallet et al. (2007) proposed a novel shape descriptor based on four-dimensional

hyper-spherical harmonics. Shape descriptor using hyper-spherical harmonics
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presents benefits of being insensitive to noise, orientation, scale and translation.

Therefore, a four-dimensional WFS, or weighted hyper-spherical harmon-

ics can potentially be developed accordingly. In medical image analysis, four-

dimensional weighted Fourier series may be applied to volumetric subject mod-

eling based on an appropriate parametrization. It could provide an analytical

and smooth representation of 3D volumetric subjects, such as the whole brain.

It could also be used for 3D subject registration.

6.2.2 Non-linear curvature-based registration

Affine alignment tries to map the two surfaces globally. Nonlinear registra-

tion allows the alignment of data sets that are mismatched in a nonlinear or

nonuniform manner. It is natural to use nonlinear registration to deal with

misalignment that can be caused by a physical deformation process, or can be

due to intrinsic shape differences. But usually, nonlinear registration is theo-

retically complex and computationally time-consuming. Due to the complexity

of surfaces, a global optimization can not be achieved. In general the surfaces

are not convex and thus the functionals defined on these surfaces are not con-

vex either. Therefore, affine alignment is a necessary step before non-linear

registration to improve the matching. In this section, we propose a non-linear

registration method, which optimally maps the two surfaces locally, but is also

constrained by its global patterns by penalizing the curvature mappings. The

results of the proposed methods are not convergent now. Further investigation
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and validation have to be done.

Given a template surface S0, one tries to register surface S1 using an optimal

transformation Φ∗ : L2(S2) → L2(S2), which is the solution to the following

functional

arg min
Φ

∫ 2π

0

∫ π

0

‖Φ(S1)− S0‖2 sin θdθdφ.

Even though this is very intuitive and straight forward. But this transformation

could be non-smooth (Beg et al., 2005). The optimal transformation is the

one that minimizes the cost function with proper smoothness. Therefore, we

propose a curvature-based non-linear registration method. Let C(S) denotes the

curvature field of surface S. The curvature-based registration Φ∗ is the solution

to the optimization

arg min
Φ

∫ 2π

0

∫ π

0

(‖Φ(S1)− S0‖2 + λ‖C(Φ(S1))− C(S0)‖2) sin θdθdφ. (46)

We implement the registration method in an iterative fashion. Each time,

we improve our registration in a small neighborhood of the surfaces

arg min
Φδ

∫ 2π

0

∫ π

0

(‖Φδ(S1)− S0‖2 + λ‖C(Φδ(S1))− C(S0)‖2) sin θdθdφ

where

Φδ(S1)(θ, φ) = S1(θ
′, φ′), (θ′, φ′) ∈ Bδ((θ, φ))

where Bδ((θ, φ)) is the ball with center (θ, φ) and radius t. A small δ is usually

chosen for better numerical implementation. We can show that the transforma-

tion Φ defined in (46) is a smooth transformation. First, the functional in (46)
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can be divided into two parts

Eint =

∫ 2π

0

∫ π

0

(‖Φ(S1)− S0‖2) sin θdθdφ,

Eext =

∫ 2π

0

∫ π

0

(λ‖C(Φ(S1))− C(S0)‖2) sin θdθdφ.

Then this optimization procedure becomes a deformable model. We define the

external force as

fext = −∇C(Φ(S1))(|C(Φ(S1))− C(S0)‖2))

which penalizes the smoothness of the surfaces. Then by Davatzikos (1996),

Φ is a smooth transformation which tends to preserve the relative positions of

anatomical structures.

In this section, to illustrate our procedure, we are using more complex sur-

faces: the mandible surfaces. Two mandible surfaces are given: one is the tem-

plate and the other is the surface-to-be-registered as shown in Figure 59. The

matching transformations for the “Parallel Translation” of Gaussian and mean

curvatures (Davatzikos, 1996) are shown in Figure 60. The iteration process of

the registration is shown in Figure 61.

One may also formulate the registration problem in (46) using the elastic

warping method, which is generalized from the elastic warping method from

Ramsay and Li (1997). Let the warping function h : [0, π] × [0, 2π] → [0, π] ×

[0, 2π]. This warping function has to be monotone so that the warping does not

change the topology and the connection of the surfaces. Therefore, the warping
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Figure 59: The surface-to-be-registered and its curvatures. The plots in first col-
umn are the two mandible surfaces; the plots in second column are the Gaussian
curvatures; the plots in the third columns are the mean curvatures.

Figure 60: The plots in the first columns are the rectangle meshes on the
Gaussian and mean curvature plots before registration; the plots in the sec-
ond columns are the deformed rectangle meshes after non-linear registration.
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Figure 61: The iterative registration process of mandible surface in Figure 59.

function h minimizes∫ 2π

0

∫ π

0

‖S1(h(θ, φ))− S2(θ, φ)‖2 + λ
‖4h(θ, φ)‖
‖∇h(θ, φ)‖

sin θdθdφ,

where ∇h is the gradient of h, and 4h is the Laplacian of h. The tuning

parameter can be estimated by generalized cross-validation (Wahba, 1990). For

a given λ, the penalty on 1/(∇h) makes h monotone (its first derivatives are

away from 0). The penalty on the Laplacian of h ensures the smoothness of h.

So the penalty term yields both smoothness and monotonicity of the warping

function.

The warping functions are usually constructed from a set of proper basis

functions. Thin plate splines, were introduced to geometric design by Duchon
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(1976). The theoretical details and numerical implementation can be found

in Wahba (1990). The first and second derivatives of thin plates are smooth.

The model of thin plate splines can be automatically tuned. It has closed-form

solutions for both warping and parameter estimation (Wahba, 1990). Therefore,

thin plate splines could be a good candidate for the warping functions.
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