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Abstract

Persistent homology is a recently popular multi-scale topological data analysis

framework that has many potential scientific applications, particularly in neuroscience.

The method can be effectively applied to yield patterns in nonlinear imaging data that

are otherwise undetected by existing mono-scale techniques. Among several persistent

homological features, recently proposed persistence landscape is used as a new sig-

nal detection method in one-dimensional functional data. For this purpose, weighted

Fourier series expansion is used for estimating the functional shape of the data before

the persistent landscape is obtained. We utilize the proposed method to study topo-

logical differences between electroencaphalogram (EEG) data during pre-seizure and

seizure periods in a patient diagnosed with left temporal epilepsy.
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1 Introduction

Epilepsy is a neurological disease that affects millions worldwide. The World Health Or-

ganization (WHO) figures indicate that approximately nine in one thousand people around

the world suffered from epilepsy in 1998 [WHO, 2005] (Figure 1). The Centers for Disease

Control and Prevention (CDC) have reported that an estimated one percent of adults in

the United States currently suffer from active epilepsy [Kobau et al., 2012]. Researchers are

pursuing all possible avenues to gain a better understanding of the disease and its effective

prevention. To this end, electroencaphalogram (EEG), which is an important brain imaging

modality for understanding the function of the human brain, has gained popular ground in

studying epileptic seizures. EEG are indirect measurements of neuronal activity recorded

at fixed channels on the scalp. Electrical signals thus registered are compared to ground

voltage. Many statistical methods have been developed over the past decades to study the

patterns of these nonlinear electrical signals [Jansen et al., 1981,Donoho et al., 1998,Ombao

et al., 2001]. The major aim of this study is to push the boundaries further by exploring the

topological information buried in multi-channel EEG signals and determine whether topo-

logical features of EEG can discriminate signals obtained before and during epileptic seizures

for the first time.

Algebraic topology has recently gained an unexpected ground in data analysis despite

its abstract nature. Consider a set of points S that have been sampled from a topological
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space X. We are interested in determining the extent to which the topological structure

(homology) of X can be inferred from S. The sample S can be represented as skeletal

structures called simplicial complexes that depend on some parameter λ. By varying the

parameter λ of the simplicial complexes built from S, we can obtain a filtration, which is

the collection of the nested simplicial complexes. Subsequently the filtration will yield the

so-called barcode for the respective βi, which are collections of bars with birth and death

times of ith-dimensional homology groups of the filtration as their endpoints. A long bar

in a barcode indicates a homology class that persists over a long range of parameter values

and therefore corresponds to a large scale geometric feature in X, whereas short intervals

in a barcode correspond to noise or inadequate sampling [Carlsson, 2009]. This is the basic

idea behind persistent homology, a framework originally introduced in [Edelsbrunner et al.,

2000].

Barcodes from persistent homology has already shown its power as a standalone analysis

tool for complex nonlinear data [Lee et al., 2011, Chung, 2012]. When distinct features are

present in the data structure, barcodes alone may suffice to qualitatively distinguish such

features. However, it is not straightforward to quantify or perform statistical inference on

barcodes [Chung et al., 2009,Heo et al., 2012,Chung, 2012]. A new topological entity called

persistence landscape, which builds landscape-like structures based on barcodes, was recently

proposed in [Bubenik, 2012] as an alternative way for statistical inference on barcodes.

In this paper, we explore the use of persistence landscape to study epileptic EEG data

in pre-seizure and seizure periods. The proposed application procedure consists of EEG

signal processing and subsequent topological analysis. The processing step is based on

weighted Fourier series [Chung et al., 2010], which can be shown to be equivalent to a
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wavelet transform. The amplitude of the smoothed EEG signals provide a natural ground

for one-dimensional persistent homology and hence persistence landscape. To the best of

our knowledge, this is the first application of persistent homology on EEG data.

2 Methods

We formulate the problem as extracting topological features out of smoothed functional data.

The smoothing procedure that we propose is based on weighted Fourier series expansion.

Persistent homology and corresponding persistence landscapes are then calculated for the

smoothed data.

2.1 Functional Data Estimation by Weighted Fourier Series

Neuroanatomical measurements, such as EEG signals can be modeled in the following func-

tional form:

f(p) = µ(p) + ε(p), p ∈M ⊂ Rd, (1)

where M is a compact manifold from which the measurements are obtained, µ(p) is the

underlying real-valued signal at p, f(p) is the observed value at p, and ε(p) is a white noise

at p. We can impose realistic assumptions that f comes from L2(M), the space of square

integrable functions onM equipped with the inner product 〈f, g〉 =
∫
M f(p)g(p) dλ(p) with

respect to the Lebesgue measure λ.

Given a sample {(p1, f(p1)), . . . , (pn, f(pn))}, a smoothing estimator µ̂ of the unknown

functional signal µ can be constructed as follows. Our aim is to find the estimator µ̂ in a
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functional subspace Hk ⊂ L2(M) spanned by an orthonormal basis {φj} that spans Hk:

Hk =

{
k∑
j=0

βjφj(p) : βj ∈ R

}

for some fixed k. The orthonormal basis {φi} is given as the eigefunctios of a self-adjoint

operator L defined on M, i.e. Lφj = λjφj with the eigenvalues 0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · .

Note that the usual Fourier series estimator of µ is given by the shortest distance from f to

Hk:

µ̂(p) = arg min
µ∈Hk

||f − µ||2 = arg min
µ∈Hk

∫
M
|f(p)− µ(p)|2dλ(p) =

k∑
j=0

fjφj(p),

where fj = 〈f, φj〉 are the Fourier coefficients.

A weighted version of the Fourier series estimator is used in the current study to smooth

EEG signals. It is obtained by minimizing the distance between f and Hk weighted by the

positive definite symmetric kernel

K(p, q) =
∞∑
j=0

τjφj(p)φj(q) (2)

of the operator L for some constants τj (Mercer’s Theorem [Conway, 1990]). We assume with-

out loss of generality that the kernel K is a probability distribution with
∫
MK(p, q)dλ(q) = 1

for all p ∈M. Then the estimator of µ is given by

µ̂(p) = arg min
µ∈Hk

∫
M

∫
M
K(p, q)|f(q)− µ(p)|2 dλ(q)dλ(p). (3)

The unique minimizer of (3) is

µ̂(p) =
k∑
j=0

τjfjφj, (4)

which can be shown by plugging µ(p) =
∑k

j=0 βjφj(p) into (3) and solving a constrained

positive semidefinite quadratic program in βj. The algebraic detail will not be given due
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to space limitation. The constants τj can be identified by substituting (2) into the kernel

convolution on the eigenfunction φj:

K ∗ φj(p) =

∫
M
K(p, q)φj(q) dλ(q). (5)

Since K ∗ φj(p) = τjφj(p), it is now obvious that τj and φj are the eigenvalues and eigen-

functions of the linear operator f(p)→ K ∗ f(p) respectively.

The estimator µ̂ can take an alternative form if we consider the linear diffusion-like

equation over time t under some initial condition
∂g(p,t)
∂t

= −Lg(p, t), t ≥ 0, p ∈M,

g(p, 0) = f(p),

(6)

where f(p) describes the observed functional data. The weighted Fourier series (WFS)

g(p, t) =
∞∑
j=0

e−λjtλjφj(p) (7)

is the unique solution to (6) [Chung, 2012]. It is now clear that τj = e−λjt. This shows WFS

is in fact a solution to diffusion-like partial differential equation. Further it can be shown

that WFS is in fact equivalent to diffusion wavelets [Kim et al., 2012]; hence, it effectively

reduces the Gibbs phenomenon in the Fourier series estimation of data. Figure 2 shows

an illustration of the comparison between Fourier series and WFS in a simple smoothing

context. The underlying function takes step values 1 and -1 on the intervals [0, π) and

[π, 2π] respectively. All series estimation is based on the 50 terms of finite approximation.

The weighted Fourier series with bandwidth σ = 0.02 is a much closer imitation of the

step function than the series with bandwidth σ = 0.1. The discontinuity at π and the two

end-points cause the Fourier series to overshoot, whereas the weighted Fourier series is not

affected in the same way and significantly reduces Gibbs phenomenon.
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In our analysis of EEG signals, the WFS (7) is adapted for 1D functional data. In 1D,

we take the usual 1D Laplacian as the self-adjoint operator L and subsequently Gaussian

kernel becomes the kernel K. The corresponding eigenfunctions of L are then sine and cosine

functions. Then 1D functional signal is estimated as

µ̂(x) =
k∑
j=1

2∑
i=1

e−λjσλjφji(x), (8)

with the basis functions

φj1(x) =
√

2 sin(jπx), φj2(x) =
√

2 cos(jπx), j = 1, . . . , k

and corresponding eigenvalues λj = j2π2 for j ≥ 1. The parameter σ is the bandwidth of

the weighted Fourier series that modulates the smoothness of the estimation. Note that (8)

is the diffusion wavelet transform.

2.2 Persistent Homology and Barcodes

The connectivity information of a topological space can be summarized by the so-called

homology groups and corresponding Betti numbers βi up to the dimension of the underly-

ing space. The first three Betti numbers β0, β1 and β2 counts the numbers of connected

components, tunnels and voids respectively [Hatcher, 2002].

The birth and death times of intervals in a barcode can be also represented on a planar

graph called persistent diagram. The persistent diagram of a Morse function, which has

unique critical points where the Hessian matrix is nonsingular, can be constructed based on

its critical values [Chung et al., 2009]. The construction of persistent diagrams for a one-

dimensional Morse function is presented here in a non-technical fashion; a technical account

of the topic can be found in [Edelsbrunner and Harer, 2010].
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For a one-dimensional Morse function f : X = R → R, its sublevel sets are given by

Xa = f−1(−∞, a] for fixed values a ∈ R. It is obvious that Xa1 ⊂ Xa2 for a1 ≤ a2. As a

increases, disconnected components in the sublevel sets Xa are first created and later merged

with younger components. The process can be seen as the birth and death of disconnected

components. We can represent the births and deaths of the topological components by points

on the plane. The `-th persistence diagram is denotedDgm`(f) and for an `-dimensional class

α, Dgm`(f) contains a corresponding point of the form x = (b(α), d(α)). The persistence of

the point is denoted pers(x) = d(α)− b(α).

Figure 3(a) shows a simple illustration of persistent homology on smoothed data gener-

ated by

f(x) = x2 cos(7πx) +N(0, 0.08), (9)

where x runs between 0.5 and 1.5. We denote the smoothing estimate f̂ . As we move

slightly above of a, a component is born. Another component comes into being just above

b. Similarly, a third disconnected component is born at c. However, as we move up to d, the

components born in the previous two steps are merged together. This follows from the Elder

Rule in persistent homology: older components live on at a merging junction [Edelsbrunner

and Harer, 2010]. So we pair c with d. By the same rule, the merged component is then

combined with the next youngest component in the sequence when we reach e. So b is paired

with e. At f , all the disconnected components merge into one and a is paired with f . This

pairing of birth and death of components is represented in a barcode in Figure 3(b), which

shows only the change of β0. Similarly we can plot barcodes for higher order Betti numbers

β1, β2, · · · .
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2.3 Statistical Inference on Persistence Landscapes

Our aim is to study the persistent homology of EEG signals smoothed by a weighted Fourier

series estimator µ̂. As descriptors of persistent homology, persistent diagram and its equiv-

alent barcode possess useful properties such as stability with respect to several distance

metrics. The Wasserstein distance

Wp(f, g) =

[∑
`

inf
γ`

∑
x

||x− γ`(x)||p∞

]1/p

, (10)

where f, g : X → R are two tame functions with respective persistence diagrams Dgm`(f)

and Dgm`(g), the first sum is over all dimensions `, the infimum is over all bijections γ` :

Dgm`(f) → Dgm`(g), and the second sum is over all points x in Dgm`(f), was shown

by [Cohen-Steiner and Edelsbrunner, 2010] to be stable. [Mileyko et al., 2011] showed that

the persistence diagrams under the Wasserstein metric forms a Polish space, i.e. a complete

and separable metric space. Mean and variance appropriate for the space are the Fréchet

mean and variance as defined respectively by the single element to the Fréchet mean set of P ,

{f ∈ PLp : FP(f) = V arP} and V arP = inff∈PLp FP(f), where P is a probability measure

on (PLp,B) with B = B(PLp) being the σ-algebra of Borel sets in PLp, and FP : PLp → R

is the Fréchet function defined by FP(f) =
∫
PLp ||f − g||2pP(dg).

In [Bubenik, 2012], the concept of persistence landscape was introduced to provide a

setting for the calculation of Fréchet mean and variance for persistent homology. Given

an interval in a barcode (a, b) with a ≤ b (or equivalently a birth and death pair (a, b) in

the corresponding persistence diagram), we can define the piecewise linear bump function

f(a,b) : R→ R by

f(a,b)(t) = max(min(t− a, b− t), 0). (11)
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The persistence landscape of {(ai, bi)}ni=1 is the set of functions λk : R → R, k ∈ N defined

by

λk = kth largest value of {f(ai,bi)(t)}ni=1, (12)

with λk(t) = 0 for k > n. Figure 5 illustrates the idea of persistent landscape for the

barcode associated with smoothed data generated by the function (9). Since there is overlap

between the barcode components, the right-angled isosceles triangles corresponding to the

bump function (11) may cross each other at these overlapping base values (Figure 4(b)). The

persistence landscape {λk}k=1,2,3 traces the kth outermost outline of these crossover triangles

(Figures 5(a)-5(c)). It is obvious that the landscape assumes zero value elsewhere.

After smoothing by WFS, we set out to compare the average persistence landscapes of

two smoothed data sets. The measure of difference between two persistence landscapes in

the current context is the p-persistence landscape distance

dp(M1,M2) = ||λ(M1)− λ(M2)||p, (13)

where λ(M) : N × R → R̄ is defined by λ(M)(k, t) = λk(M)(t), was also defined for any

two persistence landscapes M1 and M2. In actual analysis, we use the 2-persistence distance

between the average persistence landscapes λ̄n1 and λ̄n2 of the two subsampled data sets

d2 =

(∫ K∑
k=1

||λ̄n1(k, t)− λ̄n2(k, t)||2dt

)1/2

,

which we use (
m∑
i=1

K∑
k=1

∆ti||λ̄n1(k, ti)− λ̄n2(k, ti)||2
)1/2

to approximate, where the ti, i = 1, . . . ,m, are the synchronized intervals of the two sets of

landscapes.
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Given one sample for each smoothed data set, 10 subsamples were created by pooling

functional values at the (10+s)th, s = 1, . . . , 10, time points on the span of each data set.

Persistence landscapes for these subsamples were calculated for each set of data, so were their

average persistence landscapes. The statistical significance of observed difference between

two average persistence landscapes under the null hypothesis of

H0 : the average persistence landscapes come from identical probability distributions,

H1 : otherwise.

was determined by applying a permutation test a number of times. Permutations were run

progressively to monitor convergence.

3 Application to Epileptic EEG Data

EEG measures the electrical potentials generated by the neurons on cerebral cortex. Signals

are recorded by electrodes placed on the scalp or intracranially implanted in the patient.

A number of systematic techniques have been developed for analyzing EEG signals. A

notable parametric method for analyzing univariate EEG during an epileptic seizure was

developed in [Jansen et al., 1981]. The method fits autoregressive models to adaptively

segmented time-varying spectra and yields parametric estimates for these segments. Despite

conceptual compactness, the procedure is computationally intensive and limited. In [Donoho

et al., 1998], a model of a locally stationary process was introduced. An adaptive smoothed

and consistent estimator of the time-dependent covariance was obtained under the model.

The local stationarity idea is based on finding an interval around each time point where

the process is approximately stationary. It is the basis of the smooth localized complex
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exponential (SLEX) method proposed in [Ombao et al., 2001]. The method automatically

segments a non-stationary time series into approximately stationary blocks and selects the

span for obtaining the smoothed estimates of the time-dependent spectra and coherence.

Epilepsy induces non-stationarity in EEG recording. Our analysis of epileptic seizure

EEG signals depends on smoothing by weighted Fourier series and topological analysis by

persistent homology. We apply the WFS-based persistence landscape method to an EEG

dataset from an epileptic patient. All weighted Fourier smoothing and persistent homology

algorithms have been implemented in MATLAB (R2009b, www.mathworks.com). The pair-

ing lemma outlined in [Chung, 2012] for real-valued Morse functions was implemented to

obtain the persistence diagrams of weighted Fourier smoothed data.

3.1 Data

The dataset used in the current study was retrieved from a single female subject by the

Department of Neurology at the University of Michigan. The female subject was diagnosed

with epilepsy on the left temporal lobe. Figure 6 shows a montage of the eight channels at

which the EEG signals were sampled at a rate of 100 Hz with a total number of 32,680 time

points. Epileptic seizures start at the left temporal site T3 approximately halfway through

the recording.

Primary visualization of the eight sets of EEG signals in Figure 7 shows that the pre-

seizure period appears to be more stationary than the latter half. Highly volatile oscillations

in the seizure period also seem to concentrate in channels located near the T3 channel.
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3.2 Results

To obtain balance between computational efficiency and closeness in imitation, the com-

bination of degree k = 50 and bandwidth σ = 0.001 was fixed upon for weighted Fourier

smoothing. Figures 8 shows the effect of smoothing on the entire recording span.

Barcodes and their corresponding persistence landscapes are shown in Figures 9 (pre-

seizure), 10 (seizure), 11 (pre-seizure) and 12 (seizure). Note that there is a visual difference

between the average persistence landscapes of the pre-seizure and seizure periods at each

channel. The pre-seizure landscapes are more consistent across multiple folds in the land-

scape, whereas those obtained during the seizure period appear to be dominated by a single

fold in the landscape. This may correspond to the energy patterns before and during epilep-

tic seizure episode. The latter consists of sudden outburst of energy whereas the former

constitutes more regularity.

The raw p-value was calculated individually for the 8 channels for the observed d2 distance

between average persistence landscapes to be greater than the shuffled distance based on 2000

permutations

Channel C3 C4 Cz P3 P4 T3 T4 T5

p-value 0.247 0.251 0.235 0.25 0.239 0.0005 0.253 0.262

It identifies only one significant site T3, where the patient’s epileptic seizure originates.

Figure 13 shows plots of 20%, 15%, 10% and 5% lower percentiles of the d2 distances between

average landscapes based on 2000 permutations. It shows convergence in all cases after

approximately 500 permutations.
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4 Discussion

Weighted Fourier series is a promising approach in functional data estimation. Persistence

homology provides an extra layer of data exploration by topological means. The aim of

the study was to explore the combined power of the two tools in understanding complex

imaging data such as EEG signals. The proposed method was able to identify, completely

on its own and without prior information, the left temporal channel (T3) that displayed

statistically significant differences between pre-seizure and seizure patterns. It is remarkable

that this independent discovery is confirmed by the fact that this patient has left temporal

lobe epilepsy and that seizure episodes are often initiated in this region and captured by the

T3 channel.

For testing the significance of observed distances between average persistence landscapes,

we can also explore the option of parametric test. The d2 distance may follow a χ2 distri-

bution under the null hypothesis and the ensuing computation will be much less intensive

than the permutation procedure.
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Americas	  
19	  per	  1000 

Africa	  	  
15	  per	  1000 

Southeast	  Asia	  
7	  per	  1000 

Eastern	  Mediterranean	  
9	  per	  1000 Western	  Pacific	  

17	  per	  1000 

Europe	  
38	  per	  1000 

Figure 1: World Health Organization (WHO) figures showing estimated numbers of people

around the world suffering from epilepsy in 1998; the world atlas was created using MATLAB

(R2009b).
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Figure 2: Gibbs phenomenon (ringing artifacts) is visible in the Fourier series expansion of a

step function, whereas the weighted Fourier series approximation shows less visible artifacts.
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(a) Illustration of Persistent Homology on Smoothed Data.
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(b) Barcode.

Figure 3: Data generated by function (9) smoothed by a weighted Fourier series with il-

lustration of persistent homology and corresponding barcode showing the birth and death

times of path-connected components.
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Figure 4: A barcode and its corresponding bump function (11).
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Figure 5: Illustration of persistence landscape.
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Figure 6: EEG montage with 8 channels in accordance with the international 10-20 system;

dots correspond to recording sites; T - temporal, P - parietal, C - central; odd and even

numbers indicate left and right hemispheres respectively.
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Figure 7: EEG time series at CZ, C3/4, P3/4, T3/4/ and T5; sampling rate of 100Hz with

total time points 32,768.
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Figure 8: Smoothing by weighted Fourier series of pre-seizure and seizure EEG signals

recorded at 8 sites for approximately 3 minutes respectively; degree k = 50 and bandwidth

σ = 0.001.
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Figure 9: Observed barcodes corresponding to pre-seizure period.
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Figure 10: Observed barcodes corresponding to seizure period.
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Figure 11: Observed average persistence landscapes corresponding to pre-seizure period.

Figure 12: Observed average persistence landscapes corresponding to seizure period.
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Figure 13: Lower 20% (black), 15% (blue), 10% (red) and 5% (green) percentiles of the d2

distance between average persistence landscapes based on 2000 permutations
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