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Composite growth model
applied to human oral and
pharyngeal structures and
identifying the contribution
of growth types

Yuan Wang,1,2 Moo K Chung1,2 and Houri K Vorperian2

Abstract

The growth patterns of different anatomic structures in the human body vary in terms of growth amount

over time, growth rate and growth periods. The oral and pharyngeal structures, also known as vocal tract

structures, are housed in the craniofacial complex where the cranium/brain follows a distinct neural

growth pattern, and the face follows a distinct somatic or skeletal growth pattern. Thus, it is

reasonable to expect the oral and pharyngeal structures to follow a combined or mixed growth

pattern. Existing parametric growth models are limited in that they are mainly focused on modeling

one particular type of growth pattern. In this paper, we propose a novel composite growth model

using neural and somatic baseline curves to fit the combined growth pattern of select vocal tract

structures. The method can also determine the overall percent contribution of each of the growth types.
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1 Introduction

Growth curves of the various structures of the human anatomy are of clinical interest, where the
estimated growth curves serve as normative references against which growth is evaluated and
atypical growth is identified. Clinical growth charts established by the Center for Disease Control
and Prevention (CDC) (www.cdc.gov/growthcharts) for weight, height and head circumference
(HC) confirm the two major types of growth pattern, namely the somatic and neural growth
patterns.1 These two major growth patterns are depicted in Figure 1. Figure 1(a) displays the
growth of HC that follows a neural growth pattern. Specific characteristics of the neural growth
pattern is that there is a period of rapid postnatal growth where about 80% of the adult size is
achieved during early childhood; this is then followed by slower steady growth until adulthood.
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Figure 1(b) and (c) displays body weight and height both of which follow a somatic growth pattern
where again much like the neural growth pattern there is rapid postnatal growth. The growth
achieved during this early childhood phase, however, is less than 40% of the adult size. This is
then followed by a slower growth trend but only up to puberty where there is a second marked
accelerated growth period that tapers at about age 15 years for females and about age 18 years for
males. These two major growth patterns also characterize the growth of the head–craniofacial
complex where the cranium/brain follows a distinct neural growth pattern, and the face follows a
distinct somatic or skeletal growth curve.

While HC, weight and height follow one particular type of growth pattern, some structures may
display developmental changes that cannot be characterized by a single growth pattern. For
example, structures housed in the craniofacial complex, such as the vocal tract structures, appear
to follow the mixture of both neural and somatic growth patterns.2 Existing nonlinear human
growth models lack flexibility in describing the complex growth pattern of the vocal tract. The
empirical evidence so far suggests the vocal tract to have a composite growth model of the form

Growth ¼ Somatic GrowthþNeural Growth ð1Þ

(a) (b)

(c) (d)

Figure 1. Nellhaus head circumference and CDC height and weight growth curves for male and female between the

ages birth to 20 year old, with a schematic for the proposed growth model (3a); (a) Nellhaus head circumference, (b)

CDC weight, (c) CDC height, and (d) Proposed mixture growth model.

CDC: Center for Disease Control and Prevention
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where Somatic Growth and Neural Growth are the two baseline growth curves obtained from
existing growth charts or database. The model (1) fine-tunes to vocal tract growth pattern since
the baseline functions are based on normative growth curves known to represent somatic and neural
growth, respectively. Computational efficiency of the proposed model is guaranteed relative to
nonlinear models because it is a linear combination of known reference curves. Random effects
imposed on the linear terms in model (1) do not raise computational challenge as nonlinear terms
do. Model (1) also allows us to easily determine the contributions of neural and somatic growth by
comparing the sum of squared residual between the full model (1) and the reduced models

Growth ¼ Somatic Growth

Growth ¼ Neural Growth

based on the single component only.
The main contribution of this paper is the introduction of the data-driven composite growth

model of the form (1) and showing how the model is subsequently used to determine the
contributions of different growth types. This is the first paper that models human growth as a
composition of two different growth shapes.

2 Previous growth models

As Gasser pointed out,3 efforts in analyzing human growth curves can be broadly divided into fixed
and mixed-effects approaches. In this section, we provide a brief survey of notable models in each
class.

2.1 Fixed-effects models

The model-fitting procedure in the fixed model approach can be either parametric, fully
nonparametric or semiparametric. The parametric models are most commonly used nowadays in
studying human growth. Crude nonlinear parametric models were first introduced to fit human
growth locally. The Count model4

hðtÞ ¼ ðaþ btÞ þ c log t

and the Jenss model5

hðtÞ ¼ ðaþ btÞ � expðc� dtÞ

were both used for modeling preadolescent height growth. Shohoji and Sasaki6 used the modified
version of Count’s model:

y ¼ aþ btþ c logð1þ dtÞ

to model individual human height from early childhood to adulthood in Japan. The logistic model
for pubertal growth spurt was proposed by Marubini et al.7 for human height:

hðtÞ ¼ aþ b expð�expð�cðt� d ÞÞÞ:

Wang et al. 1977
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Preece and Baines8 made an attempt at modeling global growth in human height from birth to
adulthood by introducing a new family of mathematical functions derived from the differential
equation

dhðtÞ

dt
¼ sðtÞðh1 � hðtÞÞ

where h1 is the adult size and s(t) is a function of time that can be represented by
many functions, thus generating a family of growth curves. The most useful models thus
generated are

hðtÞ ¼ a�
2ða� hðbÞÞ

expðcðt� bÞÞ þ expðd ðt� bÞÞ
ð2aÞ

hðtÞ ¼ a�
4ða� hðbÞÞ

ðexpðcðt� bÞÞ þ expðd ðt� bÞÞð1þ expðeðt� bÞÞÞÞ
ð2bÞ

where a, b, c, d, and e are model parameters. Equations (2a) and (2b) are called the Preece and
Baines model 1 (PB1) and model 3 (PB3), respectively. PB1 was shown to be more accurate and
robust than PB3.

In an attempt to complement parametric models, Gasser et al.9 applied a nonparametric model to
a longitudinal study of human height growth:

H�i ðtj Þ ¼ HiðtiÞ þ "ij, i ¼ 1, . . . , n, j ¼ 1, . . . ,T

where H�i ðtj Þ is the height of subject i measured at age tj, Hiðtj Þ is the true height and "ij are i.i.d.
random noises with mean 0 and finite variance �2i . Growth curves for individual subjects were
acquired through kernel estimation; the nth derivative of H(t) was estimated by

Ĥ�ðtÞ ¼
1

bðTÞ�þ1

XT
j¼1

H�ðtj Þ

Z sj

sj�1

W�
t� u

bðTÞ

� �
du

where fsjg ¼ ðtj þ tjþ1Þ=2 is an interpolating sequence, b(T) is the smoothing parameter, and the
kernel W� of order ð�, kÞ satisfies certain moment conditions.

As an alternative to the classical parametric models and nonparametric models, the shape
invariant model (SIM), also known as self-modeling nonlinear regression model, was introduced
and applied to human growth data by Lawton et al.10 The semiparametric approach postulates that
a population has a common characteristic function and all the individual growth curves within the
population can be modeled by shifting and scaling the characteristic curve. The individual growth
curves can be written in the form

f ð�,�, �, �, tÞ ¼ �þ e�g
t� �

e�

� �
where g(t) represents the characteristic function of the population, � and � are the
shifting parameters, and � and � are the scale parameters. The exponentiation of � and � is
imposed to ensure the positiveness of the parameters and thus avoid identification issues. The
characteristic function g(t) can be either parametric or nonparametric. Early applications of SIM
included a nonlinear function plus a spline function for error correction used to fit a human growth
model.11

1978 Statistical Methods in Medical Research 25(5)
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2.2 Mixed-effects models

The fixed-effects model approach of fitting nonlinear curves to individual subjects and then
summarizing the parameter estimates for the population is inadequate when we consider the
within-subject dependency. Mixed-effects models provide a solution for this problem. For the
extensive survey on the mixed-effects model, please refer to Pinheiro and Bates.12 Ke and Wang13

proposed a semiparametric mixed-effects model:

yij ¼ �ð	i, f; tijÞ þ "ij, i ¼ 1, . . . , n, j ¼ 1, . . . , ni

	i ¼ Ai�þ Bibi

bi � Nð0,DÞ, "i � Nð0,RiÞ, bi? "i

where � is a known function defined in terms of the parameter vector 	i, covariate tij and unknown
function f to be estimated via smoothing spline technique; the parameter vector 	i depends on the
fixed-effects vector � (common to all subjects in the population) through the design matrix Ai and a
random-effects vector bi (specifically the ith subject) through the design matrix Bi; the covariance
matrices D and Ri are parametrized by a small number of variance components and correlation
coefficients; bi and "i ¼ ð"i1, . . . , "iniÞ

0 are mutually independent. Despite its projected flexibility in
fitting a large class of nonlinear trends, Ke and Wang’s method has computational problems that are
not easily accommodated in all cases.14 A related spline-based mixed-effects SIM model was used by
Beath15 in modeling infant growth. By the log-transformation of the response variable yij (the jth
observation of the ith subject), the model is set up to be

log yij ¼ �þ g
tj � �

e�

� �
þ "ij

where

�

�

�

0
B@

1
CA � Nð0,�Þ

with unknown covariance matrix �, and

"ij � Nð0, �2Þ

with unknown variance �2. The characteristic function g(t) is obtained through a cubic smoothing
spline with fixed boundary and internal knots, where the boundary knots were chosen to be slightly
outside the data range. The model was shown to provide better fit against a form of the Jenss
model.5

2.3 Vocal tract growth modeling

Modeling vocal tract growth is a challenge, in that a good model would require a great deal of fine-
tuning towards specific growth pattern such as the adolescent growth spurt. This requirement rules
out a number of classical parametric models confined to describe less complex growth patterns.
Polynomial curves and complicated parametric models, as well as nonparametric and
semiparametric models, would in theory provide good fits. Vorperian et al.16 modeled the growth
change of various vocal tract portions from birth to adulthood by fourth-order polynomial model.

Wang et al. 1979
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Due to great flexibility and computational simplicity, polynomial curves in practice remain good
candidates in modeling complex growth patterns such as vocal tract growth.17 However, the main
limitation of polynomial curves is downward bending in late adolescence.16

Barbier et al.18 used a double logistic model to fit the growth of the vocal tract from fetus to
adulthood. While the double logistic model provides a close imitation of the vocal tract growth
pattern, parameter estimation is nearly impossible for a highly unbalanced dataset when random
effects are incorporated. Same issues occur with efforts to apply other complex parametric models
with random effects. The much more flexible spline and kernel smoothing techniques are
computationally demanding when the dataset is large. On the other hand, the proposed
composite growth model will easily accommodates random effects even with large and
unbalanced datasets. The patterns specific to vocal tract growth would also be kept by the model
at all times.

3 Methods

The term composite growth refers to a linear combination of two different growth types. With the
proper choice of the baseline curves, it is possible to model any complex vocal tract growth. For the
current study, we use published normative HC and weight growth curves that are representative of
neural and somatic growth. The neural growth curve N(t) represented by the HC growth was
obtained by Vorperian et al.16 from a study conducted by Nellhaus,19 where gender-specific
population mean growth curves were estimated (Figure 1(a)). The somatic growth curve S(t)
represented by the sex-specific CDC weight growth curves is based upon several national health
examination survey datasets taken between the years 1963 and 19941 (Figure 1(b)).

3.1 Mixture growth model

Let G(t) represents the measurement of a vocal tract structure at age t. Consider neural N(t)
and somatic S(t) curves that characterize two different types of growth. We are interested in
modeling G as a linear combination of N and S. Figure 1(d) shows a schematic of composite
growth out of two baseline growth patterns N and S. We fit the following three models
simultaneously:

GðtÞ ¼ �0 þ �1SðtÞ þ �2NðtÞ þ "ðtÞ; ð3aÞ

GðtÞ ¼ �b0 þ �
b
1SðtÞ þ "ðtÞ; ð3bÞ

GðtÞ ¼ �c0 þ �
c
1NðtÞ þ "ðtÞ: ð3cÞ

The reduced growth models (3b) and (3c) will be used to determine the contribution of each growth
type with respect to the full growth model (3a). The error term "ðtÞ represents the Gaussian noise
Nð0, �2Þ with unknown variance �2. The mixed-effects parameters �’s are given as the sums of fixed-
effects terms �’s and random-effects terms �’s:

�0 ¼ �0 þ �0, �1 ¼ �1 þ �1, �2 ¼ �2 þ �2; ð4aÞ

�b0 ¼ �
b
0 þ �

b
0, �b1 ¼ �

b
1 þ �

b
1; ð4bÞ

�c0 ¼ �
c
0 þ �

c
0, �c1 ¼ �

c
1 þ �

c
1 ð4cÞ

1980 Statistical Methods in Medical Research 25(5)
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and the �’s are assumed to follow the distributions

�0

�1

�2

0
BB@

1
CCA � Nð0,�Þ,

�b0

�b1

 !
� Nð0,�bÞ,

�c0

�c1

 !
� Nð0,�cÞ

where �,�b,�c are unknown covariance matrices. The parameter estimation is essentially that of
linear mixed-effects models.12

Since the fixed-effects parameters �’s can be interpreted as the population averages for the
corresponding mixed-effects parameters �’s, we can construct the following formulas to quantify
the population growth type based on the respective fixed-effects residual sums of squares R2a, R2b

and R2c of the models (3a), (3b) and (3c):

PS ¼ 100� ðR2c � R2aÞ=ðR2b þ R2c � 2R2aÞ; ð5aÞ

PN ¼ 100� ðR2b � R2aÞ=ðR2b þ R2c � 2R2aÞ, ð5bÞ

where the numerators R2c � R2a and R2b � R2a represent the respective loss of information in models
(3c) and (3b) compared with model (3a) due to missing somatic and neural presence, and the
denominator R2b þ R2c � 2R2a serves to normalize the losses. Note that PSþ PN ¼ 100.
Formulas (5a) and (5b) are thus associated with natural percentage interpretation of the growth
type of a vocal tract portion.

The proposed model (3a) can be interpreted as the scaling of additive characteristic somatic and
neural functions from the shape invariant point of view. The variability of individual subjects within
the population is incorporated in the random effects of the intercept and scaling factors. The
proposed model (3a) has many advantages compared with the existing growth models.
(1) Classical models often model a single growth type, whereas the proposed approach models
the linear combination of two distinct types of growth. (2) In terms of computation, the proposed
model (3a) can be easily implemented when the sample dataset is large, as opposed to the
computationally demanding nonparametric and semiparametric mixed-effects models. (3) Since
the normative baseline curves S(t) and N(t) originate from sources independent of the dataset, the
proposed approach is less biased than estimating the baseline functions and fitting model from a
single dataset.

3.2 Simulations

For simulation studies, the baseline longitudinal data were generated using a gender-specific fourth-
degree polynomials:

yij ¼ 
0i þ 
1tij þ 
2t
2
ij þ 
3t

3
ij þ 
4t

4
ij þ "ij, i ¼ 1, . . . ,N, j ¼ 1, . . . , ni ð6Þ

where tij � Uniff0, . . . , 240g follows uniform distribution over integers between 0 and 240, and
"i ¼ ð"ij, . . . , "ijÞ � Nð0, �22IniÞ; the population coefficients are


1 ¼ 0:12, 
2 ¼ �0:0014, 
3 ¼ 0:0000081, 
4 ¼ �0:000000017 ðfemaleÞ


1 ¼ 0:12, 
2 ¼ �0:0015, 
3 ¼ 0:0000088, 
4 ¼ �0:000000016 ðmaleÞ

Wang et al. 1981

 at UNIV OF WISCONSIN-MADISON on October 17, 2016smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


and the coefficients varying between subjects follow


0i � Nð8:379, �21Þ ðfemaleÞ


0i � Nð8:603, �21Þ ðmaleÞ

These specific coefficients were obtained by fitting the model (6) to our vocal tract length
(VTL) data. The polynomial growth model was previously used to imitate population
growth patterns exhibited by the VTL from birth to adulthood.2 Based on the simulated data, we
then fitted and compared the performance of the proposed composite model to the double logistic
model.

The signals and noises are assumed to be independent, and their variances �21 and �
2
2 are specified

accordingly in the following two separate simulations

Study 1. N ¼ 20, ni � Poissonð15Þ, �1 ¼ 0:02, �2 ¼ 0:8;
Study 2. N ¼ 50, ni � Poissonð10Þ, �1 ¼ 0:3, �2 ¼ 0:3.

Data generated in Study 1 are noisier than those generated in Study 2. Figures 2 and 3 show
examples of simulated data in Study 1 and 2. One hundred simulations were run in each study
and our composite and double logistic models were fitted in each simulation. The results do not
differ greatly even if we increase the number of simulations or change the parameters in the model
indicative of robustness of our simulation framework.

Figure 2. Example of data generated in Study 1 for female and male; green solid and red/blue dashed lines indicate

population average fitted curves by double logistic model (7) and proposed model (3a), respectively.

1982 Statistical Methods in Medical Research 25(5)
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We compared the proposed model (3a, 3b, 3c) against a mixed-effects version of the
gender-specific double logistic model used by Barbier et al.18 for vocal tract growth from fetus to
adulthood

Yij ¼
Ai

1þ eBi�C
2
i
tij
þ

Di

1þ eEi�F
2
i
tij
þ "ij, i ¼ 1, . . . , 20, j ¼ 1, . . . , ni ð7Þ

where

Ai

Bi

Ci

Di

Ei

Fi

0
BBBBBBBB@

1
CCCCCCCCA
� N


A


B


C


D


E


F

0
BBBBBBBB@

1
CCCCCCCCA
,�p

0
BBBBBBBB@

1
CCCCCCCCA

and �p is an unknown covariance matrix. The optimal combinations of random effects were chosen
with respect to convergence, correlation and running time. Parameter estimation was handled by theR
package lme4.020 for the proposed model (3a) and nlme21 for the mixed-effects double logistic model.

Table 1 provides a summary of mean squared errors (MSEs) over 100 simulations in Studies 1
and 2 and their corresponding standard deviations. The MSEs show that the proposed model (3a) is
generally comparable with the mixed-effects double logistic model. The variance between MSEs is
also much larger in the double logistic case when more noise is present in the data. The small
variance of MSEs in our proposed model (3a) shows its robustness against noise in this type of
longitudinal data. Also, Figures 2 and 3 show that the proposed composite model captures the early

Figure 3. Example of data generated in Study 2 for female and male; green solid and red/blue dashed lines indicate

population average fitted curves by double logistic model (7) and proposed model (3a) respectively.

Wang et al. 1983
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development of vocal tract type of growth more closely than the double logistic model. The latter is
too sensitive to noise to model the sharp growth that characterizes early childhood development.

Note that the datasets generated in both Studies 1 and 2 were fairly balanced. The parameter
estimation for the mixed-effects double logistic models was relatively easy to handle. However, for
many highly unbalanced datasets we have attempted, the mixed-effects double logistic models often
failed to converge, whereas the proposed model (3a) converged quickly in every case. The simulation
studies suggest that the proposed model (3a) would make a better candidate in modeling unbalanced
large-scale longitudinal vocal tract data in practice.

4 Application

We applied the proposed method to model the growth of the four vocal tract portions based on
measurements secured from CT images.

4.1 Vocal tract data

Measurements were obtained from 771 CT and MRI imaging studies of individuals between birth
and 19 years of age. All measurements were made from the midsagittal plane of 419 male and 352
female scans. Some of the individuals had repeated scans and therefore the number of scans were
highly unbalanced among subjects. For example, between birth and 19 years, 229 subjects had a
single scan. Some subject has up to 10 scans.

Figure 4 displays four variables we used to assess the composite growth model proposed in this
paper. The four variables are: (a) VTL, vocal tract length, defined as the curvilinear distance along
the midline of the vocal tract starting at the level of the vocal fold (VF) to the intersection with a line
drawn tangentially to the lips (L); (b) VT-H, vocal tract-horizontal, defined as the horizontal
distance form where the VTL ends to the posterior pharyngeal wall (PPW); (c) HP-V, hyoid
posterior nasal spine-vertical, defined as the vertical distance from the posterior nasal spine
(PNS) to the anterior-inferior border of the hyoid bone (H); and (d) LP-V, larynx posterior nasal
spine-vertical, defined as the vertical distance from the PNS to the larynx at the level of the VF. The
abbreviation of the variables is consistent with that used by Vorperian et al.2

4.2 Results

The mixed-effects models based on (3a), (3b) and (3c) were fitted separately for male and female
using the lme4.0 package in R.20 All combinations of random effects (single, double and full

Table 1. Mean squared error (MSE) and its one standard deviation for the double

logistic and the proposed models (3a) for 100 simulations.

Double logistic Proposed model

Study 1

Female 0:046� 0:013 0:047� 0:009

Male 0:031� 0:012 0:043� 0:007

Study 2

Female 0:028� 0:004 0:037� 0:005

Male 0:015� 0:004 0:041� 0:003

1984 Statistical Methods in Medical Research 25(5)
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combination) were fitted based on the full fixed-effects model. The Akaike information criterion
(AIC) was used as a criterion in comparing the models.15

Table 2 displays the AICs for all the random-effects combinations of model (3a) for VTL, VT-H,
LP-V and HP-V. Chosen combinations have the smallest AICs. For instance, for VTL we should fit
random effects on the intercept and the neural growth for female, and fit random effects on the
somatic and neural growth for male. The AICs of the chosen models are set in bold face in the table.
Figures 5 to 8 show the estimated population average growth patterns for VTL, VT-H, LP-V and
HP-V. All four measurements see a sharp growth spurt between birth and approximately two years
of age followed by the second more smooth growth spurt during adolescence.

We also compared the performance of the proposed composite growth model to the existing
double logistic model. Table 3 shows the comparison between the MSEs of the double logistic model
and the chosen composite model in Table 2. Our model is in general comparable or outperforms the
mixed-effects double logistic model. In fact, the double logistic model fails to converge for the male

Table 2. AIC for mixed-effects models based on (3a); models with the smallest AIC are selected.

VTL VT-H LP-V HP-V

Random effects Female Male Female Male Female Male Female Male

None 642.83 813.10 506.57 657.98 507.85 681.29 499.05 599.04

�0 566.98 741.95 400.17 535.41 423.11 599.75 428.09 460.43

�1 587.06 733.06 416.65 546.23 429.87 571.95 434.32 457.23

�2 566.46 737.34 397.55 532.95 420.11 592.68 425.38 455.78

�0, �1 567.39 730.53 395.14 528.70 419.23 573.69 425.52 451.03

�0, �2 565.27 733.25 392.52 530.22 418.51 579.42 426.05 451.36

�1, �2 568.57 729.75 401.55 528.51 419.52 573.51 425.67 450.93

�0, �1, �2 572.44 735.75 399.91 534.51 424.78 578.01 431.51 456.93

VTL: vocal tract length; VT-H: vocal tract-horizontal; LP-V: larynx posterior nasal spine-vertical; HP-V: hyoid posterior nasal spine-

vertical; AIC: Akaike information criterion.

Figure 4. Midsagittal images displaying the anatomic landmarks used for making oral and pharyngeal measurements;

the highlighted segments illustrate the actual measurements; left to right: VTL, VT-H, LP-V, and HP-V. The landmarks

that are used to define the four variables are L, VF, PPW, PNS, and H.

VTL: vocal tract length; VT-H: vocal tract-horizontal; LP-V: larynx posterior nasal spine-vertical; HP-V: hyoid

posterior nasal spine-vertical; L: lips; VF: vocal fold; PPW: posterior pharyngeal wall; PNS: posterior nasal spine; H:

hyoid bone

Wang et al. 1985
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case of LP-V. Figure 9 shows depiction of VTL population growth trend by the double logistic
model and the proposed composite growth model. Although the double logistic model manages to
capture the overall growth trend, the sharp growth and plateau that respectively characterize early
childhood and late-teen development are not as well depicted as the proposed growth model,
particularly for the male curve.

Apart from accurate depiction of vocal tract growth trends with computational efficiency,
another key contribution of the proposed model is the direct quantification of population

Figure 6. VT-H: population growth curve (left) and rate (right) based on model (3a).

VT-H: vocal tract-horizontal

Figure 5. VTL: population growth curve (left) and rate (right) based on model (3a).

VTL: vocal tract length

1986 Statistical Methods in Medical Research 25(5)
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growth types. Different structures may have differing contributions of somatic and neural growth.2

From the residual sum of squares, we can determine the percentage contribution of the growth
types. Table 4 shows that the population somatic growth is dominant over neural growth in VTL,
LP-V and HP-V for both male and female. For VT-H, population neural growth is shown to
dominate over somatic growth for both male and female.

Figure 8. HP-V: population growth curve (left) and rate (right) based on model (3a).

HP-V: Hyoid posterior nasal spine-vertical

Figure 7. LP-V: population growth curve (left) and rate (right) based on model (3a).

LP-V: larynx posterior nasal spine-vertical

Wang et al. 1987
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Growth velocity is an important growth characteristic that can be easily computed based on a
fitted model and visualized. The population growth velocity for a vocal tract portion is
approximated from the population average of a model. At a particular age t, we estimate the
growth velocity discretely using the finite difference

GvðtÞ ¼
Ĝðtþ�tÞ � ĜðtÞ

�t
ð8Þ

Table 3. Mean squared errors (MSEs) for the mixed-effects double logistic

model (7) and mixed-effects composite growth model (3a) chosen in Table 2

for VTL, VT-H, LP-V and HP-V; NA indicates failure of convergence.

Double logistic Proposed model

Female

VTL 0.111 0.058

VT-H 0.053 0.061

LP-V 0.073 0.078

HP-V 0.083 0.086

Male

VTL 0.226 0.239

VT-H 0.097 0.094

LP-V NA 0.145

HP-V 0.092 0.091

VTL: vocal tract length; VT-H: vocal tract-horizontal; LP-V: larynx posterior nasal spine-

vertical; HP-V: hyoid posterior nasal spine-vertical.

Figure 9. Population average growth curves of VTL based on mixed-effects double logistic (7) (left) and composite

growth model (3a) (right).

VTL: vocal tract length
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where ĜðtÞ is the fitted population average ofG(t) at age t and�t is defined to be the difference between
t and the later consecutive time point tþ�t. We have taken�t ¼ 0:1 between ages 0 and 19. Figures 7
and 8 show the growth rate for structures LP-V andHP-V. The growth velocity can be used to visually
determine ages of growth spurts. For LP-V and HP-V, the growth spurt occurs earlier for females at
around age 12–13 while the growth spurt occurs later for males at around age 14.

5 Conclusion and discussion

The proposed method uses existing two normative growth curves in modeling the growth of more
complex vocal tract structures as a composition of somatic and neural growth types. Since this is an
empirical approach based on available growth curves, the resulting growth model can closely
represent documented growth trends. Compared with the traditional parametric growth models,
our method is numerically simpler to implement and computationally more efficient. All the
traditional models achieve the accuracy in depiction of finer features such as mid-growth spurts by
adding parameters and nonlinearity in the model. This adds considerable difficulty in computation for
large and highly unbalanced datasets. Algorithms fitting nonlinear models require sensible and stable
initial values, which are difficult to obtain when the model consists of several nonlinear parameters.
When random effects are added to the model, convergence might be difficult to obtain due to the
unbalanced number of observations between subjects. Our composite growth model, on the other
hand, has only linear parameters, which rarely cause divergence when fitting random effects.

The obvious limitation of the proposed model (3a), however, lies with the requirement of distinct
baseline growth curves that behave like basis functions in representing more complex growth
patterns. If a biological structure does not follow a documented combination of distinct growth
trends, our approach may not offer an accurate depiction of the growth. Neither would it be useful
when reliable reference growth curves do not exist.

One possible application and extension of the proposed model is toward the landmarked-based
morphometric study of the human maxillary complex,22 which is closely related to vocal tract
structures in terms of growth characteristics. Given the composite biological structure of the
maxillary complex, we can expect that the distances between various landmarks on the complex

Table 4. Fixed-effects residual sums of squares R2a, R2b and R2c for models (3a)–(3c), the growth type percent

contributions PS and PN, and growth type.

R2a R2b R2c PS PN Growth type

Female

VTL 121.74 175.93 227.32 66.08 33.92 Somatic/neural

VT-H 76.54 97.45 91.66 41.96 58.04 Neural/somatic

LP-V 80.56 92.57 135.67 82.11 17.89 Somatic/neural

HP-V 70.08 81.62 101.16 72.93 27.07 Somatic/neural

Male

VTL 164.29 215.87 487.27 86.23 13.77 Somatic/neural

VT-H 109.76 152.79 131.48 33.55 66.45 Neural/somatic

LP-V 117.41 121.92 277.99 97.27 2.73 Somatic/neural

HP-V 101.50 109.62 184.81 91.12 8.88 Somatic/neural

In the last column, somatic/neural indicates dominance of somatic over neural growth and vice versa.

VTL: vocal tract length; VT-H: vocal tract-horizontal; LP-V: larynx posterior nasal spine-vertical; HP-V: hyoid posterior nasal spine-

vertical.
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exhibit composite growth patterns similar to those found in the vocal tract structures. We can
therefore model the growth of the human maxillary complex by a system of our proposed
models. The fitted models could serve as normative references in medical and dental treatments
such as maxillary expansion.

Acknowledgements

We thank Dr. Meghan M. Cotter for assistance securing CDC data and Michael Kelly for helpful comments.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or

publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or

publication of this article: This work was supported, in part, by National Institute on Deafness and Other

Communication Disorders Grants R03 DC4362 (Anatomic Development of the Vocal Tract: MRI Procedures)

and R01 DC6282 (MRI and CT Studies of the Developing Vocal Tract) as well as by National Institute of

Child Health and Human Development Core Grant P-30 HD03352, awarded to the Waisman Center.

References

1. Centers for Disease Control and Prevention (CDC).
National center for health statistics clinical growth charts
2000, http://www.cdc.gov/growthcharts/ (2008, accessed
11 April 2008).

2. Vorperian HK, Wang S, Chung MK, et al. Anatomic
development of the oral and pharyngeal portions of the
vocal tract: an imaging study. J Acoust Soc Am 2009; 125:
1666–1678.

3. Gasser T and Seifert B. Semiparametric nonlinear mixed-
effects models and their applications [Comment]. J Am
Stat Assoc 2001; 96: 1272–1281.

4. Count EW. Growth patterns of human physique. Hum
Biol 1943; 15: 132–151.

5. Jenss RM and Bayley N. A mathematical method for
studying growth in children. Hum Biol 1937; 9: 556–563.

6. Shohoji T and Sasaki H. Individual growth of stature of
Japanese. Growth 1987; 51: 432–450.

7. Marubini E, Resele LF and Barghini G. A comparative
fitting of the Gompertz and logistic functions to
longitudinal height data during adolescence in girls. Hum
Biol 1971; 43: 237–252.

8. Preece MA and Baines MJ. A new family of mathematical
models describing the human growth curve. Ann Hum Biol
1978; 5: 1–24.
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