
Topological Network Analysis
of Electroencephalographic Power Maps

Yuan Wang(B), Moo K. Chung, Daniela Dentico, Antoine Lutz,
and Richard J. Davidson

University of Wisconsin, Madison, USA
yuanw@stat.wisc.edu

Abstract. Meditation practice is a non-pharmacological intervention
that provides both physical and mental benefits. It has generated much
neuroscientific interest in its effects on brain activity. Spontaneous brain
activity can be measured by electroencephalography (EEG). Spectral
powers of EEG signals are routinely mapped on a topographic layout of
channels to visualize spatial variations within a certain frequency range.
In this paper, we propose a node-based network filtration to model the
spatial distribution of an EEG topographic power map via its dynamic
local connectivity with respect to a changing scale. We compare topo-
logical features of the network filtrations between long-term meditators
and mediation-näıve practitioners to investigate if long-term meditation
practice changes power patterns in the brain.

1 Introduction

Meditation is a set of mental training regimes widely practiced for its claimed
benefits to physical and mental health. The investigation of spontaneous brain
activity during resting state or practice, is a sensitive approach to identify neuro-
plastic changes induced by meditation practice [2]. Electroencephalogram (EEG)
is an important imaging modality for exploring the neuroplastic effects of med-
itation under various experimental conditions. In these studies, spectral powers
of EEG signals are routinely mapped on a topographic layout of channels to
visualize spatial variations within a certain frequency range. Topographic dif-
ference in spectral powers indicates configuration change in the brain’s active
neuronal sources. It is thus important to establish a statistical framework for
comparing topographic power maps in the study of neuroplastic effect of long-
term meditation practice.

Statistical inference of EEG topographic power maps is typically based on
the mass univariate approach with multiple node-level testing [7]. This app-
roach does not account for the network topology in the topography of the power
map. Alternative statistical methods more commonly applied to electric poten-
tial maps include microstate analysis [1] and cluster-based inference [8]. But
microstate analysis uses a global dissimilarity index based on node-level mean
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difference and variance rather than network topology in the topography. Cluster-
based methods often require threshold selection which may result in bias and
inconsistency [5,9].

In this paper, we propose a node-based network filtration for modeling the
spatial distribution of an EEG topographic power map. Each EEG power map
is modeled as an undirected network on a triangulation of the map, with node
weights defined from denoised frequency powers. We binarize the network by
thresholding the node weights, and obtain the network filtration - a nested
sequence of binary networks - as we vary the threshold. A topological feature
of the filtration is then incorporated in a permutation test for group difference
between the maps. Simulation studies show evidence that the proposed frame-
work is robust to scaling and translation of maps and sensitive to translation in
opposite directions resulting in map spatial difference. The proposed framework
is also applied to compare the topographic power maps of long-term meditators
and meditation näıve practitioners.

The methodological contributions of this paper are: (1) we propose a node-
based network filtration for quantifying the spatial distribution of an EEG topo-
graphic power map; (2) we use the node-based network filtration to make spatial
comparison of two groups of EEG power maps.

2 Methods

Our goal is to compare spatial distribution of EEG power maps in meditators
and novices. We first briefly describe a spatial denoising procedure on a power
map. We then characterize the spatial distribution of the denoised power map
through a sequence of binary networks constructed on the map.

EEG topographic power map. Signal at each of the c observed EEG channels
v1, v2, . . . , vc is decomposed into frequency components by Fourier transform.
The strengths of the frequency components within a certain range are measured
by integrating the power spectral density (PSD). Here we estimate the PSD of the
EEG signal at each channel by Welch’s method of modified periodogram: divide
a signal into overlapping segments and then average the modified periodograms
computed on all the segments to obtain a PSD estimate with reduced variance
than the usual periodogram [10]. We denote the topographic map of the PSDs
at c EEG channels by f = (f1, . . . , fc), where the index follows the EEG channel
labels.

Spatial denoising. We then spatially denoise the topographic power map f of
each subject at a particular frequency band. We model the topography of f as
an undirected graph G = {V, E} with the node set

V = {vi : i = 1, . . . , c}

of the c EEG channels and the edge set with no orientation

E = {(vi, vj) : vi, vj ∈ TV , vi ∼ vj , i, j = 1, . . . , c},
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where TV is the Delaunay triangulation built on V and ∼ denotes neighbors in
TV . Defining the graph Laplacian L = (lij) on G by

lij =

⎧
⎨

⎩

−aij , vi �= vj and vi ∼ vj∑
k �=i aik, vi = vj

0, otherwise

with the adjacency matrix A = (aij), there are up to c unique eigenvectors
ψ1, ψ2, · · · , ψc satisfying

Lψj = γjψj (1)

with 0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γc. These eigenvectors are orthonormal, i.e., ψ′
iψj = δij

- the Kronecker’s delta. The first eigenvector is trivial: ψ1 = 1/
√

c(1, . . . , 1)′. All
other eigenvalues and eigenvectors are analytically unknown and need to be
numerically computed.

Once we obtain eigenvectors ψj satisfying (1) on the Delaunay triangulation
TV , the heat kernel estimate for the power map f is given by

f̂ = (f̂1, . . . , f̂c) = Kσ ∗ f =
c∑

j=1

e−γjσζjψj , (2)

where Kσ =
∑c

j=1 e−γjσψjψ
′
j is the discrete heat kernel and ζj = f ′ψj =

ψ′
jf , j = 1, . . . , c, are the Fourier coefficients with respect to the basis

{ψ1, . . . , ψc}. The parameter σ is the heat kernel bandwidth and it modulates
the extent of denoising.

Quantifying the spatial distribution of a power map. We define a node-weighted
network on the map through G = {V, E}, with the node weights

wi = f̂i, i = 1, . . . , c,

assumed to be unique. With respect to an arbitrary threshold λ ∈ R, we define
a binary network

Gλ = {Vλ, Eλ}
on G, where

Vλ = {vi ∈ V : wi ≤ λ}
and

Eλ = {(vi, vj) ∈ E : max(wi, wj) ≤ λ}.

Now let
λ1 = w(1) < λ2 = w(2) < · · · < λc = w(c)

be the order statistics of the unique node weights w1, w2, . . . , wc of G. Setting λ
in the order of λ1, λ2, · · · , λc yields a sequence of subsets of G:

Gλ1 ⊂ Gλ2 ⊂ · · · ⊂ Gλc
, (3)
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which we call a node-based network filtration.
Note that the filtration (3) is not affected by relabeling of the EEG channels,

since the order statistics λi = w(i), i = 1, . . . , c, remain the same regardless of
the channel labels. Each Gλ in (3) consists of clusters of nodes; as λ increases,
clusters appear and later merge with existing clusters. The pattern of changing
clusters in (3) has the following key properties.

(1) For all λi < λ < λi+1, Gλ = Gλi
, i = 1, . . . , c − 1; in other words, the filtra-

tion (3) is maximal in the sense that no more Gλ can be added to it.

(2) As λ increases from λi to λi+1, only the node v′
i+1 that corresponds to the

weight λi+1 is added in Vλi+1 .

(3) Define a local minimum (maximum) λi as

λi < λj (λi > λj),∀ v′
j ∼ v′

i,

where v′
i and v′

j are nodes that correspond to the weights λi and λj . New cluster
of nodes emerge in Gλi

at a local minimum λi and merge with other clusters at
a local maximum λi. Here we assume that we do not encounter the case where

λi < λj some v′
j ∼ v′

i and λi > λj the other v′
j ∼ v′

i.

Properties (1) and (2) hold because the λi, i = 1, . . . , c account for all the
unique node weights wi, i = 1, . . . , c. Property (3) holds for local minimum λi

because all the neighboring nodes v′
j of v′

i are not included in Gλi
, hence v′

i

emerges as a standalone cluster in Gλi
; for local maximum λi, clusters to which

the v′
j are connected are joined by v′

i in Gλi
.

We illustrate the filtration (3) on a 6-channel EEG layout in the international
10–20 system (Fig. 1). We first build up the Delaunay triangulation over the 6-
channel layout (Fig. 1). Node weights are the powers at the EEG channels. At
each filtration value λ, we include the nodes and edges with weights less than or
equal to λ. The clusters change as λ increases.

Topological permutation test. We use a topological feature to summarize the
changing connectivity in the sequence of binary networks. The 0th Betti number
β0 counts the number of clusters in a network [4]. In this paper we define the
0th Betti function at λ1 < · · · < λm as the sequence of 0th Betti numbers
(β1

0 , . . . , β
m
0 ). For instance, the 0th Betti function in Fig. 1 corresponding to

λ = −1, 0, 0.5, 1, 2, 3 is (1, 1, 2, 1, 1, 1).
Same spatial distribution implies the same node-based network filtration,

hence the same 0th Betti function. To statistically compare the spatial distri-
bution of two groups of denoised power maps, we test the null hypothesis that
there is no difference between the respective mean 0th Betti functions β̄1

0 and
β̄2
0 of the node-based network filtrations of maps in Group 1 and 2:

H0 : β̄1
0(λ) = β̄2

0(λ),H1 : β̄1
0(λ) �= β̄2

0(λ), (4)
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Fig. 1. Schematic of the filtration (3) on 6 weighted EEG channels in the international
10–20 system. (a) Large figure on left: The 6-channel layout with the corresponding
Delaunay triangulation indicated by dashed lines. Node weights are the powers at the
EEG channels. (b) Small figures on right: At each filtration value λ, we include the
nodes and edges with weights less than or equal to λ. As the λ increases, more nodes
and edges join in the filtration.

at fixed m filtration values λ1, . . . , λm. To test the null hypothesis (4), we first
compute the 	2 distance

	2(β̄1
0 , β̄

2
0) =

√
√
√
√

m∑

i=1

(β̄1
0(λi) − β̄2

0(λi))2, (5)

between the respective group means

β̄1
0 = (β̄1

0(λ1), . . . , β̄1
0(λm)) and β̄2

0 = (β̄2
0(λ1), . . . , β̄2

0(λm))

of the 0th Betti functions of the node-based network filtrations characterizing
the denoised power maps in Group 1 and 2. Then the labels of the two groups
undergo repeated random exchanges. At each label exchange, the 	2(β̄1′

0 , β̄2′
0 )

distance between the respective mean Betti functions β̄1′
0 and β̄2′

0 of the relabeled
power maps. We take the proportion of the distances 	2(β̄1′

0 , β̄2′
0 ) exceeding that

of the observed distance 	2(β̄1
0 , β̄

2
0) is taken as the p-value for the permutation

test.

3 Simulations

We use simulations to evaluate how well the proposed topological permutation
test detects difference in the spatial distribution of two groups of power maps.
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A scaled or translated map has identical filtration as the original map after
normalization. So the proposed test should stay robust under map scaling and
translation with moderate noisy perturbations. It should also be sensitive to
spatial difference between maps caused by translation in opposite directions.

We simulate two groups of noisy power maps by first defining the underlying
function z = (z1, . . . , z100) by

zi = 3(1 − xi)2e−(x2
i+y2

i ) + 3e−((xi−2)2+y2
i ), i = 1, . . . , 100, (6)

with the Cartesian coordinates (x1, y1), . . . , (x100, y100) sampled uniformly from
the four quadrants of the [−3,3] × [−3,3] grid. We then define a transformation
z′ = (z′

1, . . . , z
′
100) of z through one of the following functions:

1. (scaling)
z′
i = 5zi;

2. (translation)
z′
i = (zi + 5);

3. (translation in opposite directions)

z′
i = (zi ± 5)

(+ for 1 ≤ i ≤ 50 and − for 51 ≤ i ≤ 100), which translates two halves of the
map in opposite directions.

We add independent Gaussian noises N(0, 0.12) to z and z′ at the (xi, yi), i =
1, . . . , 100, to create two groups of power maps {z1, . . . ,z5 : zj =
(zj1, . . . , zj100)} and {z′

1, . . . ,z
′
5 : z′

j = (z′
j1, . . . , z

′
j100)}.

Under each transformation setting, this simulation procedure is repeated 500
times; for each simulation, the null hypothesis (4) is tested on the 2 groups of
5 samples through the proposed permutation test with 252 exact permutations.
We reject the null when a p-value falls below 0.05. The rejection rates are 5%,
3% and 98% in each setting. The results provide numerical evidence that the
proposed procedure for testing the difference between topographic maps stays
robust under some scaling and translation and meanwhile is sensitive to trans-
lation in opposite directions. In comparison, the maximum t-statistic test has
rejection rates of 9%, 6% and 99% in each setting. It is more sensitive than the
proposed topological inference procedure in picking up non-topological difference
between power maps.

4 Real Data Application

Data description. The aim of this application is to compare topological differ-
ence between frequency variations in the EEG signals of 24 meditation-näıve
participatns (MNPs) and 24 long-term meditators (LTMs) of Buddhist medita-
tion practices (approximately 8700 mean hours of life practice) during whole-
night non-rapid eye movement (NREM) sleep divided into 3 cycles. The EEG
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Fig. 2. Left: Filtrations of mean normalized power maps in the beta band in sleep
cycle 1 under the baseline condition. Right top: Group mean β0 functions with the
p-value from the β0 permutation test. Right bottom: The p-values of β0 and maximum
t-statistic permutation tests comparing MNPs and LTMs in the baseline session. The
p-values below the Bonferonni threshold 0.05/6 = 0.0083 corrected over 2 (frequency
bands)× 3 (sleep cycles) = 6 tests for each method are shaded in gray.

signals were recorded with a 256-channel hdEEG system (Electrical Geodesics
Inc., Eugene, OR). Signals bandpass filtered (1–50 Hz), and independent com-
ponent analysis was used to remove ocular and muscle artifacts in the signals.
More pre-processing details can be found in [3]. The participants undergo 3 ses-
sions of recording: a baseline session, and one session each after two days of
Vipassana (mindfulness) and Metta (compassion) meditations. We analyze the
baseline session for unconfounded effect of long-term meditation practice. Also,
we focus on the high-frequency bands β and γ of the EEGs since high frequency
has been shown to positively correlate with meditation experience [6].

Topological permutation test. After heat kernel denoising with a moderate band-
width σ = 0.5 for the noise level in the data, we normalize each power map by
a z-score transformation across all channels. We then compare the normalized
denoised power maps of the LTMs and MNPs in the high-frequency β (15–25 Hz)
and γ (25–40 Hz) bands by the proposed permutation test. For β band in sleep
cycle 1, the node-based network filtrations of the average normalized maps in
both groups are shown in Fig. 2 (left). The closure of clusters is distinctly faster
in the average LTM map as λ increases. Figure 2 (right top) shows the aver-
age β0 functions of LTMs and MNPs in the β band of sleep cycle 1. The LTM
function is below the MNP function throughout the range of λ values, meaning
that on average the LTMs have fewer clusters than the MNPs. This implies that
the LTM power maps having more coherent spatial distribution, as nodes with
similar powers get connected in a smaller window of λ than those with more
varied powers.
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Comparison with maximum t-statistic test. The table of p-values in Fig. 2 pro-
vides comparison between results of the proposed and maximum t-statistic per-
mutation test. The only place where the proposed test shows significant topologi-
cal difference is the β band in sleep cycle 1, whereas the maximum t-statistic test
shows significant difference between LTM and MNP in four out of six categories.
Due to sensitivity shown by the maximum t-statistic approach in simulations, it
is possible that we are getting signals from non-topological difference between
the two groups of power maps.

5 Discussion

In this paper, the spatial distribution of an EEG topographic power map is
quantified through a novel node-based network filtration. We use the network
filtration to compare the spatial distribution of EEG power maps in long-term
meditators and meditation näıve practitioners. The results show that the medi-
tators have on average fewer clusters, thus a more coherent spatial distribution,
than novices in the early stage of NREM sleep.

In EEG analysis, a general concern is that the scalp signal at each electrode
is a weighted sum of the signal generated by all cortical sources. For future
research, we will also explore an unmixing procedure such as working in source
space after applying a distributed solution and analyzing selected independent
components. It will provide deeper insight into the underlying neurophysiologi-
cal dynamics that the topological network analysis has the potential to capture.
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