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Brain networks constructed from diffusion and functional magnetic reso-
nance imaging (dMRI and fMRI) are typically investigated through graph
theoretic models. It has recently been noted that the complexity of brain
connectivity may not be sufficiently captured by single-scale models and
multi-scale models are needed. Persistent homology (PH) is an algorithm
that extracts multi-scale features in brain networks that cannot be easily de-
coded by standard graph theoretic models. It summarizes topological struc-
tures in a network through multi-scale descriptors such as persistence dia-
gram (PD). Various statistical inference procedures have been developed for
PDs. In this study, we propose a spectral permutation test on PDs through a
new scale-space representation, where the upper-triangular domain of PDs is
represented using a finite number of Fourier coefficients with respect to the
Laplace-Beltrami (LB) eigenfunction expansion of the domain. The scale-
space representation provides a powerful vectorized algebraic representa-
tion for comparisons of PDs at the same coordinates, foregoing the need for
matching across PDs due to their arbitrary point locations. We evaluate the
empirical performance of the proposed spectral permutation test in detecting
an innate shape with a hole in a two-dimensional image. The test is found
to be sensitive in detecting the topological structure under noisy perturba-
tions. It is also applied to compare diffusion and rest-state functional brain
networks at baseline and first treatment visits within two types of post-stroke
aphasia. We find that the structural connectivity in the diffusion networks
alters between visits, whereas the resting-state functional connectivity does
not.

Methods
Suppose we have a network represented by the weighted graph G = (V,w)
with the node set V = {1, . . . , p} and unique positive undirected edge weights
w = (wi j) constructed from a similarity measure such as Pearson’s correla-
tion. We define the binary network Gε = (V,wε) as a subgraph of G consist-
ing of the node set V and the binary edge weights wε defined by

wε,i j =

{
1 if wi j < ε;
0 otherwise. (1)

As we increase ε , which we call the filtration value, more edges are included
in the binary network Gε and so the size of the edge set increases. Since
edges connected in the network do not get disconnected again, we observe a
sequence of nested subgraphs

Gε0 ⊂ Gε1 ⊂ Gε2 ⊂ ·· · , (2)

for any ε0≤ ε1≤ ε2≤ ·· · . This sequence of nested subgraphs make up a Rips
filtration where two nodes with a weight wi j smaller than ε are connected,
and the birth and death of clusters and holes are tracked through the filtra-
tion. We pair the birth and death times of clusters and holes as coordinates of
scatter points on a planar graph {(ai,bi)}L

i=1, i.e., persistence diagram (PD).
PDs do not possess a natural statistical framework and requires additional
manipulation such as kernel smoothing.

Heat-kernel estimation of persistence diagram. We estimate a PD based
on a spectral representation. Let T be the upper triangular region above
y = x where the scatter points {(ai,bi)}L

i=1 are located. We constrain T at
some fixed y-coordinates so that T is bounded. The heat kernel (HK) in T
is given by

Kσ(p,q) =
∞

∑
k=0

e−λkσ
ψk(p)ψk(q) (3)

with respect to the eigenfunctions ψk of Laplace-Beltrami (LB) operator ∆

satisfying ∆ψk(p) = λkψk(p) for p ∈ T . The first eigenvalue λ0 = 0 corre-
sponds to eigenfunction ψ0 =

1√
µ(T )

, where µ(T ) is the area of triangle T

and σ is the bandwidth of the HK. Consider heat diffusion

∂h(σ , p)
∂σ

= ∆h(σ , p) (4)

with the initial condition h(σ = 0, p) = ∑
L
i=1 δ(ai,bi)(p), where δ(ai,bi) is the

Dirac-delta function at (ai,bi). The scatter points in the PD serve as the heat
sources. A unique solution to (4) is thus given by the HK expansion

h(σ , p) =
∫

T
Kσ(p,q)h(σ = 0,q) dµ(q)

=
∞

∑
k=0

e−λkσ fkψk(p), (5)

where

fk =
∫

T
h(σ = 0,q)ψk(q) dµ(q) =

L

∑
i=1

ψk(ai,bi) (6)

are the Fourier coefficients with respect to the the LB eigenfunctions. In
practice, we include a finite number of terms for PD estimation:

hK(σ , p) =
K

∑
k=0

e−λkσ fkψk(p), (7)

with sufficiently large degree K = 10000 for convergence. As σ → 0, we can
completely recover the initial scatter points. As σ → ∞, we are doing kernel
density estimation with uniform kernel on T .

Figure 1. Heat-kernel (HK) estimation of a persistence diagram (PD) with
σ = 10: PD (left) and its HK estimate (right).

Spectral permutation test on persistence diagrams. We use permutation
test to compare across PDs. We propose a spectral transposition test that per-
forms the permutation test on the spectrum of PDs. Suppose we obtain PDs
through filtrations on two groups of correlation brain networks with rsizes m
and n. The degree-K HK-estimates of the PDs {fi} and {g j} are

fi(p) =
K

∑
k=0

e−λkσ f i
kψk(p), i = 1, . . . ,m, (8)

g j(p) =
K

∑
k=0

e−λkσg j
kψk(p), j = 1, . . . ,n, (9)

where f i
k and g j

k, k = 0, . . . ,K, are the Fourier coefficients with respect to the
k-th LB eigenfunction ψk. Their functional means are

f̄(p) =
K

∑
k=0

e−λkσ f̄kψk(p), (10)

ḡ(p) =
K

∑
k=0

e−λkσ ḡkψk(p), (11)

where f̄k =
1
m ∑

m
i=1 f i

k and ḡk =
1
n ∑

n
j=1 g j

k are the mean Fourier coefficients. We
will use the L2-norm difference between the functional means ||f̄− ḡ||22 as a

test statistic for measuring the group differences. We can algebraically show

||f̄− ḡ||22 =
K

∑
k=0

e−2λkσ( f̄k− ḡk)
2. (12)

In a standard permutation test, the subject labels of the two groups are ran-
domly exchanged. Here, we consider the permutation πi j that only exchanges
the i-th and j-th subject labels between {fi, i= 1, . . . ,m} and {g j, j = 1, . . . ,n}
and keeps all the other PDs fixed, i.e.

πi j(f1, . . . , fm) = (f1, . . . ,g j, . . . , fm), (13)
πi j(g1, . . . ,gn) = (g1, . . . , fi, . . . ,gn), (14)

which we call a spectral transposition. Any permutation of the two groups
of m and n subjects is reachable by a sequence of transpositions, which has
been shown to be computationally much more efficient than the standard per-
mutation testing procedure of exchanging all labels at once. We generate the
empirical distribution for the permutation test through the spetral transposi-
tions. Over one spectral transposition πi j, we obtain the L2 distance between
the functional means of the degree-K HK-estimates based on transposed PDs:

||f̄′− ḡ′||22 =
K

∑
k=0

e−2λkσ( f̄ ′k− ḡ′k)
2, (15)

where f̄ ′k = f̄k +
1
m(g

j
k− f i

k) and ḡ′k = ḡk +
1
n( f i

k− g j
k) are the means of trans-

posed Fourier coefficients. Since we know f̄k and ḡk already, we simply
update the terms 1

m(g
j
k− f i

k) and 1
n( f i

k−g j
k) in an online fashion. The p-value

of the spectral permutation test is then calculated as the proportion of L2

distances in the empirical distribution exceeding the L2 distance between the
observed PDs. To ensure convergence, we perform 100,000 permutations in
the subsequent analysis.

Performance evaluation. We evaluate the proposed test’s power in detecting
the shape of a key, or part of the key, with a distinct hole. In each simula-
tion, two groups of five 100-point point clouds are generated: the 100 points
in each point cloud of the first group are generated randomly from the rect-
angular image or part of it above the threshold, whereas the 100 points in
each point cloud of the second group are generated randomly with a varied
percentage (90%, 95%, 100%) of points from the shape of the key. Rips
filtration is constructed on each point cloud. The proposed spectral per-
mutation test is then applied to compare the PDs of the Rips filtrations in
the two groups. When there are respectively 90%, 95%, and 100% points
sampled from the shape of the key in the second group, the spectral per-
mutation test rejects (p-value < 0.05) the null hypothesis of no group dif-
ference in 91, 100, and 100% (whole key) and 76, 88, and 93% (partial
key) of 100 simulations (corresponding means ± standard deviations of p-
values: 0.0124±0.0327, 0.0041±0.0125, 0.0008±0.0057 (whole key), and
0.0417±0.0794, 0.0200±0.0545, 0.0082±0.0217 (partial key), showing that
the test stays sensitive in detecting the group shape difference when points in
the second group are not entirely sampled from the shape of the key.

Figure 2. The 1-skeletons of Rips complexes built on 100 points randomly
sampled from the image with an innate shape of a key.

Application
Aphasia is an acquired speech-language disorder that commonly develops
after a left-hemisphere stroke. It affects an estimated one million people in
the US. Quantification of brain functional patterns in fMRI allows for an
objective assessment of aphasia impairment.

Data. Participants were recruited locally in Columbia, South Carolina, as
part of the Predicting Outcome of Language Recovery (POLAR) in Aphasia
study of post-stroke aphasia by the Center for the Study of Aphasia Recov-
ery at the University of South Carolina. The study was approved by the
Institutional Review Board and adhered to the ethics guidelines. Only partic-
ipants with a single ischemic or a hemorrhagic stroke in the left hemisphere
were included. Aphasia types were classified based on the Western Aphasia
Battery-Revised (WAB-R). Among the participants included in the study, 14
were diagnosed with anomia or anomic aphasia (a mild, fluent type of aphasia
where individuals have word retrieval failures and cannot express the words
they want to say, particularly nouns and verbs), and 28 were diagnosed with
Broca’s aphasia (type of aphasia characterized by partial loss of the ability
to produce spoken or written language, although comprehension generally
remains intact). Every participant underwent resting-state fMRI (rs-fMRI)
and diffusion MRI (dMRI) scans at a baseline and first treatment visit with a
Siemens Prisma 3T scanner with a 20-channel head coil. The preprocessing
procedures of the fMRI data include motion correction, brain extraction and
time correction. This modality is processed using a novel method developed
for stroke patients. The automated anatomical label (AAL) atlas was used
for brain parcellation. A single correlation matrix representing functional
connectivity between 90 AAL ROIs (excluding cerebellum and vermis) was
computed for each individual. Average fractional anisotropy (FA) values
were computed for AAL ROIs for each participant. A structural correlation
matrix was computed on the average FA values by leaving one participant
out in each group.

Anomia – Baseline Anomia – 1st TreatmentBroca’s – Baseline Broca’s – 1st Treatment

Figure 3. Average resting-state functional correlation matrices of the anomia
and Broca’s groups in two visits.

Topological network analysis. We construct Rips filtrations and PDs over
the individual structural and resting-state functional correlation networks
within the anomic and Broca’s groups. The HK-estimated PDs are then re-
spectively compared between the two visits using the spectral transposition
test. The test on resting-state functional networks does not detect strong dif-
ference in holes between the two visits in both anomia (p-value = 0.7048)
and Broca’s aphasia (p-value = 0.3641), which could indicate connectivity
in resting-state functional network is not yet altered by the first treatment.
On the other hand, there is significant difference between the structural net-
works in both anomia (p-value = 0.0151) and Broca’s aphasia (p-value =
0.0221), indicating changes in structural connectivity between the two visits.
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