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A B S T R A C T

Emotion regulation deficits are commonly observed in social anxiety disorder (SAD). We used manifold-learning
to learn the phase-space connectome manifold of EEG brain dynamics in twenty SAD participants and twenty
healthy controls. The purpose of the present study was to utilize manifold-learning to understand EEG brain
dynamics associated with emotion regulation processes. Our emotion regulation task (ERT) contains three con-
ditions: Neutral, Maintain and Reappraise. For all conditions and subjects, EEG connectivity data was converted
into series of temporally-consecutive connectomes and aggregated to yield this phase-space manifold. As manifold
geodesic distances encode intrinsic geometry, we visualized this space using its geodesic-informed minimum
spanning tree and compared neurophysiological dynamics across conditions and groups using the corresponding
trajectory length. Results showed that SAD participants had significantly longer trajectory lengths during Neutral
and Maintain. Further, trajectory lengths during Reappraise were significantly associated with the habitual use of
reappraisal strategies, while Maintain trajectory lengths were significantly associated with the negative affective
state during Maintain. In sum, an unsupervised connectome manifold-learning approach can reveal emotion
regulation associated phase-space features of brain dynamics.
1. Introduction

According to the National Institute of Mental Health, the lifetime
prevalence of Social Anxiety Disorder (SAD) among adults in the United
States is 12.1% (Kessler et al., 2005). Disruption in regulating emotions
has been observed among patients with SAD (Amstadter, 2008) and
individual differences in emotion regulation may relate to vulnerability
to anxiety and mood disorders (Campbell-Sills and Barlow, 2007).
While a few published studies have reported localized connectivity
abnormalities in SAD (Etkin et al., 2010; Sladky et al., 2013) during
emotion regulation, a systems-level investigation into overall brain
network dynamics as measured using electroencephalography (EEG)
has not been well explored. Here we utilize a novel manifold learning
approach that reconstructs the phase-space of brain network dynamics
hicago, IL, 60612, USA.
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while patients with SAD and healthy controls perform an emotion
regulation task (ERT).

To ensure we have a sufficient connectomes sample for our phase-
space construction procedure, we employed EEG for its high temporal
resolution and selected a well-validated emotion regulation task (Fitz-
gerald et al., 2016; Parvaz et al., 2012). Further, informed by our own
finding that in healthy individuals, ERT is sensitive to theta activity
(4–7Hz) (Xing et al., 2016) as well as findings from other groups sug-
gesting that theta connectivity is related to positive emotional states
(Aftanas and Golocheikine, 2001) and cognitive processes (Cavanagh
and Frank, 2014; Gruzelier, 2009), we tested our phase-space manifold
learning approach on dynamic theta EEG connectomics. The theta con-
nectome data was obtained using the same recording system in an
overlapping sample previously reported in (Xing et al., 2017), where we
ctober 2018
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Abbreviations

2D Two Dimensional
CPS Center prototype selector
ERQ Emotion Regulation Questionnaire
ERT Emotion Regulation Task
GDM Geodesic Distance Matrix
HAM-A Hamilton Anxiety Rating Scale
HC Healthy Control
LSAS Liebowitz Social Anxiety Scale
MST Minimum Spanning Tree
SAD Social Anxiety Disorder
SPS Spanning Prototype Selector
WPLI Weighted Phase Lag Index
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demonstrated that SAD patients had higher overall theta connectivity,
averaged over time as well as across all EEG channels, at rest.

The concept of a phase-space, as originally introduced in mathematics
and physics, is a multi-dimensional space in which all states of a dynamic
systemwere represented using a combination of a position vector and the
corresponding momentum. In the field of quantitative EEG, the closely
related term “state-space” has been used variably dependent on the
specific applications. For example, it has been used to refer to an auto-
regression based s-estimator applied to EEG time series to identify the
disconnection topography in source localized schizophrenia brain net-
works (Jalili et al., 2007), as well as to evaluate EEG signal synchroni-
zation (Carmeli et al., 2005) and to estimate the cortical connectivity of
healthy brains during movie watching (Cheung et al., 2010). Another
related approach is the Taken's embedding that seeks to find a proper
embedding dimension of a dynamical system using a time-delayed con-
struction. This approach has been used to reconstruct a strange attractor
of a system in an optimal embedding dimension by examining the
behavior of nearest neighbors (Jeong et al., 1998b). Note that the input of
the Taken's embedding is the time series of a scalar quantity and the
output is the embedding dimension or another downstream scalar
quantity (e.g., the Lyapunov exponent). While a few EEG resting state
applications have shown that such embeddings may be sensitive in
capturing the temporal dynamic changes in certain disorders (Jeong
et al., 1998b) (Jeong et al., 1998a; Stam, 2005), the Taken's embedding
nevertheless is likely only applicable during the resting-state and is
computed at each sensor location, yielding a scalar quantity for each
sensor instead of a systems-level connectome-type analysis. (Stam et al.,
1996). Furthermore, the concept of state space analysis has been used to
construct a log likelihood-based EEG time series mapping to yield a
“sleep manifold” (Hight et al., 2014).

However, in these studies, recordings from electrodes were mapped
onto a multi-dimensional space that was indexed by anatomical regions-
of-interest, which are placed with respect to anatomy and thus not with
respect to the intrinsic features of brain dynamics as captured by the
dynamic EEG connectome graphs. To explore the complex dynamics of
human brain in the connectome-level space as opposed to the sensor-
based space, our novel phase-space approach constructs a manifold
where each position p is instead a dynamic EEG connectome (i.e., any
position p in this manifold corresponds to a connectome graph which by
itself is a frame or “snapshot” of a dynamic connectome time series that is
constantly evolving as a trajectory or orbit in this space). Mathematically
a connectome graph is coded as an N by N matrix where N is the number
of sensors and each element in the matrix encodes the dynamic EEG
relationship between the tracings of the two corresponding sensors.

In order to construct connectome-level phase-space manifold, we
leveraged dissimilarity-based graph embedding (Bunke and Riesen,
2011) that allows us to embed each connectome graph “snapshot” in a
high-dimensional space. While in our case there is no clear equivalent to
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the concept of “momentum” (defined as the product of mass and veloc-
ity), we nevertheless could estimate the “velocity” of a dynamic EEG
connectome time series at any given time point, if this time series has
been preprocessed in such a way that consecutive connectome frames are
separated by a fixed known time interval and that a very large amount of
connectome “snapshots” are available, thus allowing us to estimate the
manifold “geodesic” (i.e., the shortest distance on the manifold) between
any two connectome graphs.

For the rest of the paper we used this unsupervised connectome-level
manifold learning to construct the global geometry of EEG dynamics
related to emotion processing, and to explore phase-space features during
task performance between healthy controls and a group of participants
with social anxiety disorder. As a person's temporal EEG connectome
while performing a task now corresponds to a phase-space “trajectory”,
its dynamics can be precisely characterized using intrinsic geometric
features of this phase-space. In previous applications, trajectory of the
phase space, constructed with temporal power oscillations, showed
promising results in predicting emotional state during movie-watching
(Nie et al., 2011; Wang et al., 2014). We hypothesized that SAD net-
works would exhibit abnormal features in a phase space comprising
connectomes of all study participants and all task conditions. Further-
more, we hypothesized that phase-space features such as trajectory
length per second (i.e., speed) would be associated with anxiety level,
self-reported reappraisal tendencies, and ERT-related affective state.

2. Materials and methods

2.1. Participants

All participants provided written informed consent as approved by
the local Institutional Review Board at the University of Illinois at Chi-
cago. Diagnosis was based on the Structured Clinical Interview for DSM-
IV (‘SCID-IV’ (First et al., 1995) and the clinician-administered Liebowitz
Social Anxiety Scale (”LSAS” (Liebowitz, 1987) and Hamilton Anxiety
Rating Scale (Hamilton, 1959) determined symptom severity and general
anxiety level, respectively. The Emotion Regulation Questionnaire
(‘ERQ’ (Gross and John, 2003);) assessed subjective habitual use of
reappraisal. Participants were between 18 and 55 years of age and free of
major medical or neurologic illness as confirmed by a board-certified
physician. SAD was required to be the primary diagnosis; however, co-
morbidity was permitted. All participants were free of psychotropic
medications and none were engaged in psychotherapy. Healthy control
(HC) participants were required to not have an Axis I disorder. Exclusion
criteria for all participants were current substance abuse or dependence
(within 6 months of study) or history of major psychiatric illness (e.g.,
bipolar disorder, psychotic disorder, pervasive developmental disorder).
Participants were compensated for their time.

2.2. EEG data acquisition

EEG data were collected from 20 participants with SAD and 20 HC
using the Biosemi system (Biosemi, Amsterdam, Netherlands) with an
elastic cap with 34 recording channels. Each participant underwent ERT
(Gross, 1998). Participants viewed pictures from a standardized set (Lang
et al., 1997) during continuous EEG recording. Participants were asked to
maintain their emotional state when viewing negative images (‘Main-
tain’), use a cognitive strategy to reduce negative affect when viewing
negative images (‘Reappraise’), or view neutral pictures (i.e., ‘Neutral’).
Negative and neutral images were displayed on the screen for seven
seconds in a random order. EEG data were processed according to the
method described in detail in (Xing et al., 2017). Additionally, partici-
pants also performed the same ERT during fMRI scans, during which
subjective negative affect ratings were collected. At the end of each trial,
participants were asked to rate how negative they feel on a five-point
rating scale (1¼ not negative at all, 5¼ extremely negative). Greater
Maintain and Reappraise affective ratings in generalized anxiety disorder
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patients have been reported using the same ERT task (Fitzgerald et al.,
2017).

2.3. EEG connectome

All EEG data were preprocessed using Brain Vision Analyzer (Brain
Products, Gilching Germany) by first segmenting task trials into seven-
second segments. A sliding window with a width of 0.5 s and a step
size of 0.05 s was applied to create the dynamic data. The first and last
five time points were discarded, resulting in 130-time points per session.
(The same framework was performed on a down sampled data with less
overlapping (20% overlaps). Main findings of two temporal sampling are
consistent. Results of the down sampled data are included in Appendix
C.) As functional communications between two brain regions result in
synchronized or phase-coupled EEG readouts, in this study we used the
weighted phase lag index (WPLI)(Cohen, 2014; Vinck et al., 2011),
computed between the time series of two channels to form EEG con-
nectomes (each of which is a symmetric 34-by-34 matrix). This connec-
tivity estimation approach has shown higher sensitivity and reduced the
volume conduction contaminations in detecting complex and variable
activity patterns (Lau et al., 2012). Mathematically, WPLI is defined as:

WPLIxy ¼
n�1

Pn
t¼1

��imag�Sxyt���sgn�imag�Sxyt��
n�1

Pn
t¼1

��imag�Sxyt��� (1)

Where imagðSxytÞ indicate the cross-spectral density at time t in the
complex plane xy (t is discretized and ranges from 1 to n), and sgn is the
sign function (�1; þ1 or 0).

The connectivity matrices were generated with the MATLAB toolbox
Fieldtrip (Donders Centre for Cognitive Neuroimaging, Nijmegen,
Netherlands). The final output time-dependent 34-by-34 EEG con-
nectome for an individual task of each subject is arranged as [34*34]
Fig. 1. Constructing the dynamic phase-space and visualizing the minimum spannin
This figure illustrates the basic idea of our phase-space manifold reconstruction fr
window approach. Each connectome (from all subjects and all time points), mathema
embedded in a high dimensional space (here the manifold is depicted as a Swiss rol
distance in the high dimensional space (straight arrow) is not the manifold geodesic
manifold. This distance is used to create the neighborhood graph visualized as mini
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*50*130 ([channel*channel]*frequency*time). Guided by our recently
published paper, we primarily focused on the phase-space informed by
the theta frequency band (4–7 Hz) EEG connectomes; thus, for each time
point, an averaged connectome from 4 to 7 Hz was taken to represent the
theta connectome.

2.4. Learning the phase-space manifold of EEG dynamics via non-linear
dimensionality reduction

Our approach to EEG-based connectomics was to reframe it as a
phase-space reconstruction problem. Due to its high temporal resolution,
each connectivity matrix graph samples a distinct state of this dynamical
system, with the time-dependent dynamic EEG connectivity for a
particular participant during a particular ERT condition evolving as a
trajectory in this abstract space. In order to yield sufficient data to learn
the space comprising states of ‘on-line’ emotion regulation ability, we
combined connectomes from all 40 participants (i.e., collapsing across
SAD and HC groups) at all time points, as collectively they sample this
phase-space “connectome manifold of interest”. As each participant
contributed 3 dynamic connectomes (3 ERT task conditions) each of
which having 130 time point, thus the total number of samples we have
for this connectome manifold is thus 130 * 40 * 3 ¼ 15600. To learn any
non-linearity, we employed manifold learning via nonlinear dimension-
ality reduction.

In what follows, we will describe in detail the three computational
steps (and one optional step) involved in our novel approach: Step I:
graph dissimilarity embedding, Step II: recovery of phase-space nonlin-
earity via geodesic computation, Step III: phase-space visualization via
geodesic-informed minimum spanning tree, and the (optional) prototype
graph selection (Fig. 1).
g tree.
amework. Dynamic connectomes are generated from EEG data using a sliding
tically defined as a 34 by 34 matrix, is mapped onto a point on a manifold that is
l, a 2-dimensional structure that is rolled up and embedded in 3D). þ-Thus, the
distance (curved arrow), which encodes the intrinsic geometric features of the
mum spanning tree (MST).
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2.4.1. Step I: graph dissimilarity embedding
Connectomes can be represented as a graph g ¼ ðV ; E; WÞ. In EEG

connectomes, the node set V corresponds to the recording channels, and
the weights W of the edge set E in our case are informed by WPLI con-
nectivity. Once the connectome graphs are computed, we used the graph
dissimilarity space embedding (DSE) to first embed each connectome in a
high-dimensional Euclidean space where each point corresponds to a
connectome. As will be seen below, with DSE the dimensionality of this
Euclidean space is in the same order as the number of total dynamic EEG
connectomes across all subjects (20 HC, 20 SAD), ERT conditions (3 task
senarios, neutral, maintain, reappraise), and time points (130 time
points), which was (20 þ 20)*3*130 ¼ 15600.

The graph dissimilarity embedding procedure, first proposed by Bunk
and Riesen in 2008 (Bunke and Riesen, 2008) (Bunke and Riesen, 2011;
Duin et al., 2010), is summarized as follows. Given a graph set G (the set
of all possible graphs under consideration) and n “prototype” graph ob-
servations g i 2 G (i¼ 1, 2, 3, …n) using which we will embed every
element in this graph set (see prototype graph selections in the optional
step below) and d a distance metric that can be computed between two
graphs d : g � g → ½0;∞Þ then any graph X 2 G can be represented
using φG

n : G → Rn defined as the n-dimensional vector:

φG
n ðXÞ ¼ ðdðX; g 1Þ;…dðX; g nÞ

�
(2)

This way any graph set can be vectorized by a set of n real numbers
corresponding to a point in an n-dimensional Euclidean space.

Given two connectome matrices, X and Y in G various choices of
dissimilarity metric have been proposed (for a comprehensive review,
see (Kessler et al., 2005; PW and Elzbieta, 2005)). A natural choice of

d which we adopted here, is the Frobenius norm dðX;YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij
ðXij � YijÞ2

r
where the subscript indicates the (i, j)-th element of a

matrix. Thus, we can compute a straight line Euclidean distance between
X and Y in the embedding space as follows:

��φG
n ðXÞ � φG

n ðYÞ
�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σn
k¼1ðdðX; g kÞ � dðY ; g kÞÞ2

q
: (3)

By iterating through all combinations of X and Y in G thus forming a
matrix that encodes pairwise Euclidean distance between any two EEG
connectomes, we proceed to the next step where we reconstruct phase-
space manifold properties via geodesic computation, as non-linearity
information is encoded using the geodesic distance between any two
connectome graphs (each of which is a 34 by 34 matrix).

2.4.2. Step II: recovery of phase-space nonlinearity via geodesic computation
As elegantly illustrated by the Swiss roll example in the original iso-

map paper (Tenenbaum et al., 2000), straight line distances in the
Euclidean space where a manifold is embedded is not the geodesic dis-
tance intrinsic to the manifold. (The non-linear relationship between
direct Euclidean distance and geodesic distance of ERT phase space is
presented in Fig. A2 of Appendix A) Thus, to preserve the non-linearity of
the underlying phase-space, it is crucial to first reconstruct the local
neighborhood around each point in this space to construct the manifold
geodesic distance. This is because that the Euclidean distance matrix
from Step I is computed based on d (which is used to define coordinates
in the embedding space, and not intrinsic to the manifold) and thus will
not properly inform geodesics (the shortest paths on the “manifold”
which is an intrinsic property) except in local neighborhoods. Here the
local neighborhood was constructed using the k-nearest neighbors (KNN)
procedure (k¼ 60, ~0.4% of total points, see supplementary material in
Appendix A that compared our embedding results across a range of k),
followed by computing the geodesic distances using the Dijkstra algorithm
(Dijkstra, 1959). After Step II, phase-space manifold properties are now
encoded using the corresponding geodesic distance matrix (GDM, size
15600 by 15600).
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2.5. Minimum spanning tree

To visualize this high dimensional phase-space (Fig. 1), we exploited
the geodesic-informed minimum spanning tree (MST) by adapting the
TreeVis by Qiu and Plevritis (Lee et al., 2011; Qiu and Plevritis, 2013).
Note that the phase-space is now represented by a symmetric geodesic
distance matrix GDM, where each entry encodes the geodesic distance
between any two connectomes; therefore we are able to visualize the
phase-space as a network graph (essentially, a network of networks, in
which each node is an EEG connectome).

Minimum spanning tree is an optimized graph representation of a
network. It simplifies a complex graph by reducing the cycles and
minimizing the total edge weight (Graham and Hell, 1985). MST is
theoretically advantageous in that it is a sub-network that preserves most
fundamental network properties (Tewarie et al., 2015), while simula-
tions and brain network analyses have shown that MST is able to reflect
the underlying topology of functional networks, regardless of the scale of
edge weights (Stam et al., 2014; Tewarie et al., 2015) (Boersma et al.,
2011). TreeVis orders the minimum spanning tree nodes and visualizes
them sequentially as follows. TreeVis breaks the tree into chains of nodes.
The longest chain is defined as the main chain. Chains that are directly
connected to the main chain are defined as the side chains of the main
chain. For complex tree structures, each side chain may also have its own
lower level side chains. Tree nodes are arranged in an order such that
nodes in the main chain come first, followed by nodes in the side chains
of the main chain, and then the lower level side chains. The complete
workflow of our manifold learning procedure is illustrated in Table 1
(Algorithm 1).

2.6. Optional step: selection of the prototype graphs

In this section, let us briefly discuss how to determine prototype
graphs. In our initial analyses, all the connectomes were used as pro-
totypes (thus, the number of dimensions of the Euclidean space used for
DGE is the same as the number of connectome graph matrices in the
dataset, i.e., 15600) (Borzeshi et al., 2013; Brühl et al., 2014; Bunke and
Riesen, 2011; Zhang et al., 2015). However, one can select a subset of
graphs as more representative prototypes during the graph-embedding
step (i.e., n, the number of the prototype graphs in Step I is
now< 15600). Originally proposed in the context of graph embedding
for classification (Nie et al., 2011), an appropriate choice of a
class-discriminatory prototype set should provide adequate coverage of
the whole graph domain while avoiding redundancies secondary to the
inclusion of similar graphs (Borzeshi et al., 2013). In this way, one can
obtain an efficient classifier with minimal degradation in classification
accuracy and performance.

2.6.1. The spanning prototype selector and the center prototype selector
As two concrete examples, the spanning prototype selector (Bunke and

Riesen, 2011) (SPS) was proposed such that each additional prototype
selected is the graph that is the furthest away from already selected
prototype graphs (with the first graph selected being the median graph,
defined as the graph whose sum of geodesic distances to all other graphs
is minimum); The center prototype selector (Bunke and Riesen, 2011)
(CPS), on the other hand, selected the most central graphs as prototypes,
which are recursively defined by the median graph from the remaining
graph set.

Mathematically, the median graph median ðGÞ 2 G of a graph set G is
the graph with the minimum sum of distances to all other graphs. In our
case, after reconstructing the geodesic distance of the phase-space
manifold, the median graph is informed by the GDM, where.
median ðGÞ ¼ argming i 2G

P
g j2G

GDMðg i;g jÞ:

2.6.2. The modified center prototype selector
In this study, as our overarching goal is precise manifold learning
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informed by asmany available connectome graphs as possible, we further
explored the removal of connectomes that may be considered outliers
(thus unlikely to be representative prototypes of the underlying mani-
fold), which we call the modified CPS. Similar to CPS, a median graph
was first defined as the center; then for all remaining graphs whose
geodesic distance to this center are considered outliers by the Hampel
identifier (Davies and Gather, 1993) as implemented in Matlab are
removed as prototypes. In a data set of scalars X; where X ¼ （ x1;…;

xN）: Hampel identifier recognizes x as an outlier, if jx �medianðXÞj �
threshold �MADðXÞ: The median absolute deviation (MAD) of X is
defined as MADðXÞ ¼ medianðjx1 � medianðXÞj; …; jxN � medianðXÞjÞ,
Here we used the default threshold in Matlab, which is set to 3. (For a
detailed description of examples of threshold functions, see Davies and
Gather, 1993.) With our data set, 640 graphs were removed from the
graph set (14690 graphs remaining). To more fairly compare ourmodified
CPS procedure to the standard SPS and CPS, using the latter two we
selected two sets of prototypes with the same size as our modified CPS
(14690). This framework is validated with the simulated multi-channel
data. The correct manifold structure was recovered in noise free and
noisy conditions (See details of simulation study in Appendix B.).

2.6.3. The MST prototype selector
Last, informed by the MST construction we propose one additional

approach to prototype selection which we termed the MST prototype
selector. Here, connectome graphs making up the main chain of the MST
are defined as the primary prototypes; then the prototype set can be
expanded by including connectome graphs from the subsequent lower-
level chains. Fig. 7 demonstrated levels of prototypes selected by MST
selectors (up to second-level chains).
2.7. Trajectory length

The trajectory length of a participant's brain dynamics in a task
condition was estimated by adding up the geodesic distances between
consecutive time-dependent EEG connectomes in this phase-space. Let
Ct¼1; Ct¼2;…; Ct¼130 2 ℝ34*34 denote the dynamic 130-time point EEG
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connectome time series of a specific task condition for an individual, then
the corresponding trajectory length (Ltrajectory) is defined as:

Ltrajectory ¼
X130
t¼1

GDMðCtþ1;CtÞ (4)

We used a repeated measures ANOVA to detect significant task ef-
fects, group effects, and task� group interactions for trajectory length in
all 3 condition segments of the ERT. Two-tailed Pearson's correlations
were calculated to evaluate relationships between these lengths and
symptom measures, affective state, and self-reported reappraisal
tendencies.

3. Results

Clinical and demographic data in Table 2 demonstrate that there were
no significant differences in age and gender distribution between groups.
As expected, SAD participants had higher anxiety scores on the LSAS and
HAM-A and they were less likely to use reappraisal as assessed with the
ERQ. Fig. 2 A and Fig. 3 A visualize the phase-space manifold using its
geodesic-based MST, which reveals highly complex nonlinear dynamics
during emotion regulation (note, for example, the cluster comprising
mostly neutral connectomes in section 4 in Fig. 2 A). In addition, we
provided a two-dimensional isomap representation of the phase space
(Fig. 2 B, enlarged 2D isomap in Fig. A1, Appendix A). Overall, no task or
groups formed a distinct cluster (Fig. 3 B and Fig.3 C). In general, the
trajectory of a series of connectomes during any ERT condition (130
time-points) traverses along most of the main MST branch. Interestingly,
careful inspection revealed that the “left end” of the main branch pri-
marily comprises SAD connectomes during Neutral and Maintain
(enlarged view in Fig. 2 C and bar graph in Fig. 3).

To investigate this further, since each point in the MST represents one
connectome, we can define a “mean connectome” for different segments
of the MST, by averaging element-wise over connectomes within any
selected segment. As shown in Fig. 2 D, these mean connectomes along
the MST exhibit distinctive patterns, informing the underlying patterns of



Table 2
Demographic and task performance.

Social Anxiety Disorder
(N¼ 20)

Healthy Controls
(N¼ 20)

Mean (SD) Mean (SD)

Demographic

Age 26.80 (8.38) 26.95 (9.64)a

Education in years 15.85 (2.11) 15.70 (2.39)a

Gender (% male) 45% 40%a

Clinical

LSAS 77.30 (14.13) 17.15 (12.25)b

HAM-A 7.50 (4.69) 0.75 (1.21)b

ERQ reappraise 25.15 (5.52) 33.60 (7.05)b

Affective State
(N ¼ 20) (N ¼ 18)

Neutral Condition 1.24 (0.37) 1.13 (0.25)
Maintain Condition 3.10 (0.53) 2.75 (0.77)
Reappraise
Condition

2.60 (0.88) 2.25 (0.76)

LSAS, Liebowitz Social Anxiety Scale; HAM-A: Hamilton Anxiety Rating Scale;
Two healthy controls participants didn't select the mood rating before the next
session began, thus their performance ratings are not available.

a There is no gender (X2 (2, N¼ 40), p> 0.05), age (two sample t-test, p> 0.05)
or years of education difference (two sample t-test, p> 0.05) between healthy
controls and social anxious patients.

b Healthy controls were less socially anxious (LSAS) and less generally anxious
(HAM-A) than SAD participants (two-sample t-test, p< 0.05). Healthy controls
more commonly use reappraisal (ERQ reappraise) as a daily emotion regulation
strategy (two-sample t-test, p< 0.05).

Fig. 2. The reconstructed MST (A) and the corresponding 2D isomap representation
Visually, the “left” MST branch primarily comprises connectomes from SAD subjects
Enlarged “left branch” view is in (C). Since each point corresponds to a connectome,
respective average connectomes in (D). These representative average connectomes
occipital channels (indicated with arrows in section 5 and red channels on the head
resentation of the same manifold exhibits similar task and group distribution compa

M. Xing et al. NeuroImage 186 (2019) 338–349

343
EEG connectivity typical in this part of the phase-space. Overall, there is a
decrease in global EEG connectivity from section 1 to 4, which then in-
creases again from section 4 to 5, in particular over occipital and parietal
channels (See Fig A3 in Appendix A for a further demonstration of sensor
level connectivity patterns along the MST).

Relating MST findings to anxiety, we further note that participants
with SAD had trajectories that more frequently traversed the “left end” of
the main branch (Fig. 4 A, B). Repeated ANCOVA analyses were per-
formed to explore the group and task effect of the area under the dis-
tribution curve. Indeed, the area under curve analyses for Fig. 4 B
revealed a significant condition effect (p¼ 1.8� 10–7), a significant
group effect (p¼ 0.019), and trend level task x group effect (p¼ 0.051).

Most of the segment along the tree is occupied by multiple task
conditions and groups, indicating that task- and subject-spaces are not
completely separate from each other.

Follow-up pairwise analysis for the main effect of condition showed
Neutral was significantly different from Maintain (p¼ 7.7� 10�7) and
Reappraise (p¼ 3� 10�6), but Maintain and Reappraise did not signifi-
cant differ from each other (p¼ 0.14). Pairwise group differences were
reported in Neutral (p¼ 0.019) and Maintain (p¼ 0.012), such group
difference was absent in Reappraise (p¼ 0.112). Similarly, repeated
measures ANOVA for trajectory length demonstrated a significant con-
dition effect (p¼ 7.7� 10�8), a significant group effect (p¼ 0.024), and
a trend level task� group interaction (p¼ 0.058). (Fig. 5 A). Follow-up
pairwise analysis for the main effect of condition showed Neutral
differed from Maintain (p¼ 7� 10�6 and Reappraise (p¼ 2� 10�6) and
Maintain was marginally different than Reappraise (p¼ 0.049). The
main effect of the group showed Neutral and Maintain trajectory are
significantly longer in SAD (Neutral: p¼ 0.018, Maintain: p¼ 0.043),
while Reappraise trajectory length was similar between two groups
(B) of the reconstructed phase-space manifold.
while Neutral connectomes appear to form a distinct cluster (sections 1 and 4).
we averaged within key sections along the main MST branch and visualized the
exhibit an ordered transition, with emerging connections among parietal and
map) as we move towards the “right branch”.) Two-dimensional isomap rep-

red with MST (B).



Fig. 3. Composition of tasks (B) and groups (C) from “left” side to the “right” side of the MST.
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(p¼ 0.21). Similar analyses using theta power alone failed to yield any
significant main effects of task or group, while a permutation analysis
using trajectory length confirmed our significant main effect of task
condition (Appendix D). Furthermore, ‘on-line’ Reappraise trajectory
length was inversely correlated with the tendency to reappraise, as
indexed with the ERQ (r¼�0.64, p¼ 0.002) (Fig. 5 B). Regarding
emotional reactivity, higher negative affective state during the Maintain
condition tended to have longer Maintain trajectories (r¼ 0.381,
p¼ 0.022) (Fig. 5 C). Trajectory lengths for Reappraise or Maintain did
not correlate with measures of anxiety.

Additionally, similar group and task differences were reported using
three of our alternative prototype sets. (Fig. 6). Trajectory results from
CPS, modified CPS and SPS prototype selectors demonstrated consistent
task differences (CPS: 5.3� 10�8; modified CPS: 1.0� 10�6; SPS:
2.2� 10�6) and group differences (CPS: p ¼ 0.022; modified CPS:
p ¼ 0.015; SPS: p ¼ 0.020) in the phase-space, with no significant
task*group interactions (CPS: p ¼ 0.076; modified CPS: p ¼ 0.052, SPS
344
p ¼ 0.055). For the MST prototype selector, we first included the back-
bone and the first-level side chain as the initial prototype set (con-
nectomes included ¼ 1956), later the second-level of side chains were
further included to expand the size of prototypes (connectomes
included ¼ 4712). Both MST prototype sets exhibit consistent trends in
group and task differences, there were significant task effects (backbone
with first level side chain: p ¼ 0.001, backbone with first two levels:
p ¼ 2.1 � 10�5) and a significant group effect (backbone with first level:
p¼ 0.020, backbone with first two levels: p¼ 0.013) (Fig. 7). No statis-
tical analyses were performed at the backbone level due to the number of
nodes (only 5% of the total connectomes were represented on the
backbone).

4. Discussion

In this paper, we proposed a phase-space connectome manifold
reconstruction approach to computational EEG connectomics via



Fig. 4. Neutral connectomes marked by HAM-A scale on MST (A) and Frequency of connectomes to the left of the x-axis threshold (B).
Phase-space trajectories from SAD participants are more likely to visit the “left side” of the MST. With a sliding threshold (x-axis), the frequencies of trajectories (y-
axis) crossing to the left of the threshold are computed and compared between SAD participants and healthy controls (HC). Area under the curve analysis revealed a
significant task effect (p¼ 1.8� 10–7), a significant group effect (p¼ 0.019), and trend level task x group effect (p¼ 0.051).
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unsupervised manifold learning to quantify abnormalities in EEG dy-
namics during emotion regulation in SAD participants. In this phase-
space, intrinsic geometric properties can be encoded using the geodesic
distance, thus further permitting a MST-based visualization. Sampling
the connectome along the main branch of the MST revealed a pattern of
overall increased theta connectivity in the “left-most” part of the branch,
which was comprised primarily of SAD participants. This finding
345
replicates our previous study demonstrating increased theta connectivity
at rest associated with SAD (Xing et al., 2017). Connectomes sampled
from the “right” part of the branch (where the Neutral condition pre-
dominated) demonstrated increased theta coupling in parietal and oc-
cipital leads, consistent with the visual component of the task. Moreover,
the dynamic EEG connectome as a function of time obtained from one
participant while performing a specific ERT task corresponded to a



Fig. 5. Phase-space trajectory metrics of ERT.
Across all three task scenarios, there was a significant effect of task
(p¼ 7.7� 10–8), group (p¼ 0.024), and trend level interaction effect
(p¼ 0.058) on phase-space trajectory lengths(A). Reappraise trajectory lengths
negatively correlated with Reappraise scores on the ERQ in SAD participants
(r¼�0.64, p¼ 0.002) (B). Maintain trajectory lengths positively correlated with
negative affect ratings during the Maintain task scenario in the total sample
(r¼ 0.381, p¼ 0.022) (C).
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phase-space “trajectory"“, also as a function of time. SAD participants had
longer trajectories during Neutral and Maintain, while the trajectory
length of the latter correlated with negative with negative affective state.
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Additionally, Reappraise trajectory lengths were inversely correlated
with the habitual use of reappraisal as an emotion regulation strategy
meaning subjects who were more likely to use reappraisal outside the
laboratory setting had reduced trajectory lengths. Thus, our results
showed that manifold trajectory length overall separated conditions and
diagnoses, and thus can be thought of as a proxy measure for the
cognitive load of emotion processing and regulation.

Here we discuss the important potential implications of our novel
phase-space manifold approach. In this space, intrinsic manifold prop-
erties such as trajectory length per second reflect the underlying cogni-
tive processing. Indeed, given that the complex nonlinearity in EEG
dynamics is decomposed in this novel phase-space, where 1) each
possible state corresponds to a distinct connectivity pattern, and 2) an
isometric mapping (i.e., geodesic distance preserving) is constructed
pair-wise across all possible states, we conjecture that the trajectory
length normalized over a fixed time interval (i.e., the “normalized” tra-
jectory length or “speed”) reflects the perceived amount of thought
transition. Or put more bluntly, we posit that a longer normalized tra-
jectory length is subjectively perceived as a more rapidly-transitioning or
“faster” dynamical process (which when occurs at rest may simply relate
to the feeling of “racing thoughts”). In this context, given that the tra-
jectory lengths we reported were already “normalized” as all task con-
ditions were seven seconds, our findings can be interpreted very
intuitively as follows: People who experience anxiety in general tend to
experience higher degrees of thought overactivation (i.e. “racing
thoughts” or thought accumulation (Emily and Elana, 2008)), while more
cognitively complex tasks require more rapid thought transitions (Fig. 4;
order of cognitive complexity: Reappraise>Maintain>Neutral).
Further, the habitual use of reappraisal corresponds to less rapid tran-
sitioning during Reappraise, suggesting an efficiency resulting from
life-long learning and practicing of these strategies. Future studies can
explicitly test this hypothesis by examining whether phase-space trajec-
tories are associated with indices of thought over-activation (i.e. the
Subjective Thought Overactivation Questionnaire (Keizer et al., 2014)).
With graph dissimilarity embedding, we constructed a manifold which
captures the underlying phase-space structure of dynamic EEG con-
nectomes insensitive to how the prototype graph sets were selected.
Indeed, the average trajectory length of all five prototype sets (selected
via CPS, SPS, modified CPS, and two levels of MST) exhibits a consistent
trend as in the whole 15600-connectome prototype graph set. Moreover,
we proposed two additional approaches to prototype selection that may
be more appropriate in our case: the Modified CPS, which removes the
outlier graphs with Hampel identifier; and MST informed selector, which
selects levels of MST branches in a hierarchical manner.

Several study limitations are briefly discussed. First, our analyses are
not based on source-localization, although manifold learning as we
proposed here is capable of, at least in theory, uncovering the underlying
intrinsic geometric properties of brain dynamics regardless of whether
the connectivity was channel-based or source-localized. Second, it can be
challenging to objectively measure emotion regulation, due to the known
complexity and diversity of emotion regulation strategies (Gross and
John, 2003) (to our knowledge currently available instruments to clini-
cally evaluate ERT performance are all based on subjective ratings).
Results with the negative affect ratings should be interpreted with
caution due to the fact that ratings were collected during an fMRI ERT
and not during the EEG ERT. Furthermore, in the graph dissimilarity
embedding framework (Bunk and Riesen, 2008), a matrix norm is used to
quantify the difference between two connectome graphs. However,
concerns in applying standard matrix norms to connectomes have been
raised as matrix norm may be sensitive to extreme outliers and incapable
of capturing higher order similarity (Chung et al., 2017). Additionally,
although results from different prototype selectors were consistent, thus
likely collectively recovering the true properties of the phase space,
different selectors nevertheless resulted in various numbers of prototype
connectomes. Last, the local neighborhood construction step is depen-
dent on the choice of kwhen determining the k nearest neighbors of each



Fig. 6. Selecting representative prototype graph set.
Histogram of graph-to-center geodesic distance (A) and the trajectory length as computed using prototype sets given by modified CPS (B). Results obtained using SPS
(C) and CPS (D) showed similar findings as Modified CPS, as well as the original 15600-connectome prototype set (i.e., each connectome is used as a prototype). There
were significant group effects of task and group, no interaction effect on phase-space trajectory.

Fig. 7. MST-based prototype selection.
Levels of selected prototypes on the MST (A) and the prototype trajectory Length (B). The first prototype set includes 1956 connectomes from all backbone and all first
level branches (middle figure in A); second prototype set includes 4712 connectomes from backbone, first level branches and second level branches (bottom panel
in A).
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connectome (Wang et al., 2005), although the overall trend of our find-
ings is consistent across a range of k values (Fig. A4).

In conclusion, our connectomemanifold learning approach provides a
novel analytic and visualization framework for understanding EEG dy-
namics. When applied to EEG data obtained in participants with and
without SAD during emotion processing and regulation, this novel
framework revealed complex differences in brain dynamics between SAD
and healthy control groups as well as across tasks. In the future, these
novel phase-space features may be used to determine brain-based bio-
markers for treatment selection and monitoring treatment response.
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