
Introduction to General Linear Models

Moo K. Chung
University of Wisconsin-Madison

mkchung@wisc.edu

September 27, 2014

In this chapter, we introduce general linear models (GLM) that have been
widely used in brain imaging applications. The GLM is a very flexible and
general statistical framework encompassing a wide variety of fixed effect models
such as the multiple regressions, the analysis of variance (ANOVA), the multi-
variate analysis of variance (MANOVA), the analysis of covariance (ANCOVA)
and the multivariate analysis of covariance (MANCOVA) [5]. Note that the
term linear is misleading in a sense that the model can also include mathe-
matically nonlinear model terms such as the higher degree polynomials. This
chapter is mainly based on [2].

The GLM provides a framework for testing various associations and hy-
potheses while accounting for nuisance covariates in the model in a straight-
forward fashion. The effect of age, sex, brain size and possibly IQ can have
severe confounding effects on the final outcome of many anatomical and func-
tional imaging studies. Older population’s reduced functional activation could
be the consequence of age-related atrophy of neural systems [3]. Brain vol-
umes are significantly larger for children with autism 12 years old and younger
compared with normally developing children [1]. Therefore, it is desirable to
account for various confounding factors such as age and sex in the model.
This can be done using GLM. The parameters of the GLM are mainly es-
timated by the least squares estimation and has been implemented in many
statistical packages such as R (www.r-project.org) or Splus [4] and brain
imaging packages such as SPM (www.fil.ion.ucl.ac.uk/spm) and fMRISTAT
(www.math.mcgill.ca/keith/fmristat).

1 General Linear Models

Let yi be the response variable, which is mainly coming from images and xi =
(xi1, · · · , xip) to be the variables of interest and zi = (zi1, · · · , zik) to be nuisance
variables corresponding to the i-th subject. We assume there are n subjects, i.e.
i = 1, · · · , n. We are interested in testing the significance of variables xi while
accounting for nuisance covariates zi. Then we set up the following GLM

yi = ziλ + xiβ + εi (1)
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where λ = (λ1, · · · , λk)′ and β = (β1, · · · , βp)′ are unknown parameter vectors
to be estimated. We assume ε to be the usual zero mean Gaussian noise although
the distributional assumption is not necessary for the least squares estimation.

The significance of the variable of interests xi is determined by testing the
null hypothesis

H0 : β = 0 vs. H1 : β 6= 0.

The fit of the reduced model corresponding to β = 0, i.e.

yi = ziλ, (2)

is measured by the sum of the squared errors (SSE):

SSE0 =

n∑
i=1

(yi − ziλ̂0)2,

where λ̂0 is the least squares estimation obtained from the reduced model. The
reduced model (2) can be written in a matrix form y1

...
yn


︸ ︷︷ ︸

y

=

 z11 · · · z1k
...

. . .
...

zn1 · · · znk


︸ ︷︷ ︸

Z

 λ1
...
λn


︸ ︷︷ ︸

λ

. (3)

By multiplying Z′ on the both sides, we obtain

Z′y = Z′Zλ.

Now the matrix Z′Z is a full rank and can be invertible if n ≥ k, which is the
usual case in brain imaging. Therefore, the matrix equation can be solved by
performing a matrix inversion

λ̂0 = (Z′Z)−1Z′y.

Similarly the fit of the full model corresponding to β 6= 0, i.e.

yi = ziλ + xiβ (4)

is measured by

SSE1 =

n∑
i=1

(yi − ziλ̂1 − xiβ̂1)2,

where λ̂1 and β̂1 are the least squares estimation from the full model. The full
model can be written in a matrix form by concatenating the row vectors zi and
xi into a larger row vector (zi,xi), and the column vectors λ and β into a larger
column vector, i.e.

yi = (zi,xi)

[
λ
β

]
.
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The full model can be also written in a matrix form

y = [Z X]

[
λ
β

]
.

Then the parameters of the full model are estimated similarly in the least squares
fashion. Note that

SSE1 = min
λ1,β1

n∑
i=1

(yi − ziλ1 − xiβ1)2

≤ min
λ0

n∑
i=1

(yi − ziλ0)2 = SSE0.

So the larger the value of SSE0 − SSE1, the more significant the contribution of
the coefficients β is. Under the assumption of the null hypothesis H0, the test
statistic is the ratio

F =
(SSE0 − SSE1)/p

SSE1/(n− p− k)
∼ Fp,n−p−k. (5)

The larger the F value, it is more unlikely to accept H0.

2 T-statistic

Consider a special case of GLM (1) with p = 1., i.e. When p = 1, the test
statistic F is distributed as F1,n−1−k, which is the square of the student t-
distribution with n − 1 − k degrees of freedom, i.e. t2n−1−k. Instead of using
F -statistic, we can use t-statistic as follows. Let c = (0, · · · , 0︸ ︷︷ ︸

k

, 1, 0, · · · , 0︸ ︷︷ ︸
p−1

)′ be

the contrast vector of size k + p. Although we will not show in detail, the
incorporation of the contrast vector makes algebraic derivation straightforward.
Then the least squares estimation of β1 in the full model is given by

β̂1 = c′

[
λ̂1

β̂1

]

Under the distributional assumption of εi ∼ N(0, σ2), we can show that β̂1 is

unbiased, i.e. Eβ̂1 = β1. Then we can show the variance of β̂1 is given by

Vβ̂1 = c′V

[
λ̂1

β̂1

]
c = σ2c′

(
[Z X]′[Z X]

)−1c.
The unbiased estimator of σ2 is given by SSE1/(n − 1 − k). We will plug this
estimator into σ2. Then the test statistic testing for β1 = 0 is given by t-statistic

T =
β̂1√
Vβ̂1

∼ tn−1−k.
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In the special case when p = 1, it is better to use the t-statistic. The
advantage of using the t-statistic is that unlike the F -statistic, it has two sides
so we can actually use it to test for one sided alternative hypothesis H1 : β1 ≥ 0
or H1 : β1 ≤ 0. Therefore, the t-statistic map can provide the direction of the
group difference that the F -statistic map cannot provide.

3 R-square

The R-square of a model explains the proportion of variability in measurement
that is accounted for by the model. Sometimes R-square is called the coefficient
of determination and it is given as the square of a correlation coefficient for a
very simple model. For a linear model involving the response variable yi, the
total sum of squares (SST) measures total variation in response yi and is defined
as

SST =

n∑
i=1

(yi − ȳ)2,

where ȳ is the sample mean of yi.
On the other hand, SSE measures the amount of variability in yi that is not

explained by the model. Note that SSE is the minimum of the sum of squared
residual of any linear model, SSE is always smaller than SST. Therefore, the
amount of variability explained by the model is SST-SSE. The proportion of
variability explained by the model is then

R2 =
SST− SSE

SST
,

which is the coefficient of determination. The R-square ranges between 0 and 1
and the value larger than 0.5 is usually considered as significant.
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