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Abstract

Needs for 2D cortical surface specific analysis framework in
computational neuroanatomy are explained. The widely used
Gaussian kernel smoothing in 3D whole brain volume morphometry
assigns isotropic weights according to Euclidian distance but cortical
surface data fail to be isotropic along the surface. On the curved
surface, a straight line between two points is not the shortest
distance so one may incorrectly assigns less weights to closer
observations. To address this problem, 2D surface based smoothing
is developed. The 3D whole brain volume based image normalization
tend to misalign sulcal patterns across subjects. To avoid this
problem, 2D surface based normalization is necessary.
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Data: 3D MRI
16 autistic subjects (15.93±4.71)
12 normal controls (17.08±2.78)
Right-handed males of similar ages.

Aim
Quantify structural abnormality in the autistic
subjects.
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Image segmentation



Image intensity non-uniformity
correction via MNI’s N3 algorithm

Original MRI Corrected



Gaussian mixture modeling

Skull stripping

Segmentation

SPM approach



Gaussian mixture model

•Histogram-based parametric method.

•It directly model the image intensity
histogram as a linear combination of
independent Gaussian random variables.

Histogram of sum of two Gaussian mixtures



MNI neural network classifier

Original data 3 disjoint classes



Real brain  Computer generated

Cortical surface segmentation
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Deformable surface algorithm (McDonalds et al., 2001. NeuroImage)

Multiscale mesh construction



Yellow: outer cortical surface
Blue: inner cortical surface

Extracted cortical surfaces

Cortical thickness = distance between surfaces



Polygonal mesh data

82,190 triangles

40,962 vertices



Ambiguity of measuring cortical thickness
thickness of gray matter is used as an anatomical index.

B
A

CB

orthogonal projection from A to B orthogonal projection from B to C

No less than 4 proposed methods of measuring thickness in literature



Cortical Thickness

6mm

0mm

Cortical thickness is modeled as a Gaussian random field.



Cortical Thickness Dilatation (single subject, age = 14)

Measuring the rate of
change over time.
Estimated using two scans
taken at different time.
NeuroImage (2005)



Surface Normalization

Why not 3D whole brain volume registration ?



Each subject has different
brain shape. So how do we
compare across subjects?

Group 1 Group 2



Voxel(pixel) by voxel(pixel) comparison
causes anatomical mismatching.

Image registration. The aim of image
registration is to find a smooth one-to-one
mapping that matches homologous
anatomies together.



Deformable template framework

Subject 1 Subject 2 Subject 3 Subject 26 Subject 27
Subject 28

template

. . . . 

MRIs will be warped into a template and anatomical
differences can be compared at a common reference frame.

deformation field



14 year old 19 year old

5 years later

Why do we need 2D surface normalization?

It can detect subtle surface specific changes

better than 3D whole brain volume method.



14 year old 19 year old

Surface geometry change



Surface Registration
3D whole volume volume registration is insufficient for 2D
surface-to-surface matching. 3D volume-to-volume matching
tend to cause misalignment of sulci/gyri.

Sum of principal curvature projected onto an average surface template



14 year 19 year

Sulcal pattern variation within a subject

misalignment

Different subjects will have more sulcal variability.



Surface-to-surface registration

Compute curvatures Project onto a sphere

Register a curvature function to
another on a unit sphere by
maximizing goodness-of-fit  and
the smoothness of deformation.

Registration



Validation of surface registration (149 subjects) 

Central & 
temporal 
sulci

NeuroImage (2005)



3D volume registration

Probability of matching in right central sulcus 

2D surface registration



Trajectory of surface registration

subject 1 subject 2

Based on weighted spherical harmonic representation (TMI, 2007)



Surface Data Smoothing



Why do we smooth data?

• To increase the signal-to-noise ratio (SNR).
• To guarantee the random field theory (RFT) assumption.
• Can correct systematic image processing bias.
• To estimate high order changes (curvatures, metric

tensors).
Why Gaussian kernel smoothing?

• Computationally fast.
• Easy numerical implementation
• Performs well.

How to smooth cortical data?



t-statistic map of brain tissue growth before and after
smoothing in 28 normal subjects from age 12 to age 16.
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Why Surface-based smoothing ?

3D Gaussian smoothing
will blur data between A and
B correlating them spatially
while reducing the specificity
of detection.

A B

1. Increase SNR
2. Increase statistical power
3. Increase localization power
4. Enable tensor computation



2D surface based weighting

Difficulty of formulating isotropic smoothing
Due to curved geometry, the shortest distance between
two points is not a straight line. So we may incorrectly assign
less weights to the closer observations.

3D volume based weighting
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5mm FWHM filter size
0.00

0.01

curvature function 20 iterations 100 iterations

Diffusion smoothing
Smoothing on cortical manifolds can be done by solving
an isotropic diffusion equation (NeuroImage, 2003).



Sulcal pattern mapped onto a sphere

initial mean curvature 20 iterations 100 iterations

0.00

0.01



Diffusion smoothing simulation on brain stem

After 10 iterations After 20 iterationsInitial Signal



Heat kernel smoothing
Iteratively kernel smoothing method (NeuroImage, 2005).



Original data mapped onto
a square by cylindrical projection Heat kernel smoothing

Flat map representation of heat kernel
smoothing on cortical thickness



Heat kernel smoothing increases normality of data

0 iteration 50 iterations 100 iterations 

QQ-plotQ



Multiscale representation of anatomy
via weighted-SPHARM

Original X-coordinate



Smoothing of cortical thickness

Cortical thickness

Spherical mapping

1st row:

2nd row:



Statistical Analysis



Multiple comparisons

Type I error

t random field



Excursion Probability

z = -10 z = 0 z = 10

(Adler, 1984)



T random field on manifolds 

Euler characteristic density

 Worsley (1995, NeuroImage)



corrected p-value map for t  test

Decrease: left superior temporal sulcus, left occipital-temporal gyrus, right orbital
prefrontal
Increase: left superior temporal gyrus, left middle temporal gyrus, left and right
postcentral sulci



corrected p-value map for F  test correcting for age

Decrease: left superior temporal sulcus
                  left occipital-temporal gyrus
                  right orbital prefrontal



Additional Analysis

Brain-Behavior Correlation



Facial emotion discrimination task response time

Dalton et al. (Nature Neuroscience 2005)

24 emotional faces, 16 neutral faces



Correlating thickness and behavioral measure

Group 
difference



Correlation difference between the groups.



Brain substructure modeling



SPHARM representation of hippocampus

degree 1 degree 5 degree 10 degree 50

Overfitting

Optimal
representation



Manual 
segmentation

SPHARM
representation



Corpus callosum modeling

The segmentation results of corpus callosum



Parametric modeling of corpus callosum shape
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Amygdala modeling


