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Abstract
We present the discrete version of heat kernel 
smoothing on graph data structure.  The method is 
used to smooth data in an irregularly shaped domains 
in 3D images. New statistical properties of heat kernel 
smoothing are derived. As an application, we show how 
to filter out noisy data in the lung blood vessel trees 
obtained from computed tomography. The method can 
be further used in representing the complex vessel 
trees parametrically as a linear combination of basis 
functions and extracting the skeleton representation of 
the trees. This talk is based on Chung et al. 2018. EMBC.
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Prediction 

Observation 

Unknown Signal 

Gaussian kernel smoothing 

Y (p) = µ(p) + e(p)

bµ(p) =
Z

K(p, q)Y (p) dp

Y (p)

µ(p) bµ(p)



Gaussian kernel smoothing 
on surface curvature?
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Proper kernel weighting Improper kernel weighting 
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Gaussian kernel does not work for 
surface data
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Kernel smoothing�
on sphere



http://
brainimaging.waisman.wisc.edu

3.0 Tesla GE Scanner

3D image

Magnetic Resonance Imaging (MRI)

Soft tissues



Triangle	mesh	with	0.6	million	triangles	

3T MRI 
tissue
segmentation

surface 
extraction

Yellow: outer cortical surface
Blue: inner cortical surface



Surface parameterization

Surface flattening

3T MRI 

Spherical angle based coordinate system

Surface 
segmentation



Spherical harmonic of degree l and order m



Weighted-Spherical harmonics (SPHARM)
Surface
flattening

v1
v2 v3
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Heat kernel smoothing of surface coordinates

Chung et al., 2007 IEEE Transactions on Medical Imaging 26:566-581



Correlating function to structure 
Eye tracking data

Weighted Fourier 
representation 

Partial correlation mapping

   88.1799   56.6336    5.7367 
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Heat kernel smoothing�
using LB-eigenfunctions



Steady-state oscillations in a wave equation

Helmholtz equation �XF = �F

Basis in an arbitrary domain

Orthonormal
Basis



6	nearest	neighbors	in	3D	

Top 
layer

Bottom 
layer

Middle 
layer

Connect any neighboring voxel 
with distance less than 1

p

�f(p) =
@2f

@x2
+

@2f

@y2
+

@2f

@z2

�f(p) =
X

�p

f(p+ �p)� 6f(p)



measurement

Surface data on triangle meshes

after smoothing



First order neighbor in a triangle mesh



Cotan Discretization

wj =
cot ✓j + cot�jPm

j=1 |Ti|

Chung et al. 2001 NeuroImage 13S:96

�f(p) =
mX

i=1

wi[f(pi) � f(p)]



�f = �f C⇥ = �A⇥
A C

MATLAB code:
http://brainimaging.waisman.wisc.edu/~chung/lb

Qiu et al., 2006, TMI

Tested for meshes with up to half million vertices



First 10 LB-eigenfunctions on left hippocampus



�f = �fLB-eigenfunctions on mandible



�f = �fLB-eigenfunctions on brain surface



Fundamental solution of isotropic diffusion on manifolds 

Heat kernel 



Diffusion via heat kernel smoothing 

�f

�t
= �f, f(x, t = 0) = X(x)

f = K� ⇤ X

� =
p

2t

Diffusion equation

Heat kernel smoothing

Chung et al., 2005 Information Processing in Medical Imaging (IPMI)

K�(p, q) =
1X

j=0

e��j� j(p) j(q)



Heat kernel smoothing on manifolds

K� ⇤X(p) =

Z

M
K�(p, q)f(q) dµ(q)

Fourier coefficients

�j =

Z

M
X(p) j(p) dµ(p)

=
1X

j=0

e��j��j j(p)



Combine

Decompose

Chung, M.K. 2015 Medical Image Analysis. 22:63-76 



Mandible Growth 
Modeling from CT �



Computed Tomography (CT) 

Hard tissues: bones, teeth



Topology correction in CT 

Chung et al. 2015 Medical Image Analysis. 22:63-76

Hole & handles
corrected using
Euler characteristic



Initial affine registration 



Nonlinear diffeomorphic registration

F155-12-08 Affine registered 
surfaces

Final diffeomorphic
registration



Average mandible growth pattern in children

Between ages 0-6 and ages 7-12

Between age 7-12 and age 13-19



Statistically significant regions (F-stat) of mandible growth
in age range between 0 and 20 years



Skeleton Representation �
of Lung  Blood Vessel �



3D binary segmentation3D computed tomography



3D binary segmentation 3D graph using 6-neighbors 



Fourier series expansion
with 6000 basis

Z-coordinate 
+ Gaussian noise



Heat kernel smoothing with 6000 basis



Heat kernel smoothing



Smooth Scale up

Skeleton representation 
of blood vessel



Smooth + scale up Smooth + scale up
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