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When I begin to plan this talk, then looked over the other offerings at this conference, I realized that in
a sense I am here to present a null hypothesis. The other talks will describe methods that go far beyond the
general linear model. Like many null hypotheses, the general linear model is simple, elegant, even beautiful.
Unlike many null hypotheses, it is also both very useful and widely used. It is a component of, or the origin
of, the greater part of the work to come. Thus, it is essential to understand it clearly from the outset.

1 Statistical models

In choosing a statistical model, there is always a tension between simplicity and completeness. Simple models
tend to be easier to understand, computationally more tractable, but they are frequently at odds with data.
On the other hand, complicated models tend to fit the data better and to capture richer conceptual pictures,
but they can be computationally awkward or intractable. When they are too complicated, they are hard
to replicate. For practical reasons, the classical procedures such as the general linear model have had to
be computationally manageable. However, computational power is no longer the limit it once was. Many
things that were impossible before—iterative algorithms, Monte Carlo methods, repeated tests, the whole
range of Bayesian approaches—now can be routine (or nearly so). Moreover, imaging data have properties
that make them differ substantially from the traditional data structures. Nevertheless, the classical method
are still best for many questions, and as they are the basis for the newer approaches, and we must keep them
in mind.

2 Data for General Linear Model

The data for the models I will discuss have the general structure of observations by variables:

Variables
Conditions Responses

x1 x2 . . . xp y1 y2 . . . yq

1 – – – – – –
2 – – – – – –
...

O
bs

er
va

ti
on

s

n – – – – – –

The rows—the observations—may refer to observations at different times, to different subjects, or to different
brain locations, depending on the particular analysis. The columns are divided into two sets. One set,
denoted by xj are variables describing the condition in which the observation was made. They could be
dummy variables describing groups, subjects, or the particular response condition, or they could be other
covariates. The second set, denoted by yk are the observed measurements, for example activations measured
different locations. Much of the analysis I will describe focuses on a single observation y, although in imaging



The general linear model 2

t St
im

x0 x1 x2 y1 y2 y3 y4

1 0 1 0 0 9.45 13.25 11.23 16.48
2 0 1 0 0 9.86 10.26 11.13 13.62
3 0 1 0 0 10.17 13.90 11.74 15.13
4 1 1 1 0 12.97 11.76 10.97 16.63
5 1 1 1 0 11.31 13.83 10.65 16.42
6 1 1 1 0 12.70 10.96 10.12 17.85
7 0 1 0 0 11.38 12.95 11.15 13.65
8 0 1 0 0 10.29 12.12 11.56 15.96
9 0 1 0 0 11.82 10.29 12.73 14.27
10 2 1 0 1 10.27 12.45 14.15 19.39
11 2 1 0 1 11.54 13.25 14.33 18.49
12 2 1 0 1 8.93 8.93 14.32 16.73
13 0 1 0 0 11.01 11.69 10.40 17.31
14 0 1 0 0 8.92 11.52 10.87 14.62
15 0 1 0 0 11.04 12.85 11.09 14.00
16 2 1 0 1 9.45 11.65 15.50 17.54
...

...
...

...
...

...
...

...
...

Table 1: A miniature set of illustrative data. Two stimuli are presented at different times, and responses are
recorded from four locations.

studies a large number of responses are typically recorded. The basic goal of the analysis is to find a way to
describe the yk as functions of the x’s.

Table 1 shows a simple (synthetic) example of the type of data involved. A response is measured in four
locations (y1 to y4) at a sequence of time points, of which 16 are shown. One of two stimuli are presented
during some of these periods—stimulus 1 during intervals 4, 5, and 6, stimulus 2 during intervals 10, 11,
and 12, then again starting in interval 16. From the stimulus events, three dummy variables are created:
x0 always equals 1 and corresponds to background activity, x1 is zero except in the presence of stimulus
1, and x2 is zero except in the presence of stimulus 2. Properly these variables would be convolved with a
hemodynamic response function, but for simplicity I have not done that here.

The columns of the data table are variables, and algebraically they are column vectors. It is useful,
both for understanding the methods and for interpreting them, to think of these vectors geometrically. Each
variable, then, is represented by a spatial vector. The length of the vector characterizes the variability of
the variable and the angle between two vectors describes the association between the variables. Specifically,
the squared length of the vector is the sum of squares associated with the variable,

|y|2 = SSy,

and the cosine of the angle equals the correlation between the variables:

rjk = corr(xj ,xk) = cos ∠(xj ,xk).

In particular, two variables that are simple multiples of each other, hence that convey equivalent information,
have vectors that point in the same (or exactly the opposite) direction, and so are collinear. Two variables
that are linearly unrelated to each other have vectors lying at right angles and are orthogonal. It takes a
little practice to interpret these relationships when more than three variables are involved, but I have found
that with some practice I have obtained useful information about five- or six-dimensional relationships by
projecting them back into three dimensional space.
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A linear combination of two variables is represented by their vector sum, which lies in the space spanned
by its components. For example, the sum of 3x1 − 2x2 is represented by the vector sum1

x2

x1

3x1 − 2x2

The important thing about this representation is that the vector operations correctly represent distributional
properties of the new variable, such as its variability and its correlation with other variables.

Note that these vector representation makes use of the fact that the vectors are expressed in ordinary
Euclidean space, a point that is important when we consider the distribution of errors.

3 The General Linear Model

The general linear model is a procedure by which a single target variable y is represented by a combination
of variables x1, x2, . . . , xp. The combination in question is linear:

ŷi = b0 + b1xi1 + b2xi2 + · · ·+ bpxip,

or in matrix notation,
ŷ = Xb.

Geometrically, this representation is obtained by projecting y into the into the space Vx of linear combinations
of x1, x2, . . . , xp:

ŷ

y
e

x1

x2

Vx

Algebraically, the coefficient vector b for this projection is determined by multiplying y by the matrix
(X′X)−1X:

b = (X′X)−1X′y.

This equation will be seen frequently. As the diagram above shows, it decomposes y into two orthogonal
vectors, the prediction ŷ and the error e. These vectors are chosen so that |ŷ| is maximal, and consequently
|e| is minimal.

For the example in Table 1, applying this formula to each of the four yk fits the model y = Xβ to each

set of activations, where X is the 3×16 matrix given in the three x columns of the table and b =




b0

b1

b2


 (of

course, ordinarily the data would include more than the 16 observations shown in Table 1). The result is
the set of four estimates

1Diagrams in this talk are taken from my book The geometry of multivariate statistics (Erbaum, 1995).
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y1 y2 y3 y4

b0 10.44 12.09 11.32 15.00
b1 1.89 0.09 −0.74 1.96
b2 −0.39 −0.52 3.25 3.04

Examining these estimates shows that y1 has a positive relationship to signal one, y2 has little relationship
to either signal, y3 has a positive relationship to signal 2, and y4 has a positive relationship to both signals.
The primary use of the general linear model with imaging data is to detect relationships such as these.

The model for ŷ given above is not a statistical model for the scores. The complete general linear model
includes an error component:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxp2 + ei,

or in matrix terms,
y = Xβ + e.

I have indicated the random variables typographically here with a sans-serif font. The letter β is used instead
of b to indicate that it refers to the “true,” if unobserved, values of the parameters. The errors ei in this
model are independent and identically distributed, having a Gaussian (i.e., normal) distribution with mean
zero and variance σ2. This assumption means that the actual observation y has a spherically symmetrical
distribution about the true model value Xβ:

Vx

Xβ

y
e

0

The isotropy of the error keeps Xβ uncorrelated with the error e and allows b to be estimated by projection.
It is an important consequence of the assumption of the Gaussian distribution.

Under the general linear model, the estimate b of β has two somewhat different interpretations. One is
as a least-squares fit of ŷ to y. The estimate b gives the linear combination ŷ that minimizes the length of
the error e. Specifically, it gives the smallest possible value to sum of squared differences between y and ŷ:

|y − ŷ|2 =
∑

(yi − ŷi)2 =
∑

(yi − x′
ib)2.

The second interpretation is that of maximum likelihood and is based on the probability distribution of yi.
Because this interpretation is so important to later developments, I will briefly describe it.

1. Under the general linear model, the probability of observation yi depends on the parameters β and σ2,
and can be written P (yi; β, σ2).

2. Because the observations are independent, the probability of the complete set of data y is the product
of the probabilities of its individual observations:

P (y; β, σ2) =
N∏

i=1

P (yi; β, σ2).
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3. In an estimation problem, a set of data has been obtained, hence it can no longer be treated as a
random quantity. Instead, treat the probability above as a function of the parameters and call in the
likelihood. For several reasons it is more convenient to work with the logarithm of the likelihood than
the likelihood itself, so define:

L(β, σ2) = log P (y; β, σ2).

4. To estimate the parameters β and σ2, find the values b and s2 that maximize L(b, s2). These are the
maximum-likelihood estimates.

The least-squares and maximum-likelihood interpretations of the estimates are equivalent under the
assumptions that observations are independent, identically distributed, and Gaussian. When they are not,
the two procedures will give different estimates.

4 Goodness of fit tests

The variability parameter σ2 in general linear model is estimated by (to give one among several formulas)

σ̂2 =
y′(y −Xb)

n− p
.

From it, the covariance matrix of the estimates is obtained:

Sb = σ̂2(X′X)−1.

The goodness of fit of the model can be measured by the proportion of the variability that the model can
explain, that is by the relative length of the original and estimated vector:

R2 =
explained variation

total variation
=
|ŷ|2

|y|2 .

This quantity is known as the correlation ratio, and, in the analysis of variance context often denoted by η2.
A test of the null hypothesis that β = 0 is obtained by comparing the per-dimension squared lengths of

the two components of y under the general linear model. With p explanatory variables and n observations,

F =
|ŷ|2/p

|ê|2/(n− p)
=

MSmodel

MSerror
.

In this form, the test is of limited value—the assertion that β = 0 reduces the model to simply yi = ei, which
is not very informative. More useful are tests of hypotheses about particular values of the parameters.

Most tests of the parameters of the general linear model are made by imposing linear constraints on β.
These hypotheses have the form Cβ = 0, for some constraint matrix C. Using the example in Table 1,
a test that y is unaffected by the second stimulus is given by the matrix C =

[
0 0 1

]
, which holds the

coefficient β2 of x2 to zero. A test of whether the responses to the two stimuli are the same is given by the
matrix C =

[
0 1 −1

]
, which causes β1 and β2 to be equal. Compound hypotheses are possible: a test

of the model that sets both signal parameters to zero is obtained from C =
[
0 1 0
0 0 1

]
. Geometrically any

such linear hypothesis is tested by splitting ŷ into two orthogonal parts, a vector ŷc that is consistent with
the hypothesis and a vector ŷ⊥c that violates it:
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Vx

x1

x2

y

ŷ

ŷc

ŷ⊥c

e

If Cβ = 0, then the component ŷ⊥c is entirely due to error, and its size should be comparable to that of e.
If it is false, then the per-dimension length of ŷ⊥c is much greater than that of e.

There are three ways to get a test statistic for these hypotheses, all of which are comparable under the
general linear model with a Gaussian error distribution.

1. By comparing the mean squared lengths of the vectors ŷ⊥c and e using an F statistic as described for
the overall test. If there are r linear restrictions (rows of C), then this statistic is

F =
|ŷ⊥c|2/r

|ê|2/(N − p)
=

MSrestriction

MSerror
.

2. When the hypothesis is unidimensional—it contains only one restriction—then it can be tested by
calculating the observed size of its violation and the standard error of that quantity:

V = Cb and s2
v = CSbC′.

The hypothesis is tested with a t statistic, t = V/sv, which is the square root of the F above.

3. By fitting two models, one that includes the tested parameters and one that does not. If the hypothesis
holds, then the error of these two models will be about the same size, although the unrestricted model,
for which the hypothesis is not imposed, with have a slightly smaller error. The amount by which
imposing the restriction increases the error is compared to the overall error by the statistic

F =
(|erestricted|2 − |eunrestricted|2)/r

|eunrestricted|2/(N − p)
.

5 Model selection and comparison

The issue of selection of a representation or model for data is a very important one, and I will digress briefly
from the general linear model to discuss it in general. I find it very useful to think of the problem graphically
by constructing a lattice of possible models. For example, with three predictor variables, x1, x2 and x3 we
can constrict eight models:

M0 : y = b0

M1 : y = b0 + b1x1

M2 : y = b0 + b2x2

M3 : y = b0 + b3x3

M12 : y = b0 + b1x1 + b2x2

M13 : y = b0 + b1x1 + b3x3

M23 : y = b0 + b2x2 + b3x3

M123 : y = b0 + b1x1 + b2x2 + b3x3
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These representations fit into a hierarchical lattice with the simplest model M0 at the top and the most
complex one M123 at the bottom:

M0

�� @@
M1

@@

M2

�� @@

M3

��
M12

@@

M13 M23

��
M123

Models that are restrictions of each other are connected in this lattice by a line. The lattice could be expanded
to include many other models, such as those that equate the coefficient of some of the explanatory variables
(e.g., y = b + 0 + b12x1 + b12x2) or those that include powers of their value (e.g., y = b0 + b11x1 + b12x

2
1).

The models toward the bottom of this lattice include more parameters than those toward the top, and
consequently they typically fit better. Where the models are connected by a line (or sequence of ascending
or descending lines) they have a hierarchical relationship to each other and the upper one is strictly included
in the lower. For example, M1 ⊂ M13 ⊂ M123. The lower models in this sequence will fit at least as well
as the upper models. Where the models are not connected—the relationship is nonhierarchical—the lower
model will not necessarily fit better. For example although M12has three parameters and M3 has two, it
will not necessarily fit a given set of data better. Whether the relationship between two models is hierarchal
or not makes a difference in how they can be compared.

For a comparison of hierarchical models, there are usually good tests available. A test statistic (such as
the F statistic above) can be formed by looking at the difference between the fit of the unrestricted model
(that lower in the lattice) and the restricted model above it

Test statistic = Fit(Munrestricted)− Fit(Mrestricted)

The magnitude of this statistic is evaluated against a distribution determined by the number of restrictions
that separate the models. When the log likelihood can be calculated, the difference can be referred to the
chi-square distribution: for a test of r restrictions,

2[L(Munrestricted) −L(Mrestricted)] ∼ χ2
r .

Comparisons of nonhierarchical models are more problematic. There is no assurance that a model with
more parameters will fit better than one with fewer parameters, and the distribution of the difference in
fit is not generally available. It is reasonable to construct a measure of the successfulness of a model that
combines a measure of fit with a penalty for the number of parameters used:

Successfulness(M) = Fit(M) − f [Parameters(M)].

In a comparison of several models, the most successful one can be chosen. The difficulty here is to determine
the appropriate penalty function. Many of these have been suggested. In general they depend on the
likelihood to measure fit and use a penalty function f(n, p) that depends on the number of observations and
the number of parameters. The two most familiar of these are the Akaike information criterion,

AIC = 2L(M)− 2p

and the Bayesian information criterion,

BIC = 2L(M)− log(n)p.

Because the penalties differ, these measures can order a set of models differently. They also have no sampling
theory attached to them. Thus, in my opinion, while these measures give useful and necessary information
for model selection, they must be treated more heuristically than the tests that compare hierarchical model.
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6 Multivariate generalization

An important property of the general linear model is that it generalizes to multivariate observations readily,
simply by replacing the univariate Gaussian distribution of error with a multivariate distribution. The
problem comparable to that of the general linear model is to relate two sets of variables, {x1,x2, . . . ,xp} and
{y1,y2, . . . ,yq}. This is done by constructing new variables that are linear combinations of the variables in
the two sets, u = Xb from the space Vx generated by the x vectors and v = Yc from the space Vy generated
by the y vectors:2

Vx

Vy

u
v

The coefficients b and c are chosen so that the correlation between u and v is as large as possible, that is,
so that the angle between them is minimal.

Because the spaces Vx and Vy are both multivariate, additional vectors can be chosen. Variables within
each set are orthogonal to those already chosen, and between sets they are chosen to maximize their corre-
lation. The result is a series of linked spaces of successively greater dimension:

u1←→ v1,

{u1,u2} ←→ {v1,v2},
{u1,u2,u3} ←→ {v1,v2,v3},

{u1,u2,u3,u4} ←→ {v1,v2,v3,v4}, etc.

This procedure has various names, depending on the interpretation of the variables involved (multivariate
analysis of variance, multivariate multiple regression, canonical correlation, etc.)

7 The importance of the General Linear Model

As a summary of the general linear model, note the features that make is attractive.

1. It is comprehensible, both easy to describe and to interpret. In particular the linear model y = Xb is
both simple and very powerful, and the error distribution is cleanly separated from the effects.

2. The random structure is simple. The Gaussian distribution is completely described by its first two
moments, µ and σ2 (or, in the multivariate case, by the mean vector µ and the covariance matrix Σ).
These moments are stochastically independent, making them easier to estimate. The geometric space
induced by the error is Euclidean and isotropic.

2The spaces Vx and Vy in this diagram are actually linear (flat) spaces; the diagram is my attempt to project a four-
dimensional configuration onto a two-dimensional page and show the relationship of u and v.
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3. The model is computationally tractable. Closed-form estimates of the parameters are available, and
the mean and variance can be estimated separately. The estimated linear parameters are obtained by
projection, b = (X′X)−1X′y, and are linear combinations of the original data y. The power of linear
algebra can be harnessed for this and other calculations. The computations can even be done by hand!

4. The different interpretation of the estimates (least squares and maximum likelihood) and the different
forms of test yield identical results.

5. The model generalizes readily from univariate to multivariate form. Both the conditional and marginal
distributions of the multivariate Gaussian distribution are also Gaussian, so tests on these distributions
have the same form as those on the full multivariate model.

When the assumptions of the general linear model are relaxed, some of these characteristics go with it.
Nevertheless, in some situations the model is too restrictive. I will discuss briefly at some of its extensions,
particularly those that relax the assumptions that

I All observations have the same weight
I The error distribution is Gaussian
I The observations are independent

8 Unequal variability

In some sets of data, the variance of the yi differ:

var(yi) = σ2
i 6= var(yk) = σ2

k, for some i 6= k.

These variabilities, obviously, cannot be measured on a single observation, but they may be available when
the scores derive from a source that includes measurement error or when the variances are theoretically
motivated.

Differences in the variance make the observations unequally informative. This inequality is accommodated
in the analysis by weighting the observations inversely by their variance. For example, the weighted mean
is calculated as

y =
∑

wiyi∑
wi

, where wi =
1
σ2

i

.

Estimates of the parameters of a linear model ŷ = Xb are obtained by weighting the least squares estimation
equation:

b = (X′WX)−1(X′Wy)

where the weight matrix W contains the inverse of the variances:

W =




σ2
1 0 . . . 0
0 σ2

2 . . . 0
...

...
...

0 0 . . . σ2
n




−1

.

9 Non-Gaussian distributions and the Generalized Linear Model

Some data generation processes do not yield observations with Gaussian distributions. Positing a non-
Gaussian distribution has several consequences, which are readily seen by considering binary observations
distributed according to a Bernoulli distribution.
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1. The mean and the variance are related. For example, with a Bernoulli random variable y for which
P (y=1) = π and P (y=0 = 1−π, the mean and variance are given by

E(y) = π and var(y) = π(1−π).

Any model that does not predict a constant mean, therefore also predicts a changing variance. With
distributions other than the Bernoulli (for example, Poisson counts), the distributions may be nearly
Gaussian when the mean is large, but the dependence of the variance on the mean remains.

2. A linear model may not be an appropriate way to model the data. For example, with Bernoulli data, a
linear model π̂ = Xb can give values of π̂ that lie outside the interval [0, 1] so cannot be probabilities.

3. The changing variance makes least squares estimates (i.e., simple projection) inappropriate as an
estimation technique.

A procedure known as the generalized linear model extends the general linear model to accommodate
these properties. This generalization has three characteristics.

1. The distribution of the observations is drawn from a larger set of possibilities known as the exponential
family. The density of these distributions has the form

f(y) = exp
[
θy − b(θ)

a(φ)
+ c(y, φ)

]
,

where θ is a parameter that determines the location of the distribution, φ is a parameter that scales
the variability, and a(·), b(·) and c(·, ·) are functions. This family includes many (but not all) useful
distributions:

I Among continuous distributions, the Gaussian, log-normal, inverse-Gaussian, exponential, gamma
(chi-square), Pareto, Gompers, Weibull, etc.

I Among discrete distributions, the Bernoulli, binomial, Poisson, geometric, negative binomial, etc.

2. The variance of observations is naturally linked to mean. For example, with Poisson distributed data,
var(y) = E(y), and with Gamma distributed data, var(y) = [E(y)]2. The quantity a(φ) (usually just
φ) scales the variablity up or down without changing this relationship, thus allowing the model to
accommodate overdispersed or (less often) underdispersed observations.

3. The mean µ is related to a linear model via a location parameter η and a nonlinear link function:

g(µ) = η = x′β.

Although any function can be used for the link, the model is simplest when the location parameter of
the link function is the same as the location parameter θ of the distribution. The link function then
has a canonical form that is determined by the distribution itself. For example, with Bernoulli data,
the canonical link function is logistic (making them model that of logistic regression), and for Gamma
data, it is the reciprocal.

The generalized linear model does not have closed-form estimation equations. However, there are many
iterative algorithms by which it can be fitted. For example, maximum likelihood fits can be obtained by
repeatedly applying the weighted least squares equation given above after generating the variances from the
model. Software to make these estimated is readily available and appears in the major statistical packages.

The fit of the generalized linear model is measured by a quantity known as the deviance, which is just
twice the negative log likelihood:

deviance = −2 logL.
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When the model allows for overdispersion or underdispersion by estimating the parameter φ, the deviance
cannot be interpreted as measuring goodness of fit—there is no independent estimate of the error as there is
for the general linear model. However, tests for hierarchical models are expressed by difference in deviance

deviance(Mrestricted) − deviance(Munrestricted) ∼ χ2
r .

Although it shares some features with the general linear model, the generalized linear model cannot be
interpreted quite as easily. Unless a Gaussian distribution is specified, the space of observations of y is
nonisotropic and non-Euclidean. Intuitions based on this representation must be used with caution. The
non-Euclidean error space also makes tests based on variability and tests based on model comparison give
different results. A given hypothesis can often be tested in three or more ways with slightly different results
(likelihood-ration tests, scores test, Wald test, etc.)

10 Dependent observations

In both the general linear model and the generalized linear model, the observations y1, . . . , yn are assumed
to be independent. However, there are many causes for dependencies among the yi, many of which arise
with image data. A prime cause of dependence is in observations that take place over time, where the value
at one time is influenced by the values at earlier times. The most common representation of this association
is with an autoregressive model in which an observation depends linearly on the value at one or more earlier
trial:

AR(1): yt = x′
tb + a1yt−1,

AR(2): yt = x′
tb + a1yt−1 + a2yt−2,

AR(3): yt = x′
tb + a1yt−1 + a2yt−2 + a3yt−3, etc.

The autoregressive models induce constant correlations between observations a fixed number of time intervals
apart.

Another source of dependence is the presence of clustered observations. Common instances of clusters
arise when several observations are made from each subject, when several observations are collected during
each of several sessions, or when subjects can be groups, say into families or litters. Each type of dependence
leads to a characteristic covariance structure within the cluster. Typically, the clusters are assumed to be
independent. More complex sources of dependence arise when several sources of dependence are present.
For example, observations of activation may be made in several related (or unrelated) brain regions at the
same time (as if the 16 observations of four activations in Figure 1 were unstrung into a single column of 64
single observations. The spatial structure will induce one correlation structure, the time series another.

Consider the clustered observations in more detail. The presence of clustering give a hierarchical structure
to the data. Often this structure can be represented by two (or more) sampling stages. A simple version
of this hierarchical, random-effects, structure extends the general linear model by treating the parameter
vectors as sampled

I Stage One: The scores within each cluster are determine by a linear model with independent errors
and a cluster-specific parameter vector

y1 =




y11

...
y1c


 = X1β1 + e1, y2 =




y21

...
y2c


 = X2β2 + e2, etc.,

where ej ∼ N (0,Σe), and Σe is diagonal.
I Stage Two: The model parameters are sampled from a Gaussian distribution: βj ∼ N (µβ ,Σβ).

The model, therefore, depends on the mean µβ of the distribution of β and on two covariance matrices, Σe

and Σβ .
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There are a variety of interpretations and ways that this model can be fitted, including as a random-
effects model, a hierarchical linear model, an empirical Bayes model, or through the use of what are known
as generalized estimating equations. These approaches differ somewhat in their simplicity or applicability
from case to case, although they are often equivalent and usually give comparable results.

11 Simultaneous testing

Finally, I want to consider the problems that arise when multiple statistical tests are made, an issue of
considerable importance to image data.3 I will talk only about the conventional solutions.

In the standard hypothesis testing framework, a null hypothesis H0 that no relationship is present is
contrasted with its negation Ha that some unknown relationship is present. The properties of any scheme
for deciding between these alternatives is measured by the two conditional error rates

I Type I: α = P (decide H0 false|H0 true),
I Type II: β = P (decide H0 false|Ha true).

These probabilities relate to the possible true state and the decision according to the familiar table

Decision made

True state
Effect
present

Effect
absent

Effect present 1− β β
Effect absent α 1− α

There is a tradeoff between these error rates: unless more information can somehow be extracted from the
data, a procedure that increases one will decrease the other. Although H0 is a specific hypothesis, Ha is a
composite of many particular alternatives. Thus, while α is usually readily calculated, β is not. For this
reason, if for no other, the usual approach to hypothesis testing controls only the type I error.

When several tests are made, the aggregate, or familywise, errors rates (that is, the chance of making one
or more errors) increase. Unless some form of adjustment is made, this increase affects both error types. The
goal of the simultaneous-testing procedures is to manage these error rates in some rational way. Specifically,
control is to be exerted over the familywise Type I rate without concomitantly allowing the individual Type
II error rate to fall to the point where interesting discoveries are lost.

Many procedures have been developed to accomplish this task, each with its advantages and limitations.
They can roughly be divided into three, occasionally overlapping, classes.

1. Bonferroni tests. A fundamental probability relationship, known as the Bonferroni inequality, states
that for any set of k tests the relationship between the familywise and individual error rates satisfy
the inequalities

αfamilywise ≤ 1− (1−αindividual )k < kαindividual .

The familywise error rate is always less than k times the individual rate, so it can be limited by setting
the individual error rate to a fraction of the desired value:

αindividual =
Desired αfamilywise

k
.

Because the Bonferroni inequality is an inequality, the actual familywise error is less than its nominal
value.

2. The union-intersection principle. In many simultaneous testing situations, an omnibus test exist for
the composite null hypothesis HC0 that all the individual null hypotheses hold. For example, the
overall test of the hypothesis β = 0 in the general linear model combines the tests that each individual
βj = 0. The compound null hypothesis, therefore, is the intersection of these simple hypotheses, while

3Because of time limitations, I did not cover this material during my talk at the meeting.
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its alternative is the union of their negation. For example, if β has three components, the composite
hypothesis and its alternative are

HC0 : (β1=0) ∩ (β2=0) ∩ (β3=0),
HCa : (β1 6=0) ∪ (β2 6=0) ∪ (β3 6=0).,

In general, writing the individual hypotheses as H01, H02, etc.,

HC0 : H01 ∩H02 ∩ . . . ,

HCa : Ha1 ∪Ha2 ∪ . . . ,

To control the familywise error rate in this situation, it is sufficient to set the level of evidence required
for any of the component tests H0j to be great enough that it will also cause the omnibus test of HC0

to be rejected at the desired αfamilywise. Scheffé’s test in analysis of variance uses this principle.

3. Sequential testing. These approaches adopt a multistage testing procedure. An omnibus test (or series
of tests) is applied first to limit the overall error rate to αfamilywise. Only when this “gatekeeper” test
has been passed do further tests take place. Because the initial test has controlled the overall Type I
error rate, the subsequent tests can adopt less stringent standards without compromising the overall
error rate. Familiar instances of sequential tests are Fisher and Newmann-Keuls procedures in the
analysis of variance.

All these methods emphasize control of Type I errors, and, by adopting more stringent criteria, they increase
the Type II error rate.

Each of these strategies has its strengths and weaknesses. In brief, the Bonferroni procedure becomes
increasingly conservative as the number of tests gets large, particularly when they are not independent.
Tests based on the union-intersection relationship also tend to be quite conservative, and they can only be
used when a satisfactory omnibus statistic exists. The sequential procedures are often more power than the
others, but they get that power from a more complex relationship to their hypotheses. They are particularly
unsatisfactory when the null hypothesis is partially false because (in their simpler forms) their protection is
applied only at the level of HC0. One false subhypothesis can disable the gatekeeper and drop control over
the rest of the subhypotheses.

Much of imaging data seems to me to fall outside the structure that has given us these approaches.
With such data, the number of potential subhypotheses (say, activation of a given voxel), the subhypotheses
are highly dependent, and the compound null hypothesis is partially (or even completely) false. Under
such circumstances, it may be better to think of the simultaneous testing problem as one of separating the
important effects that are worth following up from those that small and uninteresting. Instead of the table
above, we have

Decision made
Magnitude of

effect
Connection

identified
Connection
not identified

Interesting
Useful

discovery
Missed

opportunity

Uninteresting
False
lead

Correct
avoidance

Approaches that emphasize this structure, such as the false discovery rate, have been developed, but I will
leave them to the other speakers.


