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Abstract: We present a novel, computerized method of examining cerebral cortical thickness. The normal
cortex varies in thickness from 2 to 4 mm, reflecting the morphology of neuronal sublayers. Cortical
pathologies often manifest abnormal variations in thickness, with examples of Alzheimer’s disease and
cortical dysplasia as thin and thick cortex, respectively. Radiologically, images are 2-D slices through a
highly convoluted 3-D object. Depending on the relative orientation of the slices with respect to the object,
it is impossible to deduce abnormal cortical thickness without additional information from neighboring
slices. We approach the problem by applying Laplace’s Equation (¹2c 5 0) from mathematical physics.
The volume of the cortex is represented as the domain for the solution of the differential equation, with
separate boundary conditions at the gray-white junction and the gray-CSF junction. Normalized gradients
of c form a vector field, representing tangent vectors along field lines connecting both boundaries. We
define the cortical thickness at any point in the cortex to be the pathlength along such lines. Key
advantages of this method are that it is fully three-dimensional, and the thickness is uniquely defined for
any point in the cortex. We present graphical results that map cortical thickness everywhere in a normal
brain. Results show global variations in cortical thickness consistent with known neuroanatomy. The
application of this technique to visualization of cortical thickness in brains with known pathology has
broad clinical implications. Hum. Brain Mapping 11:12–32, 2000. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

The cerebral cortex is a topological shell of gray
matter surrounding a core of white matter with a
normal thickness of typically 3 mm [Henery et al.,
1989; Paxinos, 1990, and the classic reference by von
Economo, 1925]. Variations in thickness can be ei-
ther physiological or pathological. Physiologic vari-
ations depend on the location of the cortex, roughly
ranging from 2 mm in the calcarine cortex to 4 mm

in the precentral gyrus. Pathological variations are
associated with many diseases and can be either
localized or global. Examples of increased patholog-
ical thickness are cortical dysplasias and lissenceph-
aly [Lee et al., 1998], and examples of thinner patho-
logical cortex are Alzheimer’s disease [Double et al.,
1996; Grignon et al., 1998; Tanabe et al., 1997],
schizophrenia [Kwon et al., 1999], and anorexia ner-
vosa [Lambe et al., 1997]. Presently, there are no
satisfactory methods for determining cortical thick-
ness in vivo, although other efforts are underway
[Zeng et al., 1999]. The brain’s highly convoluted
folding in three dimensions precludes accurate anal-
ysis from radiological studies, which typically dis-

*Correspondence to: Stephen Jones, 97 Hoitt Rd, Belmont, MA
02478. E-mail: sjones@opal.tufts.edu
Received for publication 25 October 1999; accepted 22 May 2000

r Human Brain Mapping 11:12–32(2000) r

© 2000 Wiley-Liss, Inc.



play two-dimensional slices at variable orientations
with respect to the cortical shell.

There is scientific and clinical value for any
method computing the global three-dimensional
thickness of the cortex from radiological studies. A
clinical example could be a tentative diagnosis of
focal epilepsy given evidence of a pathological in-
crease in cortical thickness due to a cortical dyspla-
sia. Another example could be the early diagnosis of
Alzheimer’s disease if the pattern of cortical thin-
ning could be documented. These examples serve as
the motivation for this paper, that is, to develop a
tool used by radiologists and researchers to accu-
rately map the three-dimensional cortical thickness
over the entire cortical volume, using state-of-the-
art radiological images.

Currently, methods to determine cortical thickness
rely on a radiologist’s skill in extrapolating the three-
dimensional thickness from a series of two-dimen-
sional images. This requires estimating the angle be-
tween the intersecting imaging plane and the cortical
tangent plane. The difficulty can be appreciated with
an example shown in Figure 1, which is an axial T1

weighted MR image showing segmented gray matter.
The inner and outer boundaries of the gray matter are
overlaid with white lines, thereby “segmenting” the
cortex. A brief estimation of the cortical thickness of
the regions labeled A and B leads to the erroneous
conclusion that A is thicker than B, when in fact they
are nearly the same thickness. Unless it is known that
the image plane lies orthogonal to both cortical sur-
faces, it is impossible to determine the thickness with-
out information from neighboring slices. Similar diffi-
culties are encountered in experimental studies of the
rat’s cortical thickness [Braitenberg, 1998]. Occasion-
ally, standard image planes are known to be roughly
orthogonal to areas of cortex and thickness estimates
can be visually derived, for example using axial im-
ages of the central sulcus [Meyer et al., 1996] or inter-
hemispheric fissure. However, none of these tricks can
work in all areas of the brain at the same time without
a more involved analysis. Such an analysis is inher-
ently data intensive, given the ratio of cortical thick-
ness to cerebral diameter and the three-dimensional
nature of the problem. It is the purpose of this paper to
present such a method, now made possible by the

Figure 1.
Example of a raw axial T1 MRI image
with superimposed segmentation of
cortex. Although the cortex indicated
at point A appears thicker than that
indicated at point B, subsequent analy-
sis reveals their thickness to be almost
identical. The discrepancy is an artifact
of the three dimensional angle of inter-
section between the axial slice and the
cortical surface.
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recent availability of high resolution MRI and power-
ful computers.

The rest of this paper is outlined as follows. The
Methods section discusses the problem of defining
cortical thickness and describes an approach using
solutions from Laplace’s equation. The Results section
applies the Laplace method to MRI data from a nor-
mal brain culminating in a three-dimensional map-
ping of the cortical thickness. The results are com-
pared to results from known neuroanatomy. The
method is also extended into “supracortical” volumes
outside of the gray-CSF surface to provide a robust
definition for the “depth” of infolded cortex from an
outside surface such as the dura. Display algorithms
are described which allow one to look into sulcal folds
and observe trends in thickness variations. The paper
concludes with a discussion of the method, indicating
its general nature and powerful applicability.

METHODS

Given the goal of mapping the three-dimensional
cortical thickness everywhere in the brain, there are
two major problems to address: (1) a definition of
thickness which is robust in the highly variable and
convoluted cortical environment, and (2) a similarly
robust and rigorous mathematical algorithm to com-
pute thickness using that definition from available
imaging studies.

Definition of thickness

We start by abstracting the cortex of each hemi-
sphere to be a volume bounded by two surfaces, S and

S9. We assume S and S9 are topologically equivalent to
a sphere, that is although they are highly convoluted
they can be abstractly stretched and warped without
breaking to form the surface of a sphere. (Strictly, the
cortex from each hemisphere is topologically a sheet,
but for computational and display purposes, the hole
caused by the brainstem region is “capped,” thereby
creating a topologically spherical cortex.) The term
“thickness” has two implicit and separate notions. (1)
Thickness is always measured between a point on S
and another point on S9. That is, there is an association
of any point P on S with some point P9 on S9. (2) Given
the pair of points P and P9, there is some definition of
“distance” or “thickness” between them. In Euclidean
3-space, the distance is the length of the straightline
segment between them. Figure 2, illustrates these no-
tions with three two-dimensional examples. Figure 2a
assumes S and S9 are straight and parallel. A natural,
or intuitive, mapping from one surface to the other
uses the perpendicular projection, and a natural thick-
ness is the straightline distance between the pairs of
points. These definitions also provide four intuitive
and desirable properties for a rigorous and robust
mathematical method: (1) every point on S has a de-
fined mapping and thickness, (2) the mappings are
one to one, that is every point in S is mapped to only
one point in S9, and no point in S9 has more than one
point mapped onto it, (3) reciprocity such that the
pairs of points and the resulting thickness are the
same whether you start from P and map to P9 or if you
start with P9 and map to P, and (4) the distance is the
minimum of all possible pairs of P and P9. Figure 2b
shows a similar example where S and S9 are still

Figure 2.
Three two-dimensional examples of thickness in different geom-
etries. Panel A shows the thickness between two boundaries of
parallel straight lines as orthogonal projections (e.g., lines P–P9 and
Q–Q9 are perpendicular to both S and S9). Panel B also uses
orthogonal projections but the boundaries are curvilinear with the
distance between them much smaller than their radius of curva-

ture. Panel C has two boundaries where the distance between
them in not much smaller than their radius of curvature. The
thickness based on orthogonal projections is compatible with
example pathlengths P–P9, and R–R9, but not at pathlengths orig-
inating from point Q.

r Jones et al. r

r 14 r



quasi-parallel but no longer straight. This example
also provides the same four valuable properties as the
previous example. However, Figure 2c shows an ex-
ample of a varying thickness where the above defini-
tions encounter difficulty and no longer satisfy the
three properties. The mapping from P to P9 and R to R9
might make sense, but not for points like Q, which
represents the majority of points on S in this example.
It is not intuitively clear which point Q9 is the best
mapping for Q. Also, a projection from Q orthogonal
to S is no longer guaranteed to be orthogonal to S9 at
Q9 (thus reciprocity is lost). This difficulty becomes
amplified as we analyze real examples in three dimen-
sions.

There are two definitions of thickness with natural
motivations. The first approach derives from anatomic
measurements on cadaveric brains, where a depth
gauge is inserted through cortex being perpendicular
to the gray-CSF surface. The thickness is read as the
depth when the gauge reaches the gray-white surface.
The second approach derives from a minimization
principle where the thickness at any point on the
gray-CSF surface is defined as minimum distance of a
straight line to any point on the gray-white surface.
This condition is met when the straight line intersects
the gray-white surface perpendicularly. A two-dimen-
sional schematic of these definitions is shown in Fig-
ure 3 for the example of Figure 2c. The first mapping
(Fig. 3a) uses the orthogonal projection from S to S9
(that is, the straight line from P to P9 is perpendicular
to the surface at S). This mapping has three problems:
the straight-line distance from P to P9 can seem intu-
itively too long, there is a loss of reciprocity from P9 to
P as P9 maps to P0, and another point Q could map to
the same point P9. The approach in Figure 3b finds the
closest point on S9 to P. This is equivalent to finding a
point P9 such that the straight line from P to P9 is
perpendicular to the surface at S9. But this definition
encounters the same problems as the first: the straight-
line distance from P to P9 can seem intuitively too
long, there is a loss of reciprocity, and a loss of unique-
ness.

To conclude, the intuitive and simple definitions
that applied well to Figure 2a and b and provided
three rigorous mathematical properties, cannot be ap-
plied to examples like Figure 2c and yield simulta-
neously the same mathematical properties. Applied to
the cortex, the simple definitions are probably good
enough if the cortex is thin and gently curves, but fail
in regions of high convolutions or rapidly varying
thickness. Put mathematically, if R and R9 are the radii
of curvature for P and P9 with DR 5 R–R9, simple
definitions apply when DR/R ! 1. (Rigorously, for

any value of DR/R, the simple definitions apply in the
special case where the radius of curvature vectors of P
and P9 are colinear).

Therefore, we seek a new definition of mapping and
thickness which preserves the mathematical proper-
ties provided by examples Figure 2a and b, yet is
applicable in examples like Figure 2c. We approach
regions like Figure 2c as composed of many nested
sublayers and consider the thickness of each sublayer
separately. In this limit DR/R is small for all sublayers
and the simple definitions can be applied to each
sublayer. The strategy is to define the overall thickness
as the sum of the sublayer thickness. This approach
preserves the desired rigorous mathematical proper-
ties when DR/R ! 1, and has an analogous association
to known neuroanatomy where the cerebral neocortex
is composed of six layers. Thus, we seek a method that
describes a series of nested surfaces that can be
smoothly deformed from S to S9. Such a series of
surfaces is reminiscent of the equipotential surfaces
used in the mathematical description of electrostatic
fields. These surfaces are described by Laplace’s equa-
tion. For the remainder of this paper we borrow this
tool from mathematical physics and apply it to the
problem of cortical thickness.

Figure 3.
Two candidate definitions for thickness in a two-dimensional ex-
ample based on one orthogonal intersection. Panel A assumes an
orthogonal projection from S which crosses to intersect S9, as
exemplified by P–P9. Not the lack of reciprocity as the orthogonal
projection from P9 does not return to P9. Panel B assumes a
projection from S that crosses to orthogonally intersect S9. This is
equivalent to finding the point P9 on S9 closest to a given point P
lying on S. Again, there is a lack of reciprocity.
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Mathematical model for thickness

The centerpiece of this paper is the application of
Laplace’s equation to compute cortical thickness in
concordance with the discussions above. Laplace’s
equation is fundamental to mathematical physics and
has applicability over a broad range of phenomena.
Examples include gravitational fields for celestial dy-
namics, electrostatic fields for particle acceleration,
thermodynamic flows, any diffusion calculation, invi-
cid incompressible fluid flow, and hydrostatics [Bland,
1965; Morse et al., 1953].

Laplace’s equation is a second-order partial differ-
ential equation for a scalar field c that is enclosed
between boundaries S and S9. Mathematically, it takes
the form

¹2c 5
]2c

]x2 1
]2c

]y2 1
]2c

]z2 5 0

where c 5 c1 on S and c 5 c2 on S9. Functions that
satisfy Laplace’s equation are called harmonic or po-
tential functions. Harmonic functions have many
beautiful mathematical properties. Included among
them is an underlying geometric structure, which ap-
plies naturally to the definition of cortical thickness.
For our example, Laplace’s equation describes a lay-
ered set of nested surfaces that make a smooth tran-
sition from S to S9. This is the desired property for
computing cortical thickness as described in the pre-
vious section.

Figure 4 shows a two-dimensional example of
how Laplace’s equation determines thickness. A
“potential” c is defined everywhere between the
two lines such that c 5 0 on S, c 5 10,000 on S9, and
¹2c 5 0 everywhere in between. The values of 0 and
10000 can be assigned units of volts, in analogy with
electrostatic fields. Mathematically, the final pattern
of streamlines is independent of the choice of
boundary condition voltages, as long as the two
voltages are different. The resulting profile of c is a
smooth transition from c 5 0 V on S to c 5 10,000
V on S9. The significant property of Laplace’s equa-
tion is that nonintersecting intermediate lines, or
isopotentials, with constant values between 0 V and
10,000 V must exist between S and S9. Examples are
indicated as dashed lines for isopotential values of
2,500, 5,000, and 7,500 V. In effect, these intermedi-
ate lines divide the volume into any desired set of
sublayers. Once the solution of c is obtained, “field
lines” are computed using

E 5 2¹c

that is normalized to

N 5 E/iEi

N represents a unit vector field defined everywhere
between S and S9 which always points perpendicu-
larly to the sublayer on which it sits.

After computing N, “field lines” or “streamlines” are
computed by starting at any point on S and integrating
N. For example, in Figure 4, consider starting at point P1
and using a large integration step size. Integrating N
takes you from P1 to P2 to P3 to P4 to P5, with the five
points forming a “streamline.” The pathlength can be
defined as the sum of straightline distances from P1 to P2
to P3 to P4 to P5. Although this example crudely uses a
total of four steps to cross from P1 to P5, any larger
number of steps n with smaller step size could be used to
describe a curve from P1 to Pn. The larger the number of
steps, the more accurate the streamline fits an ideal
curve. Mathematically, a curve which starts at P1, ends at
Pn, and has length T is described by a vector function
C(s) parameterized by s and defined by

dC~s!

ds 5 N~C~s!!

where C(0) is point P1 and C(T) is point Pn.
As mentioned previously, the mathematical formal-

ism of Laplace’s equation underlies the description of

Figure 4.
Two-dimensional example of Laplace’s method. Laplace’s equation
is solved between S and S9, which have predetermined boundary
conditions of 10,000 V and 0 V, respectively. Three examples of
resulting intermediate equipotential surfaces are indicated for
2,500 V, and 5,000 V, and 7,500 V. Field lines connecting S to S9 are
defined as being everywhere orthogonal to all equipotential sur-
faces, as exemplified by the line connecting P to P9.
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vastly different physical systems. Nevertheless, each
system must share those properties of Laplace’s equa-
tion that are mathematically guaranteed to occur.
Among the properties are the following [Apostle,
1967; Morse et al., 1953]:

(1) Laplace’s equation is manifestly three-dimen-
sional and is, thus, independent of the coordinate
system.

(2) The streamlines can never cross, although they
can bifurcate in contrived conditions containing a
saddlepoints where E 5 0 (i.e., a point of unstable
equilibrium). The saddlepoint condition will not occur
in our application to the cortex because the volume is
bounded by two surfaces, each of which is continuous
and enclosed. (Streamlines can cross if there is a “point
source” in the interior, in which case Laplace’s equa-
tion becomes Poisson’s equation.)

(3) Any point P on S maps to a point P9 on S9, and
P9 maps back to P, so reciprocity is automatic. From
this follow two important corollaries: Every point
on S is guaranteed to have a unique streamline
ending at some point on S9, and every point on S9 is
guaranteed to have a unique streamline ending at
some point on S.

(4) Any and every point in the interior between S
and S9 has a unique streamline going through it, con-
necting a pair of points on S and S9.

(5) Every streamline can be associated with its
length and this can be used to define the thickness
between P and P9.

(6) Properties 4 and 5 imply that every point be-
tween S and S9, inclusively, is associated with a thick-
ness. Thus, the thickness can be defined in the volume
rather than on a surface. This has implications for
display purposes.

(7) The value of the thickness along a streamline is
constant.

Aside from the mathematical properties, the con-
cept of nested sublayers makes sense geometrically
and anatomically. Further, computational methods
solving Laplace’s equation are simple and robust
[Press et al., 1992].

Computational method

All computer algorithms were written using IDL
[Research Systems, Inc., 1998] and run on Sun Ultra II
with 158 MB RAM and 1.5 GB swap space. IDL is a
high level graphical language that allows fast and
efficient development and debugging. IDL routines
are optimized C programs that allow parallel-like
computation with large data arrays.

Because multiple scans were often obtained at the
same time, analysis begins by averaging all scans and
compiling them into one three-dimensional dataset.
Then the following nine steps are performed:

(1) Because raw MRI data includes all cranial struc-
tures, voxels corresponding to the cortical volume
must be separated, or segmented, from all other vox-
els. The first step is to isolate the cerebrum, for which
the skull, spinal cord, brainstem, orbits, and cerebel-
lum are removed semi-automatically by using alter-
nating cycles of the mathematical morphological op-
erations erosion and dilation. In essence, with
appropriate choice of thresholds, erosion cycles widen
the gaps between cranial structures so they are no
longer contiguous. Thus isolated, they can be re-
moved. The remaining cerebral core is then de-eroded,
or dilated, until restored to its pre-erosion state. Tech-
niques to isolate the cerebrum from MRI images is an
active field of research, to which we make no claim,
and the interested reader is referred for details to the
recent review and references in Dale et al. [1999].

(2) Although the data is acquired in a three-dimen-
sional mode, there exist gradual slice-to-slice varia-
tions in signal intensity. Normalizing the gray matter
peak (taken from the histogram of signal intensities)
rescales the signal intensity for each slice to the mode
of gray matter peaks from the entire brain. Interpolat-
ing normalization factors from interior slices solves
difficulties encountered in extreme slices due to vol-
ume averaging.

(3) Within one slice, there exist low spatial fre-
quency variations in signal intensity due to scanner
inhomogeneities. The inhomogeneities are measured
as the low order modes of a two-dimensional Fourier
transform. The inverse transform of the low order
modes forms a low-pass filtered image that can be
used as a correction factor to rescale the initial image
and thereby remove low-frequency nonuniformities.
Although algorithmic details minimize volume aver-
aging effects in the extreme slices, a three-dimensional
Fourier transform is the ideal approach, which could
not be implemented for this analysis.

(4) Because the voxel aspect ratio is typically non-
uniform, the data are regridded using a trilinear inter-
polation to achieve a 1:1:1 aspect ratio. This is not
computationally necessary, but makes coding and de-
bugging easier.

(5) Because the cortex is folded so that opposing
sides of a sulci may lie very close to each other, it is
important to carefully segment the gray-CSF surface.
If the gray-CSF boundary is missed in such regions,
the cortex will seem to have at least twice the correct
thickness. Often, raw MRI data does not have the

r Mapping Using Laplace’s Equation r

r 17 r



capability to fully resolve a small gap between oppos-
ing gray-CSF surfaces, so an algorithm is employed to
estimate sulcal location by local examination around
the sulcus. An average image is obtained using a
boxcar, or local, average technique with a kernel that
is much wider than the cortical thickness. The average
image can be subtracted from the original image, us-
ing appropriate scaling factors, thereby amplifying
regions with high frequency changes. Such regions
include the small gaps between opposing gray-CSF
surfaces. With optimal choice of scaling factors, the net
result is to increase the contrast of sulcal regions by
decreasing the signal intensity within the intervening
CSF voxels. “Thinning” routines from image process-
ing are then used to select these voxels and develop a
skeleton image of the back-to-back gray-CSF surfaces
within sulci. The skeleton is only one voxel wide, and
can be subtracted from the original image to “scour”
the sulci. This process does not improve the resolu-
tion, but it does improve the segmentation.

(6) Following all image corrections, the cortex is
segmented using two thresholds for the gray-CSF sur-
face and for the gray-white surface. Every voxel is
then associated with one of three volumes, a cortical
volume (gray matter), a white matter volume, and an
extra-cerebral volume.

(7) The white matter volume is set to a fixed poten-
tial of 0, and the supra-cortical, or CSF, volume is set
to a fixed potential of 10,000. Laplace’s equation is
solved iteratively throughout the entire data volume,
keeping the white matter and CSF volumes fixed at 0
and 10,000, respectively. Computational methods to
solve Laplace’s equation are standard [Johnson et al.,
1982; Press et al., 1992] and the simplest (the Jacobi
method) takes the form

ci11~x,y,z! 5 @ci~x 1 Dx,y,z! 1 ci~x 2 Dx,y,z!

1 ci~x,y 1 Dy,z! 1 ci~x,y 2 Dy,z!

1 ci~x,y,z 1 Dz! 1 ci~x,y,z 2 Dz!#/6

where ci(x,y,z) is the value of the potential at x,y,z
during the ith iteration. Convergence is measured by
the total field energy over all voxels

εi 5 O~~Dci/Dx!2 1 ~Dci/Dz!2! 1 ~Dc/Dz!2)]1/2

Iterations continue until the ratio (εi2εi11)/εi becomes
smaller than a preset threshold, typically about 1025.
Convergence usually occurs well under 200 iterations
for data with 0.5 mm resolution.

(8) Gradients of c are computed using simple two
point differences, for example,

Dc~x,y,z!/Dx 5 @c~x 1 Dx,y,z! 2 c~x 2 Dx,y,z!#/2

All gradient vectors are normalized to produce the
tangent vectors field N, for example,

Nx 5 ~Dc/Dx!/@~Dc/Dx!2

1 ~Dc/Dy!2 1 ~Dc/Dz!2!]1/2

(9) The streamlines are computed for every voxel in
the cortical volume. Every voxel acts as the origin for
the streamline passing through it, going in one direc-
tion to the V 5 0 surface and in the other direction on
the V 5 10,000 surface. The streamline is determined
in two parts by integrating the tangent vector field
using Euler’s method, first from the voxel to the V 5
0 surface, and then from the voxel to the V 5 10,000
surface. Euler’s method was chosen because of speed
over a Runge-Kutta method. The two pathlengths are
added together and define the thickness for the
streamline passing through the voxel.

The illustrative examples so far have been in two
dimensions. Figure 5 provides a three-dimensional
example, which illustrates the concept of thickness as
a volumetric measure. The top panel shows a small
section of a brain to be highlighted. The middle panel
amplifies that section of cortex as a mathematical shell,
with an outer gray-CSF boundary set to 0 V and an
inner gray-white boundary set to 10,000 V. Examples
of intermediate sublayers at 7,500 V and 2,500 V are
included. Although several examples are displayed of
streamlines connecting the gray-CSF surface to the
gray-white surface, the entire volume can be visual-
ized as being filled with an infinite number of nonin-
tersecting streamlines. Furthermore, each line can be
associated with a number that is the length of that line,
thereby providing a volumetric definition for cortical
thickness.

Laplace method in supracortical volume

The Laplace method has so far been applied to the
cortical volume between the gray-CSF surface and the
gray-white surface. The method is very general and
can be applied to any volume that is bounded by two
nonintersecting surfaces where the notion of map-
pings, trajectories, and intermediate surfaces apply.
One such volume is the supracortical volume between
the gray-CSF surface and an extracerebral surface,
such as the inner calvarial surface. The exterior surface
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is formed computationally by “dilating” the all gray/
white matter voxels through 12 cycles. Each cycle
consists of expanding a volume of voxels to include all
voxels lying directly adjacent to the prior volume.
Thus, after several cycles, all sulci are filled in and the
exterior surface becomes less convoluted, approaching
that of the inner surface of the skull. The Laplace
method can be applied to the volume between the new
supracortical surface and the gray-CSF surface, result-
ing in a valuable one-to-one mapping. Because each
cerebral hemisphere is nearly topologically equivalent

to sphere, this method can effectively map the cortical
surface onto a sphere (or any other sphere-like surface,
such as the inside surface of the skull). Figure 6 shows
a two-dimensional schematic of this method. The top
panel shows a simple cortical hemisphere drawn as an
oval with a large indentation representing a single
deep sulcus. Sample points A through P are labeled on
the cortical surface, and are equidistant from each
other. The cortex is drawn with uniform thickness
except near point D, and the thickness is coded by
varying shades of gray. The supracortical volume is

Figure 5.
Three-dimensional cartoon example of
Laplace’s method. The top panel shows a por-
tion of cortex to be highlighted below. The
middle panel converts that segment of cortex
into a mathematical volume for Laplace’s
method. The gray-CSF surface and gray-white
surfaces are fixed to boundary conditions of 0
V and 10,000 V, respectively, and Laplace’s
equation is solved in between. Two examples
of resulting intermediate equipotential sur-
faces are indicated for 2,500 V and 7,500 V.
Five example field lines are indicated connect-
ing the two surfaces, which are everywhere
orthogonal to all intermediate equipotential
surfaces. The cortical thickness is defined any-
where in the cortical volume as the thickness
of the field line passing through that point and
connecting the two surfaces. The cortical vol-
ume intersects an “observation plane,” on
which thickness results are mapped for tomo-
graphic visualization as exemplified in the bot-
tom panel. For example, the line A–A9, with a
pathlength of 2.8 mm, happens to intersect
the observation plane. That region of the ob-
servation plane is then color-coded for 2.8
mm with respect to the color bar.
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externally bounded by a surface created by multiple
iterations expanding the internal surface one voxel in
each direction. As with the cortical analysis, the two
surfaces are set to different boundary conditions and
Laplace’s equation is solved in between. After com-
puting normalized gradients from Laplace’s solution,

streamlines are computed as shown by the lines con-
necting points A to A9, B to B9, etc. The streamlines can
be interpreted as a one-to-one mapping of points from
the cortical surface to the supracortical surface.

The advantage of the supracortical application is
that each point on the cortical surface is associated
with a pathlength representing the “depth” of that
cortical element with respect to the supracortical sur-
face. This provides some measure of cortical geome-
try, particularly about its folds and convexities. Fur-
thermore, it becomes possible to correlate various
cortical quantities with respect to cortical depth. For
example, the variation of cortical thickness with cor-
tical depth can be evaluated.

Tomographic display method

The final result of the Laplace computation is a
three-dimensional volume of numbers, one for each
voxel in the cortical volume. Because the analysis is
three-dimensional, the amount of data produced is
considerable, and presentation of meaningful results
becomes a significant task. One approach is a tomo-
graphic presentation of the cortex that is color-coded
to represent cortical thickness.

A cartoon example of the tomographic approach is
presented in the middle and lower panels of Figure 5.
The middle panel displays an imaging plane intersect-
ing the cortex and labeled the “observation plane.”
Consider the line connecting points A to A9 which, for
example purposes, measures 2.8 mm in length. Be-
cause point A is below the observation plane and
point A9 is above the plane, the line A–A9 must cross
the plane as indicated at the point between the 7,500 V

Figure 6.
Two-dimensional cartoon showing the application of Laplace’s
method to an extracortical volume. The top panel schematically
shows one hemisphere with one large sulcus, labeled by points A
through P spaced equidistant along the cortical surface. The thick-
ness of the cortex is coded by shades of gray, for example, the
dark shade at D reflects increased thickness. Laplace’s method is
applied to the extracortical volume defined between the cortical
surface and a smoothed extracortical surface. Field lines from
Laplace’s method connect the two surfaces (e.g., lines A–A9,
through P–P9). Note the points A9 through P9 are no longer
equidistant. The middle panel uses the field lines to translate the
coded cortical thickness from the cortical surface to the extra-
cortical surface. Thus, the thicker cortex at point D is mapped as
a correspondingly darker shade at point D9. The bottom panel
results from warping the points from the middle panel so they are
now equidistant. The darker shade mapped at point D9 is now
easily visualized.
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and 2,500 V surfaces. Now consider the bottom por-
tion of the Figure 5, which shows only the observation
plane face-on. The lines of intersection of the observa-
tion plane with the gray-CSF surface and the gray-
white surface are seen as the quasi-parallel curved
lines. The area between those two lines represents the
intersection of the cortical volume with the observa-
tion plane. That area is coded in shades of gray, with
respect to the scale at left, representing the length of
streamlines passing through any point. For example,
the point corresponding to the intersection of the line
A–A9 with the observation plane is indicated in the
bottom panel by an arrow. Because the line A–A9
measures 2.8 mm in length, the shade of gray at that
point corresponds to 2.8 mm in the gray scale.

Surface-rendering display method

Another approach to present meaningful results is a
rendering of the visible surface of the brain from an
external projection. Again, the surface can be color-
coded to represent cortical thickness, in case corre-
sponding to the outermost voxels in the cortical vol-
ume. The drawback of this approach is that nearly
80% of cortex lies inside sulci, which is not visible to
an outside observer. One solution is to include those
internal voxels by mapping all voxels to a supracorti-
cal surface. Such a technique was described earlier,
and a two-dimensional example is illustrated in the
middle panel of Figure 6. Because the supracortical
surface lacks the sulcal fold of the cortical surface, the
points A9 through P9 are no longer equally spaced
around the perimeter. The mapping warps the stream-
lines such that they are focused where the sulcus
opens toward the supracortical surface. Notice that all
of the cortical points between A and E are mapped
into the short supracortical interval between A9 and
E9. Furthermore, the streamline mapping translates
the thickness-shading of the cortical surface to the
supracortical surface. For example, the dark shade
representing the thicker cortex at point D corresponds
to the same dark shade at point D9. A surface render-
ing of the supracortical surface now visualizes infor-
mation from all voxels associated with the external
surface of the cortical volume. However, points on the
supracortical surface are no longer equidistant, and
details about the cortex originating within sulci are
compressed and not easily visualized.

Cortical-warping display method

Visualization of sulcal details on the supracortical
surface can be recovered by warping points on that

surface so they become equidistant. For example, in
the bottom panel of Figure 6, visualization of details
from A9 to E9 is increased by warping all points A9
through P9 so they now become equidistant. A surface
rendering of the warped supracortical surface now
reveals and resolves all voxels formerly hidden within
the sulcal depths and compressed within a narrow
region.

The warping algorithm is applied to three-dimen-
sional MRI data by modeling each mapped voxel on
the supracortical surface to have a positive electric
charge such that it repels nearest neighbors. Nearest
neighbors are defined on the original cortical sur-
face as those directly adjacent to each other. Math-
ematically, the mean field of nearest neighbors is
computed for each mapped voxel using an inverse
potential. That is, the energy between any two near-
est neighbors is inversely proportional to the dis-
tance between them. The mapped voxel moves pro-
portionately in response to the mean field of all
nearest neighbors, kinematically equivalent to mo-
tion dominated by high viscosity. The mapped vox-
els are constrained to move on the supracortical
surface. All voxels are moved in parallel, and new
fields are computed, and the process is repeated
iteratively until the system reaches equilibrium. The
approach to equilibrium is measured by the total
system “energy” which is the sum of all nearest
neighbor energies. This algorithm is not optimized
and represents the most time-consuming portion of
the analysis. This technique is related to an earlier
one successfully developed by Dale et al. [1993] and
refined by Fischl et al. [1999].

Data acquisition

The success of any method measuring cortical thick-
ness depends on the quality of the imaging data,
which should meet the following three criteria. The
first is to utilize all three dimensions evenly and fully
because the brain is three-dimensional and has no
preferred axis or orientation. The second criteria are to
use sufficient resolution so that the thinnest cortex can
be spanned by at least several voxel elements. For
example, if the thinnest cortex is of the order 1 mm,
then we require voxel sizes of 0.5 mm or smaller. The
third criterion is sufficient contrast between the gray
matter, white matter, and CSF so that the cortex can be
reliably segmented. These goals are satisfied by the
use of state-of-the-art MRI using high resolution,
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Figure 7.
Close-up example of gradients of Laplace’s
solution in an axial plane from real data. The
blue line represents the gray-white junction,
and the red line represents the gray-CSF junc-
tion. The small arrows are projections of the
gradient vectors in the axial plane. These ar-
rows are tangent to the streamlines connect-
ing the two surfaces. Arrows appear short
when they are projecting predominantly out
of the axial plane [e.g., at position (15,5)]. The
gradients are insensitive to small segmentation
errors as seen but the sulcal discontinuity at
position (30,29).

Figure 8.
Close-up of three-dimensional ex-
ample of cortical volume from real
data. The volume of data is roughly
10 3 10 3 10 voxels. The red sur-
face is the gray-white surface from a
sulcal bank on the lateral aspect of
one hemisphere. The three contin-
uous curvilinear lines are intersec-
tions of three axial planes with the
gray-CSF surface, and thus lie on the
gray-CSF surface. The connecting
lines are examples of streamlines us-
ing the Laplace method. The cortical
thickness at any point in the cortical
volume is defined as the length of
the streamline passing through it and
connecting the two surfaces.
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three-dimensional data acquisition algorithms on a T1
sequence.

Data were acquired using the 1.5 T and 3.0 T scan-
ners at the NMR center of the Massachusetts General
Hospital (Charleston, MA, USA). Although both nor-
mal and abnormal brains were scanned, this paper
only presents the analysis from multiple scans on one
brain as a proof-of-principal for the Laplace technique.
Results from applications to abnormal neuroanatomy
will be presented in a forthcoming paper.

The scans for this paper were performed on a Gen-
eral Electric Signa 1.5 T scanner. Sagittal T1 weighted
images were acquired using a 3D SPGR sequence,
employing IR preparation, variable bandwidth, and
extended dynamic range, with TR 19 msec, TE 3.8
msec, TI 300 msec, flip angle 25, FOV 25 cm, slice
thickness 1.2 mm, 124 slices, and 1 NEX. Although
both low resolution (256 3 192) and high resolution
(512 3 192) acquisition matrices were used, only the
high-resolution results are presented here. The ac-
quired voxel resolution was 0.5 mm 3 1.3 mm 3 1.2
mm. The data was interpolated to form cubic voxels
with an edge length of 0.5 mm. Two 9-min and 43-sec
scans were obtained and averaged together.

RESULTS

An example of the field vectors from the Laplace
solution from one small section of an axial slice is
shown in Figure 7. At every grid point within the
solution space of the cortical volume is a small arrow
representing the component of the direction vector in
the plane of the figure. As expected, the vectors all
point in a smooth manner from the internal gray-
white surface to the external gray-CSF surface. The
thickness associated with any grid point can be calcu-
lated by following the direction of the vectors in both
directions until the boundaries are reached. The thick-
ness is defined as the total length of the path between
the boundaries. Although Figure 7 is a two-dimen-
sional slice for display purposes, the algorithm is com-
puted three dimensionally as revealed by short arrows
indicating vectors pointing out of the plane of the
figure, such as at Cartesian coordinates (15,4).

Figure 7 also demonstrates the difficulties of seg-
menting the sulci and the insensitivity of the Laplace
method to small errors. Notice that the end of the sulci
at (32,29) is not directly connected to the beginning of
the sulci. The segmentation routines have failed to
completely resolve the sulci, leaving several sulcal
islands. Such gaps cause errors of a factor of two in
any definition of thickness based on the direct trajec-
tory from one boundary to the other. An advantage of

the Laplace method is that the overall solution is in-
sensitive to the effect of gaps if they are small enough.
Notice the direction vectors at (31,27) point as if a
sulcal gap does not exist. Mathematically, the Laplace
solution computes a saddlepoint that effectively bifur-
cates the cortical region as if a sulcus was continuous.
A pathlength can still be calculated by taking advan-
tage of the nonzero step size used to integrate the
streamline. In the limit of zero step size, as the stream-
lines approach the saddlepoint they quickly turn away
and never cross it. If the step size is sufficiently large,
the integrated streamlines fail to make the turn and
the saddle is crossed, effectively stepping across the
gray-CSF surfaces and into the opposing face of cor-
tex. This condition can be used to terminate the path-
length calculation, resulting in a reasonable approxi-
mation for the thickness as if the sulcal gap did not
exist. Overall, we must balance the between the errors
of integrating with a larger step size with that of an
imperfect segmentation.

Figure 8 is an enlarged three-dimensional rendering
of a small portion of cortex showing how the Laplace
solution inherently solves for field lines in three di-
mensions. The red surface is the gray-white boundary.
The three curved lines are the intersection of three
axial planes with the gray-CSF junction. At intervals
along these lines are many examples of field lines that
connect the gray-white junction according to the
Laplace solution. The inherent three-dimensional so-
lution becomes manifest as the field lines twist in
space according to the direction of the cortical volume.
The length of any field line is used to define the
cortical thickness in the region of that line.

After solving the Laplace equation, the cortical
thickness is calculated and mapped at every grid point
within the cortical volume by calculating the path-
length of the streamline that passes through that grid
point connecting the gray-CFS surface to the gray-
white surface. The thickness mapping is presented
tomographically in the three cardinal planes as shown
in Figure 9. The thickness in millimeters at any point
within the cortex is color-coded with respect to the
color bar on the right. Green-yellow colors represent
cortex about 3 mm thick, whereas the dark blue colors
represent cortex is about 1 mm thick.

A known neuroanatomical variation is the marked
difference of thickness between the precentral gyrus
and the postcentral gyrus [Meyer et al., 1996]. The
axial image in Figure 9 shows the posterior bank of the
central sulcus as visibly thinner than the anterior
bank. To quantify the difference, each bank was sam-
pled over 20 random locations. The anterior bank had
a mean thickness of 2.8 mm (sample range of 2.5 to 3.5)
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whereas the posterior bank had a mean thickness of
1.9 mm (sample range of 1.2–2.4). Although the left
hemisphere was slightly thinner than the right hemi-
sphere at the central sulci, the ratio of the anterior
bank to the posterior bank was 1.50 for each hemi-

sphere. This ratio is the same as presented by Meyer et
al. [1996], using a MR technique focusing only on the
central sulcus.

A statistical analysis of the cortical thickness is
presented by the histogram in Figure 10. The verti-
cal axis is a logarithmic scale of the relative fre-
quency of cortical thickness with respect to the
mode. The left and right hemispheres are analyzed
separately as a self-consistency check. The cortex
used for the Laplace solution has a computational
volume of 3.75 million voxels, representing a real
volume of 457 cm3. The mean thickness is 2.69 mm
for the left hemisphere and 2.67 mm for the right,
which implies the total cortical surface area is 1702
cm2. The median thickness for the left and right
hemispheres is 2.52 mm and 2.49 mm, respectively.
The median and mean differ by only 6%, implying
the tail provides a small deviation to the mean. The
standard deviation about the mean thickness is 0.61
mm. The thinnest 1% is less than 1.4 mm thick, and
the thickest 1% is more than 4.5 mm thick. The
origin of the thick “tail” is not clear, because it could
result from segmentation errors at the bottom of
gyral folds where the sulcus is not resolved.

Although a tomographic presentation is useful to
examine the thickness of specific cortical regions,
global variations along the surface are difficult to ap-
preciate in a single slice. An alternative presentation is
a simple surface rendering from an external view-
point, as presented in Figure 11. The thickness of the
external-most voxels is color-coded similarly to that of
Figure 9. Topological landmarks are more easily seen,
such as the central sulcus and Sylvian fissure. Global
patterns in thickness are appreciated, such as a thinner
postcentral gyrus, thicker precentral gyrus, and a
thicker temporal lobe.

A correlation can be computed between the original
cortical thickness and the sulcal depth. Figure 12
shows a color-coded contour plot constructed from
juxtaposed histograms of cortical thickness at each
sulcal depth. Each histogram is normalized to unity at
each sulcal depth. The sulcal depth is calculated from
applying the Laplace method to the supracortical vol-
ume. Because the supracortical surface lies a few mil-
limeters off the superficial cortical surface, an additive
constant is subtracted from all sulcal depths to renor-
malize all values so that superficial cortex is defined as
zero depth. This provides the useful interpretation
that any cortex with nonzero depth lies within a sul-
cus, and the higher the value the greater the depth.
The lightest green color indicates the most common
cortical thickness at that sulcal depth. The seven con-
tours are spaced evenly between 0.9 and 0.3. At the

Figure 9.
Tomographic mapping of cortex to cortical thickness. The cortical
volume is color-coded for thickness such that red, blue, green, and
yellow regions are 1, 2, 3, and 4 mm thick, respectively. The images
are from the three cardinal planes of the left hemisphere from one
scan.
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surface of the cortex (zero sulcal depth), the mean
thickness is about 2.63 mm, whereas at any cortex
deeper than 8 mm, the mean thickness decreases to
2.30 mm, a reduction of 14%. This result is concor-
dant with known neuroanatomy [Meyer et al., 1996],
and serves as further validation for the Laplace
method.

Figure 13 shows a high resolution image equivalent
to Figure 11 with the addition of the warping algo-
rithm. Both lateral and medial surfaces are shown for
each hemisphere. Details within the sulcal folds are
now revealed on the surface, whereas they were com-
pletely buried in Figure 11. In effect, the cortical sur-
face has been “inflated,” a procedure pioneered by
Dale et al. [1999] using a different method. The poste-
rior bank of the central sulcus is clearly seen on both
lateral surfaces as a dark band near the superior bor-
der, reflecting an absolute thinness with respect to the
anterior bank. The visual cortex of the calcarine sulcus

is also seen as a darker band on the posterior aspect of
the medial surfaces.

Figure 14 presents cortical thickness and sulcal
depth of the warped supracortical surface, together in
one image. The sulcal depth is color-coded with re-
spect to the color bar, so that red represents cortex
originally lying on the superficial aspect of the brain,
and green to yellow represents cortex originally lying
deeper within sulci. Because the warping method has
evenly spaced the mapped voxels over the supracor-
tical surface, the ratio of cortex within and outside of
sulci is readily apparent by the amount of red with
compared to yellow-green. Lastly, any mapped voxel
associated with thin cortex (defined as the lowest 20%
of all thickness measurements) is displayed with an
overlying white dot. Regions of thin cortex give the
appearance of white clouds. The posterior bank of the
central sulcus is easily seen as a continuous white
band on the superior aspect of the lateral images. The

Figure 10.
Logarithmic histogram of frequency of cortical thickness from all
calculated pathlengths, segregated by hemisphere. The most prev-
alent thickness in each hemisphere is about 2.5 mm. The falloff for

both thinner and thicker cortex is nearly exponential. Significant
differences between the hemispheres are not discernable. Thick-
ness much larger than 7 mm are likely due to segmentation errors.
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Figure 11.
Lateral view of superficial surface of
left hemisphere with a color-coded
mapping for cortical thickness. The
color bar indicates any red, blue,
green, and yellow cortex as being 1
mm, 2 mm, 3 mm, and 4 mm thick,
respectively. The view is a direct
projection of the externally visible
and unwarped cortical surface,
therefore, all mappings associated
with sulcal cortex are not visualized.
The high density of voxels lying on
the sulcal banks visualizes the sulci.
The defects at the anterior aspect of
the temporal lobe are due to seg-
mentation errors arising from the
orbits.

Figure 12.
A color-coded contour plot shows the rela-
tionship between cortical thickness and sulcal
depth. At each sulcal depth, a histogram of all
cortical thickness is obtained. Each histogram
is normalized to unity. The histograms are
then “stacked” together to form a mathemat-
ical matrix that can be visualized as a two-
dimensional contour plot. There are seven
contours at levels between 0.9 and 0.3. Bright
colors (white-yellow) at the highest contours
reveal the most common cortical thickness at
each sulcal depth. The downward trend of all
contours from 2.63 mm in the superficial cor-
tex to 2.30 mm in the interior cortex is inter-
preted as a 14% reduction in cortical thickness
with cortical depth. The transition is mostly
complete for cortex deeper than 6 mm.
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general thickness of superficial cortex is revealed by
the absence of white dots from cortex displayed as
red. Both of these observations are corroborated by
known neuroanatomy and serve to further validate
the method.

DISCUSSION AND CONCLUSIONS

This paper has presented a method based on
Laplace’s equation that can accurately compute a mea-
sure of the 3-D cortical thickness anywhere in the
brain, given an accurate segmentation. Although cor-

tical thickness measurements have been presented be-
fore [see Paxinos, 1990], they have suffered three
drawbacks. First, they measure only a limited number
of points throughout the cortex, sometimes only fo-
cusing on the central sulcus [Meyer et al., 1996]. Sec-
ondly, the standard measurements for reference are
very old and were conducted on postmortum brains
that were fixed, a process resulting in undetermined
shrinkage. Lastly, these methods all employ a straight-
line definition for thickness, which although valid in
flat cortical regions, fails in highly curved or irregular
regions. As such, the cortical thickness results pre-

Figure 13.
Color-coded mapping of cortical surface with cortical thickness.
The cortex has been warped to improve visualization by flattening
the sulcal geometry to an smoothed extracortical form while
approximately conserving relative cortical surface areas. The color
bar codes for cortical thickness such that red is 1 mm thick and

yellow is 4 mm thick. This highlights the relative thinness of the
posterior bank of the central sulcal that is seen as a dark band
emanating from the superior aspect of both lateral projections.
The four views are from one scan which represent medial and
lateral views of the left and right hemisphere.
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sented in Figure 14 are the first in vivo measurements
incorporating the entire brain.

The only approach at present to validate the Laplace
method is to corroborate cortical thickness results with
that of established variations in neuroanatomy. Here
we focus on two well-known variations, the first in-
volving the banks of the central sulcus, and the second
involving decreasing thickness with sulcal depth. The
first variation is supported by Figures 10 and 14,
which show the relative thickness of the anterior bank
over the posterior bank to be in the ratio of 1.5, in

agreement with Meyer et al. [1996], and the references
therein. The second variation is supported by Figure
12, which shows the percentage decrease in cortical
thickness from the cerebral surface (2.63 mm) to the
interior (2.30 mm) to be 14%.

The Laplace method was successfully tested initially
on a contrived dataset representing the brain as a
sphere, with a cortex lying as an outer shell. Because
the cortical thickness was determined exactly a priori,
the computational noise and accuracy of the method
could be evaluated independently from that due to

Figure 14.
Color-coded mapping of cortical surface with sulcal depth. The
cortex has been warped to improve visualization by flattening the
sulcal geometry to an smoothed extracortical form while approx-
imately conserving relative cortical surface areas. The color bar
codes for sulcal depth relative to the superficial cortical surface
such that any non-red color represents cortex lying within sulci.

White dots are superimposed over any region of cortex that is
thinner than 1.2 sigma of the mean thickness. This highlights the
association between sulcal cortex with thinner cortex. The four
views are from one scan which represent medial and lateral views
of the left and right hemisphere.
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real MRI data from a real brain. Next, the method was
tested by comparing results from two scans of the
same brain at different resolutions, 256 3 256 vs.
512 3 512. Both methods showed the same variations,
particularly about the central sulcus and with sulcal
depth. The lower resolution scan yielded slightly more
noisy results, although the mean thickness was about
the same. The 512 3 512 data is felt to be more accu-
rate for the following reason. The mean cortical thick-
ness is about 2.5 mm, and the voxel sizes for the 256 3
256 and 512 3 512 scans are 1.0 and 0.5 mm, respec-
tively. Thus, the cortical thickness is spanned on av-
erage by 2.5 voxels with low resolution, and with 5
voxels with high resolution. The difference from 2.5 to
5 voxels is felt to be a significant increase in local
computational accuracy, although the global accuracy
is comparable.

Although the figures presented in this paper are
from one analysis of a normal brain, three other
brains were scanned and analyzed. One brain was
scanned at low resolution (256 3 256) with detailed
corrections removing MRI signal gradients. The last
two brains were abnormal with known cortical
thickness pathologies causing focal epilepsy. These
results will be presented in a forthcoming paper
detailing the application of the Laplace method to
abnormal brains. All three scans showed cortical
variations consistent with that presented in this pa-
per, namely the relative thin and thick cortex on the
respective posterior and anterior banks of the cen-
tral sulcus, and the relative thinning of the cortex
with increasing sulcal depth.

Errors in the pathlength along a specific streamline
have three origins. The first is integration of the gra-
dient of the Laplace potential which determines the
streamline. The streamline is determined by starting at
some voxel within the cortex and walking along the
gradient field in both directions until either the gray-
CSF or gray-white boundaries are crossed. The accu-
racy of the pathlength can be no better than the step-
length used in the integration, which was 0.25 of a
voxel, or 0.125 mm, for the analysis presented earlier.
The second source of error is the exact location of the
gray-CSF and gray-white boundaries within the grid-
ded array of voxels. Because the boundaries can never
be a distance of more than 2a=3 from a grid point (for
a uniform grid where a is the linear size of a voxel), a
maximum possible error of 0.444 mm is possible. The
errors described apply to the calculation of a single
streamline and pathlength. The magnitude of the
individual errors is reduced statistically by averag-
ing the pathlengths from a large number of voxels
within a cortical region. Because the entire cortex

contains over 3.5 million voxels, each associated
with one pathlength, the displayed pathlengths
within the figures from any small region represent
the averaging and overlap of a considerable number
of single pathlengths. Also, a detailed comparison of
neighboring pathlengths shows that the voxel-to-
voxel variation tends to be quite small and ranges
around 10%.

The third source of error is the segmentation that
defines whether a voxel lies in the white matter,
gray matter, or CSF, thereby defining the gray-CSF
and gray-white surfaces. This is not an error in the
Laplace method itself, only with the segmentation
upon which it is analyzing. In fact, solving Laplace’s
equation is computationally robust once the cortical
volume is established. Cortical segmentation is a
thriving field of research and although we devel-
oped all of our own methods, they are not state-of-
the-art and could be improved [Dale et al., 1999].
There are two types of segmentation errors, global
and local. The global error occurs for inappropriate
choices of segmentation thresholds. For example, if
the choice of threshold for the gray-CSF surface is
too low, then the cortex will appear globally too
thick. Furthermore, the entire gray-CSF surface of a
sulci may not be resolved leading to cortex that
appears strangely nodular. On the other hand, if the
choice of threshold for the gray-CSF surface is too
high, then the cortex will appear globally too thin.
Similarly if the gray-white threshold is too low, the
cortical thickness will appear globally too thin, and
if the gray-white threshold is too high, the cortical
thickness will appear globally too thick.

Unfortunately there is no rigorous method to spec-
ify the exact thresholds for gray matter, and determi-
nation is based on the judgment of a trained eye
examining overlaid contours on a raw MRI image.
One alternative is analysis of the histogram of raw
MRI data, particularly focusing on the positions,
widths, and magnitudes of the gray matter and white
matter peaks [Worth et al., 1997]. Threshold values can
be specified at fixed positions with respect to those
peaks, however, a trained eye is required to make
those initial specifications. We feel the uncertainty due
to systematic errors in segmentation is of order one
voxel, or 0.5 mm in the present analysis. Another
approach to assess the sensitivity to global segmenta-
tion errors is to conduct multiple analyses using dif-
ferent thresholds on the same data. For small changes
(of order 10%) in the thresholds about an optimum,
the overall pattern of cortical thickness was invariant,
although the magnitude was rescaled (of order 5%).
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Nonsystematic, or local, segmentation errors result
from local variations in voxel intensity, which can be
due to either noise in the MRI image, field gradient
effects, volume averaging effects, or unresolved sulci
where the opposing cortical banks are pressed to-
gether. In contrast to global segmentation errors, the
Laplace method can be robust to local errors, particu-
larly in deep sulci where the entire gray-CSF surface
between opposing faces of cortex can be difficult to
segment. Robustness is obtained by altering the end-
point criterion for the pathlength integration as de-
scribed in the methods section. Although, strictly, the
streamline should be integrated from the 0 V to 10,000
V surfaces, different values could be chosen for the
endpoints. For example, in this paper, the integration
endpoints are set at 500 V and 9,500 V. The advantage
is that the 500 V and 9,500 V surfaces are less sensitive
to local segmentation errors than the 0 V and 10,000 V
surfaces. That is, these intermediate surfaces tend to
smooth over segmentation mistakes and bridge seg-
mentation gaps in the outermost boundary surfaces.
This advantage is particularly evident in the gray-CSF
surface deep within sulci where portions of the 10,000
V surface often fail to appear, as exemplified in Figure
7 by the discontinuous sulci at position (32,29). At
such locations, there is no 10,000 V surface separating
the opposing faces of the gray-white boundary, and
one could mistakenly integrate a continuous stream-
line all the way across both sections of cortex. How-
ever, intermediate surfaces such as 9,500 V can fill in
such gaps, thereby preventing this error. Although the
cortical thickness will be rescaled globally to a slightly
smaller value, the overall pattern of thickness varia-
tions should not be affected.

A possible method to overcome segmentation errors
would be incorporation of an adaptive segmentation
algorithm. Presently, applying intensity thresholds to
each image segments gray matter. The same thresh-
olds are used globally throughout the entire image.
Segmentation errors due to signal variations could be
reduced by an adaptive routine that corrects the gray
matter boundaries by local examination of gray matter
topology. This process is accomplished by the human
eye which can easily discern the gray-white junction
from a MRI scan which has superimposed local vari-
ations of signal strength. A simple computerized seg-
mentation based on global thresholds fails in this case.
An adaptive algorithm could mimic the human eye’s
computational ability by correcting a simplistic seg-
mentation with local information from signal gradi-
ents.

A disadvantage of the Laplace method is that the
entire analysis is computationally intensive, requiring

about 24 h of computing time on a Sun Ultra II.
However, the majority is spent during the algorithm
that warps voxels on the supracortical surface whereas
the Laplace solution requires only several hours. All
algorithms are presently unoptimized and there is a
large potential for increased speed. Computation of
the cortical Laplace solution itself is relatively quick,
requiring about 2 h for convergence, whereas the
pathlength solution requires about 6 h. In the interest
of timely development, we used the simpler Jacobi
method, although significant improvement could be
made using a Gauss-Seidel or Simultaneous Overre-
laxation (SOR) method. Computation for the supra-
cortical Laplace solution requires about 8 h due to
stricter convergence criteria. It is essential to carefully
track the long field lines extending from sulcal depth
to the supracortical surface, which can be as long as 30
mm, as compared to the cortical thickness of about 3
mm. Considerable time is also spent de-shelling the
cortex, which includes removing the skull, nerves,
spinal cord, etc. This process is not automated because
particular attention must is required to carefully re-
move tissues adjacent to the cortex to obtain a clean
gray-CSF boundary. As such, this process requires
significant human operator time. Although the total
analysis time approaches several days, the entire pro-
cess could be reduced to a few hours with experience
and optimized routines.

Future work will focus on further validation of
the method and building a database of cortical
thickness from a population of normal and abnor-
mal brains. One direct method of validation is to
analyze a cadaveric brain by a point-to-point com-
parison of a postmortum MRI Laplace analysis with
direct measurement of cortical thickness. Direct
measurements would be taken at multiple locations
where the cortical curvature is very low, thereby
adopting a straightline distance as the measure of
thickness. Motivation for this procedure is to rule
out nonuniformities of the MRI signal which cause
cranially interior signals to become hyperintense or
hypointense. This effect could cause systematic vari-
ations in cortical thickness with sulcal depth which
confound the known neuroanatomical variation. A
second motivation for a cadaveric comparison is to
develop relations between MRI thresholds for the
gray-white and gray-CSF junctions (with respect to
intensity histograms) and the anatomical junctions.
This procedure can reduce systematic segmentation
errors that were described earlier.

There are many advantages to building a library of
cortical thickness maps from different brains with nor-
mal and abnormal anatomy. The first is to establish

r Jones et al. r

r 30 r



what is the normal range of cortical thickness and
what is the normal pattern of thickness variations
along the cortex. Once this is established, normal cor-
relations between thickness maps and parcelation
maps [Caviness et al., 1996] can be studied for scien-
tific interest in many aspects of neuroscience. Then for
clinical interest, analysis correlating abnormal thick-
ness with known pathology can be undertaken. Al-
though there could be a danger of developing a neo-
phrenology, legitimate clinical decision making could
be based on patterns of abnormal thickness. An exam-
ple is surgical excision of brain matter in patients with
intractable epilepsy. Focal seizures are often known to
be related to thickened cortex, and providing cortical
thickness maps to a neurosurgeon would allow more
careful planning and management. A second example
could be enhanced diagnosis of Alzheimer’s disease
based on patterns of atrophy established by scanning
a population of patients. There are also neuropsychi-
atric diseases which could have subtle signatures re-
vealed as unique patterns of cortical thickness or thin-
ness.

One advantage of the Laplace method is its gener-
ality. Although the Laplace method is applied here to
the problem of cortical thickness, it could be applied to
any imaging problem involving the thickness between
two discernable and nonintersecting surfaces. The
necessary data representation is a volumetric labeling
of the three volumes: between the two surfaces, and
on either side. Surfaces represented parametrically can
easily be converted into this form. It is also essential
that the volume between the surfaces be at least one
voxel thick, with more voxels providing more accu-
racy. Possible applications could include evaluating
(1) the cardiac wall in cardiomyopathy or infarction,
(2) the intestinal wall as early indications of neoplasia
or ulceration, or (3) cortical bone thickness in osteo-
porosis [Newman et al., 1998]. The limitations to these
applications are signal contrast, image resolution, and
computing power. The latter limitation will diminish
with the inexorable progress of the computer industry,
and imaging applications that now seem overly com-
plicated will become commonplace and important
tools in medicine.
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