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In functional magnetic resonance imaging statisti-
cal analysis there are problems with accounting for
temporal autocorrelations when assessing change
within voxels. Techniques to date have utilized tem-
poral filtering strategies to either shape these autocor-
relations or remove them. Shaping, or “coloring,” at-
tempts to negate the effects of not accurately knowing
the intrinsic autocorrelations by imposing known au-
tocorrelation via temporal filtering. Removing the au-
tocorrelation, or “prewhitening,” gives the best linear
unbiased estimator, assuming that the autocorrela-
tion is accurately known. For single-event designs, the
efficiency of the estimator is considerably higher for
prewhitening compared with coloring. However, it
has been suggested that sufficiently accurate esti-
mates of the autocorrelation are currently not avail-
able to give prewhitening acceptable bias. To over-
come this, we consider different ways to estimate the
autocorrelation for use in prewhitening. After high-
pass filtering is performed, a Tukey taper (set to
smooth the spectral density more than would nor-
mally be used in spectral density estimation) performs
best. Importantly, estimation is further improved by
using nonlinear spatial filtering to smooth the esti-
mated autocorrelation, but only within tissue type.
Using this approach when prewhitening reduced bias
to close to zero at probability levels as low as 1 3 1025.
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INTRODUCTION

In this paper we focus on the issues surrounding
temporal autocorrelations in functional magnetic res-
onance imaging (FMRI) time series. These include un-
derstanding the nature of the autocorrelation, the ef-
fects of temporal filtering, the effects of different
experimental designs, and ways of performing efficient
and accurate statistical tests. In particular, the aim is
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to deduce an autocorrelation estimation technique
which gives acceptably low bias when prewhitening.

We start with a brief overview of previous work in
the area. We then set up a familiar GLM framework to
define the different strategies for dealing with autocor-
relations in FMRI. Four different approaches to tem-
poral autocorrelation estimation are considered and a
qualitative data analysis is used to examine the way in
which the estimated autocorrelation varies spatially,
the effects of temporal filtering, and the effects of dif-
ferent design types. We then introduce nonlinear spa-
tial smoothing of the autocorrelation as a means to
improving the estimation further. Finally, quantitative
assessment of the bias (calibration) for the different
autocorrelation estimation techniques is performed, by
computing null distributions from null/rest data and
comparing them with the expected theoretical distri-
butions.

OVERVIEW OF PREVIOUS WORK

Friston et al. (2000) suggested that current tech-
niques for estimating the autocorrelation (autoregres-
sive (AR) and 1/f models where f is the frequency) are
not accurate enough to give prewhitening acceptable
bias. Therefore, estimation is made more robust to
inaccurate autocorrelation estimates by swamping any
intrinsic autocorrelation with the known autocorrela-
tion introduced by band-pass filtering, an approach
often referred to as “coloring” (Friston et al., 1995;
Worsley and Friston, 1995). For this they use a Gauss-
ian (or similar) low-pass filter matched to the hemody-
namic response function (HRF) and a linear high-pass
filter which aims to remove the majority of the auto-
correlation due to low-frequency components. Having
shaped the autocorrelation, prewhitening is then not
applicable, and the autocorrelation estimate is instead
used to correct the variance of univariate linear model
parameter estimates and the degrees of freedom used
in the GLM.

Although coloring is unbiased, given an accurate
autocorrelation estimate, Bullmore et al. (1996) noted
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1371TEMPORAL AUTOCORRELATION IN FMRI
the need for serially independent (whitened) residuals
to obtain the best linear unbiased estimates (BLUE) of
the GLM parameters. The parameter estimates are
“best” in the sense that they are the unbiased esti-
mates with the lowest variance. This was achieved
using pseudo-generalized least squares—also known
as the Cochrane–Orcutt transformation. The autocor-
relation is estimated for the residuals from a first lin-
ear model and is then used to “prewhiten” the data and
the design matrix, for use in a second linear model. The
residuals of the second linear model should be close to
white noise. Further iterations of this process are pos-
sible.

For inference, they ascertain the null distributions
using randomization; that is, they randomly reorga-
nize the order of signal intensity values in each ob-
served time series and estimate the test statistic for
each. It is important to note that such randomization of
the time series is only valid in the absence of autocor-
relations, hence an accurate prewhitening step is nec-
essary. Any randomization approach on nonwhite data
needs to randomize the data in such a way that the
effective structure of the autocorrelation is main-
tained, for the null distribution to be valid.

To model the autocorrelation, Bullmore proposed an
AR model of order 1 (AR(1)), which was shown to model
the autocorrelations satisfactorily for the data used in
their paper. Purdon and Weisskoff (1998) also sug-
gested using an AR(1) model to do prewhitening, but
they also included a white noise component. However,
the main focus of their paper was to explore the effect,
on the false positive rate, of not taking into account the
temporal autocorrelation. For a desired false positive
rate of a 5 0.05 they find false positive rates as high as
a 5 0.16 in the uncorrected data. At a 5 0.02 the
situation worsens further, with uncorrected data giv-
ing a 5 0.095. This is because any inaccuracies in the
distribution compared with the assumed theoretical
distribution are more prominent farther down the tail
of the distribution.

Locascio et al. (1997) used an autoregressive moving
average (ARMA) model (see also Chatfield, 1996) and
incorporated it into an overall contrast autoregressive
and moving average (CARMA) model. As well as the
ARMA and modeled experimental responses, the
CARMA model contains baseline, linear, and quadratic
terms for the removal of low-frequency drift. They fit
separate MA and AR models of up to order 3.

Locascio et al. (1997) also suggest that the existence
of positive autocorrelation is due to carryover from one
time point to the next, stemming from time intervals
that are smaller than the actual temporal changes.
They describe autocorrelation as the persistence of
neuronal activation, cyclical events (presumably they
are referring to aliased cardiac and respiratory cycles),
or possibly characteristics or artifacts of the measure-
ment process.

Zarahn et al. (1997) and Aguirre et al. (1997) ob-
served 1/f noise profiles in FMRI data and as a result
attempted to use a 1/f noise model with three param-
eters to account for temporal autocorrelations. They
also carried out a number of water phantom studies to
establish how much, if any, of the 1/f noise is attribut-
able to physiological processes. They concluded that
the same 1/f noise was apparent in the phantoms and
that therefore the noise was not of physiological origin.

They use their 1/f model of the intrinsic autocorrela-
tion together with Worsley and Friston’s (1995) ap-
proach of coloring the data. Zarahn proposed to refine
this by incorporating the 1/f model’s representation of
the intrinsic autocorrelation into the autocorrelation
due to temporal filtering, in order to give a better
estimate of the autocorrelation posttemporal filtering.
Unfortunately, their attempts fail because they fit the
1/f model over the entire brain volume, therefore ignor-
ing the potential for spatial nonstationarity of the
noise profile.

Hu et al. (1995) concentrate on the components of the
colored noise in FMRI data that are due to physiolog-
ical fluctuations. By recording respiration and cardiac
cycle data at the same time as the FMRI data are
acquired, some of these effects can be removed. This
could help to reduce the autocorrelation and poten-
tially improve any autocorrelation estimation subse-
quently employed. However, these are not the only
causes of colored noise in the data and hence whether
or not respiration and cardiac cycle data are available,
robust strategies for dealing with autocorrelation are
still required.

METHODS

GLM Framework

In the basic GLM, Y 5 XB 1 e, Y is the observed
ata, X is the matrix of “regressors” (often referred to
s the design matrix), and B is the parameter to be
stimated. The error e is assumed to have a Normal
istribution N(0, s2 V), where V is the autocorrelation

matrix for the time series. There exists (Seber, 1977) a
square, nonsingular matrix K such that V 5 KKT and
that e 5 Ke where e is N(0, s2I).

Now consider a GLM which incorporates temporal
filtering of the data, where S is the square matrix that

erforms the temporal filtering via matrix multiplica-
ion. S is a Toeplitz matrix produced from the impulse
esponse; this is directly equivalent to convolving with
he impulse response using zero padding. The design
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1372 WOOLRICH ET AL.
matrix is also temporally filtered using S to reflect the
known change in the observed data. We now have

SY 5 SXB 1 h, (1)

where h is N(0, s2SVST). We use an ordinary least-
squares estimate of B, given by

B̂ 5 ~SX)1SY, (2)

where (SX)1 is the pseudo-inverse of (SX) given by
SX)1 5 ((SX)TSX)21(SX)T. The variance of a contrast c,

of these parameter estimates, B̂, is given by

Var$cTB̂% 5 keffs
2

(3)
keff 5 c T~SX)1SVS T~~SX)1) Tc.

Note that keff is a scalar that scales s2 by an amount
that depends upon the design matrix X, the temporal
autocorrelation V, and the contrast c to give the vari-
ance of the contrast of parameter estimates. For an
estimate of s2 we use (Worsley and Friston, 1995; Se-
ber, 1977)

ŝ 2 5 h Th /trace~RSVST !, (4)

here R 5 I 2 SX(SX)1, the residual forming matrix,
which can be used to obtain the residuals of the model
fit:

r 5 RSY. (5)

Strategies for Dealing with Autocorrelation

For the moment we assume a known autocorrela-
tion matrix V 5 KKT. We investigate three ap-
proaches to dealing with the autocorrelation in
FMRI; these are

● coloring (e.g., Friston et al., 1995), with S 5 A
here A is a low-pass filter, giving

keff 5 c T~AX!1AVA T~~AX!1! Tc; (6)

● variance correction (by which one corrects the sta-
tistics for autocorrelation in the data, but neither col-
ors the data nor goes as far as prewhitening), with S 5
I giving

keff 5 c T~X!1V~~X!1! Tc; (7)

● prewhitening (e.g., Bullmore et al., 1996), which
gives the optimal BLUE and is obtained by setting S 5
K21 giving

k 5 c T~XTV 21X! 21c. (8)
eff
For all of these approaches we need an accurate
estimate of the autocorrelation matrix SVST. Tech-
niques for calculating such an estimate are discussed
in the next section.

High-Pass Filtering

The data to be considered are the FMRI time series
at each voxel following motion correction. The raw
motion-corrected time series have a considerably col-
ored noise structure, the majority of which occurs at
low frequency. Therefore, in this paper our approach is
to perform high-pass filtering to remove the worst of
the low-frequency components. This is also beneficial
since it is the low-frequency deterministic trends in the
time series which contribute most to violating an as-
sumption of second-order stationarity.

High-pass filtering can be performed by incorporat-
ing such things as a discrete cosine transform set into
the design matrix X or into the matrix S (Friston et al.,
000). However, such techniques produce large end
ffects and so we prefer to use a nonlinear filter as
roposed by Marchini and Ripley (2000). This approach
ts and removes Gaussian-weighted running lines of
xed width using a least-squares fit and was found to
e a reliable method of trend removal in Marchini and
ipley (2000). As in Marchini and Ripley (2000), the
idth of the Gaussian is chosen to be twice the cycle

ength when using boxcar or single event with fixed
nterstimulus interval (ISI) (Bandettini and Cox, 2000)
esigns. However, for randomized ISI single-event de-
igns (Burock et al., 1998; Dale and Buckner, 1997; and

Dale, 1999) the situation is not as clear. This is because
the signal contains power at virtually all frequencies
(see Fig. 10b). Hence, a compromise is used by setting
the full-width half-maximum (FWHM) to 45 scans.
This removes the worst of the low-frequency trends,
allowing sensible autocorrelation modeling, while re-
moving negligible power from the signal. Such nonlin-
ear high-pass filtering is performed as a preprocessing
step on all data sets subsequently used in this paper.

Autocorrelation Estimation

An estimate of the autocorrelation matrix SVST of
he error h is required. We could estimate B using Eq.
2) to obtain the residuals r and then estimate the
utocorrelation matrix of the residuals. However, it
an be shown that

r 5 RSY 5 Rh, (9)

and then it follows that the autocovariance of the re-
siduals is given by

Cov$r% 5 s2RSVS TR T, (10)
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which is not SVST. The difference between the autocor-
relation of the error and the autocorrelation of the resid-
uals is clearly due to regression onto the design matrix
and it is impossible to unravel SVST from RSVSTRT

since R is noninvertible. This turns out to be not too
much of a problem, as can be illustrated using an exam-
ple time series generated artificially using the noise pro-
cess N(0, stVt), where Vt is the autocorrelation matrix for
the typical gray matter autocorrelation in Fig. 5a. Figure
1a shows the spectral density of the time series, Fig. 1b
shows the spectral density of the residuals r for the same
time series after regression onto the HRF convolved box-
car (shown in Fig. 7), and Fig. 1c shows the same after
regression onto the randomized ISI design (shown in Fig.
10). Despite some subtle differences in the raw spectral
density estimates the Tukey estimates are remarkably
similar. This is perhaps surprising, particularly for the
randomized ISI design, which covers a large frequency
range (see Fig. 10b). The primary reason for this is that
the spectral density will be affected only at the frequency
and phase of the regressors. Second, when the regressor
has high power at a particular frequency but not at its
neighboring frequencies (this is less true for the random-
ized ISI design but still has some effect), then spectral
density estimation techniques which heavily smooth the
spectral density will help rectify this problem further. All
techniques considered in this paper do effectively smooth
the spectral density.

For variance correction or coloring, an estimate of
SVST can be calculated from the residuals after Eq. (2)
is used to obtain the parameter estimates. This esti-
mate of SVST is used in Eq. (3) to give the variance of
the parameter estimates.

However, prewhitening requires an estimate of
SVST before the BLUE can be computed and Eq. (3)
used. To get around this an iterative procedure is used
(Bullmore et al., 1996). First, we obtain the residuals r

sing a GLM with S 5 I. The autocorrelation V is then

FIG. 1. (a) The spectral density of an artificially generated time s
of the residuals r for the same time series after regression onto the
in Fig. 10, respectively. Raw spectral density estimates are shown by
are shown by the broken lines. There is no visible difference betwee
estimated for these residuals. Given an estimate of V,
V21 and hence K21 can be obtained by inverting in the
spectral domain (some autocorrelation models, e.g., au-
toregressive, have simple parameterized forms for K21,
and hence inversion in the spectral domain is not nec-
essary). Next, we use a second linear model with S 5
K21, and the process can then be repeated to obtain
new residuals from which V can be reestimated and so
on. We use just one iteration and find that it performs
sufficiently well in practice. Further iterations either
give no further benefit or cause overfitting, depending
upon the autocorrelation estimation technique used.
Autoregressive model fitting procedures which deter-
mine the order would do the former, nonparametric
approaches (Tukey, multitapering, etc.), the latter.

Whether for use in prewhitening or for correcting the
variance and degrees of freedom of the test statistic, an
accurate, robust estimate of the autocorrelation is neces-
sary. This estimation could be carried out in either the
spectral or the temporal domain—they are interchange-
able. Raw estimates (Eq. (11)) cannot be used since they
are very noisy and introduce an unacceptably large bias.
Hence some means of improving the estimate is required.

All approaches considered assume second-order sta-
tionarity—an assumption whose validity is helped by
the use of the nonlinear high-pass filtering mentioned
in the previous section. We consider standard window-
ing or tapering spectral analysis approaches, multita-
pering, parametric ARMA, and a nonparametric tech-
nique which uses some simple constraints. The results
of these different techniques applied to a typical gray-
matter voxel in a rest/null data set are shown for
comparison in Fig. 2.

Single Tapers

A standard approach to taking raw estimates of the
autocorrelation or equivalently of the spectral density

es using the noise process N(0, stVt). (b and c) The spectral densities
F convolved boxcar shown in Fig. 7 and the randomized ISI shown
e solid lines, and estimation using Tukey windowing (with M 5 15)
he Tukey estimated spectral densities.
eri
HR
th

n t
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is to window the raw time series prior to taking a
Fourier Transform. This downweights points at either
end of the time series, reducing leakage due to end
effects (Bracewell, 1978). Equivalently the raw auto-
correlation estimate can be tapered such that it is
downweighted at high lags. Intuitively, this seems rea-

FIG. 2. (a) Autocorrelation and (b) spectral density, for a typical
the solid lines, and (from top to bottom) estimates from Tukey windo
and a general order AR model are shown by broken lines.
sonable since the precision of the raw autocorrelation
estimates clearly decreases with high lag.

Whether windowing the time series or the raw auto-
correlation estimate, the shape and size of the window
need to be decided upon. Here, we prefer to use win-
dowing of the raw autocorrelation estimate. This is

y-matter voxel in a rest/null data set. Raw estimates are shown by
g with M 5 15, nonparametric PAVA, multitapering with NW 5 13,
gra
win
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1375TEMPORAL AUTOCORRELATION IN FMRI
because of considerations of spatial regularization
which we will come to later. For a time series x(t) for

5 1, . . . , N the raw autocorrelation estimate at lag t
is given by

rxx~t! 5
1

ŝ 2 O
t51

N2t

x~t!x~t 1 t!/~N 2 t!. (11)

The two favored windows in the time series litera-
ture are the Tukey and Parzen windows, which appear
to perform equally well (Chatfield, 1996). Hence, we
arbitrarily concentrate on the Tukey window, which is
defined as

r̂xx~t! 5 5
1

2 S1 1 cosSpt

MDDrxx~t! if t , M

0 if t $ M
, (12)

here M is the truncation point such that for t . M,
r̂xx 5 0. This window smooths the spectral density by
an amount determined by M.

The choice of the value for M is a balance between
educing the variance while minimizing the distortion
f the autocorrelation/spectral density estimate. The
ariance in the estimation of the spectral density is
iven by (Chatfield, 1996)

Var@r̂xx~t!/rxx~t!# 5
3M

4N
. (13)

Large M corresponds to less smoothing in the spec-
tral domain. A rough guide in the literature is to set M
to be about 2=N (Chatfield, 1996). For N 5 200 this
gives M 5 28.

Nonparametric Estimation

Instead of presetting M to what is considered a rea-
onable value, we instead apply some constraints. The
rst assumption is that rxx(t) . 0 for all t. The second

assumption is that the autocorrelation is monotoni-
cally decreasing. This means that low-frequency com-
ponents, which are widely accepted in the literature as
being the most important to account for, are favored.

The autocorrelation is estimated using a standard
unbiased estimator (Eq. (11)) and then the best least-
squares fit that satisfies the constraint of monotonicity
can be obtained using techniques from the literature of
isotonic regression. The particular algorithm that we
use is the pool adjacent violators algorithm (PAVA) (T.
Robertson and Dykstra, 1988), which provides a
unique, least-squares fit under the constraint. Before
using the algorithm, we set r̂xx(t) 5 txx(t) for t 5 1, . . . ,
N/3 and r̂ (t) 5 0 for t . N/3. This is done partly
xx
ecause it reduces the amount of data the algorithm
terates over and also because the raw autocorrelation
stimate is very noisy for t $ N/3 (there are fewer data
vailable to compute autocorrelations at high lags),
nd we do not expect significant autocorrelation at
uch high lags. Furthermore, the value of zero will
ropagate, eventually stopping at the lag which gives
. For the purpose of the algorithm it is also necessary

o define a weighting function w(t) 5 1 for t 5 1, . . . ,
N. The algorithm then proceeds as follows:

1. If r̂xx(t) is not isotonic there must exist a violator
at k such that r̂xx(k 2 1) . r̂xx(k).

2. Pool these two values, by replacing them both
with their weighted average:
@r̂xx~k 2 1!w~k 2 1! 1 r̂xx~k!w~k!#/@w~k 2 1! 1 w~k!#.

(14)

3. Replace w(k 2 1) and w(k) with w(k 2 1) 1 w(k).
4. Repeat until no more violators.

The algorithm was tested on artificial data which
consisted of white noise of length N 5 200 and had
been low-pass filtered with a Gaussian of varying stan-
dard deviation. This highlighted a slight bias for white
noise data, which was easily remedied by setting
r̂xx(1) 5 0 if r̂xx(1) , 0.1.

Multitapering

Multitapering is an extension of single-taper ap-
proaches and consists of dividing the data into overlap-
ping subsets that are each individually tapered and
then Fourier transformed. The individual spectral co-
efficients of each subset are averaged to reduce the
variance. The way in which the data are to be subdi-
vided is defined by a set of tapers indexed by l 5 1, . . . ,

; the estimated spectral density at frequency bin f is
then given by

S~f! 5
¥ l50

L21 llSl~f!

¥ l50
L21 ll

, (15)

where Sl(f ) is the estimated spectral density using
taper l and ll is the weight for each tapered spectral
density estimate.

As with the single-window approaches the spectral
density is effectively smoothed, but without losing in-
formation at the end of the time series. The windows
are chosen so that they are orthogonal and reduce
leakage as much as possible. Under these require-
ments the optimal choice is the discrete prolate sphe-
roidal sequences or Slepian sequences (Percival and
Walden, 1993). The Slepian sequence used is deter-
mined by the length of the time series N and by a

arameter W, which corresponds to the half-bandwidth
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(i.e., w 5 2pW is the half-bandwidth in radians). When
sing the Slepian sequences to give Sl(f ), the weight ll

used in Eq. (15) could simply be unity or something
more complex. In this paper we use the eigenvalues of
the Toeplitz matrix associated with the Fourier trans-
formation as the weights (Percival and Walden, 1993).
However, even these weights aren’t optimal—more
elaborate weighting such as Thomsen’s nonlinear ap-
proach (Percival and Walden, 1993), which adapts to
the local variations in the spectral density, could be
used instead.

As with the single-taper approaches the parameter
W needs to be chosen to balance the desired reduction
in variance with minimizing the distortion of the spec-
tral estimate. The variance in the estimation of the
spectral density is given by Percival and Walden
(1993): For Slepian sequence multitapering the vari-
ance in the estimate is

Var@r̂xx~t!/rxx~t!# 5 2NW. (16)

Hence by using Eq. (16) with Eq. (13) a Tukey tapering
approach can be compared with multitapering by set-
ting the variances the same. For example, for N 5 200
the recommended Tukey parameter was M 5 28. To
ive the same variance requires a multitaper parame-
er of NW ' 7.

utoregressive Parametric Model Estimation

Stationary stochastic time series can be modeled us-
ng an autoregressive process of sufficiently high order

(AR(p)):

x~t! 5 f1x~t 2 1! 1 f2x~t 2 2!

1 · · · 1 fpx~t 2 p! 1 e~t!,
(17)

where e(t) is a white noise process and f1, f2, . . . , fp

are the autoregressive model parameters. There is the
option to fit more complex ARMA models (autoregres-
sive process forced by a moving average process). How-
ever, AR models are often used on their own due to
their relative simplicity in fitting. It may then require
more parameters to fit the process with no significant
loss of accuracy. This is the approach considered here.

The time series literature, including Chatfield
(1996), describes various techniques for determining
the order p and parameters of AR models. Here, we use
the partial autocorrelation function (PACF) to find p
and ordinary least squares to fit the parameters. When
fitting an AR(p) model, the last partial coefficient ap

measures the excess correlation at lag p not accounted
for by an AR(p 2 1) model; ap plotted for all p is the

ACF. The lowest value of p for which ap in the PACF
s not significantly different from zero (using the 95%
confidence limits of approximately 62/=N (Chatfield,
1996)), is the order used.

QUALITATIVE DATA ANALYSIS

Methods

The intention here is to explore the effects of tempo-
ral filtering and the spatial variation of the autocorre-
lations in real FMRI data. We could attempt to exam-
ine the autocorrelation, or equivalently the power
spectral density, itself. However, this would give N
(number of scans or time points) data points for each
voxel. Instead, we use

Sr 5 N/@1 1 2 O
t51

N21

rxx~t!#. (18)

This produces a single value whose variation can then
be easily visualized. The value Sr corresponds approx-
imately to 1/keff in Eq. (7) when performing a t test (c 5
1] and X 5 [1, . . . , 1]T) with large N.

An Sr 5 n indicates white noise and 0 , Sr , n
ndicates a time series with positive autocorrelation.

e examined one rest/null data set from a normal
olunteer. Two hundred echo planar images (EPI) were
cquired using a 3-T system with time to echo (TE) 5
0 ms, TR 5 3 s, in-plane resolution 4 mm, and slice
hickness 7 mm. The first 4 scans were discarded to
eave N 5 196 scans and the data were motion cor-

rected using AIR (Woods et al., 1993). To calculate Sr at
ach voxel we arbitrarily used the nonparametric
AVA autocorrelation approach to estimate the auto-
orrelation.

Results

Figure 3 shows a set of histograms of Sr for the entire
brain volume with the skull and background removed.
With no temporal filtering, the histogram has a peak at
the low values of Sr ' 15, representing tissue with high
autocorrelation, and a peak at Sr 5 196 corresponding
to white noise.

High-Pass Filtering

High-pass filtering is used to remove the worst of the
low-frequency noise in the FMRI time series. Here we
are using the nonlinear high-pass filtering discussed in
the previous section. In Fig. 3b a FWHM of 40 scans
was used and had the effect of removing the lower peak
and pushing the whole histogram to higher values.
This shift to higher Sr values represents a decrease in
the positive autocorrelation in the data; this corre-
sponds to a decrease in the parameter variances, as
desired. The use of high-pass filtering reduces the low-
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frequency noise and nonstationarity of the time series,
making the estimation of the autocorrelation more ro-
bust and valid. However, having used a nonlinear high-
pass filter, the power spectral density of the time series
has been shaped in such a way that it is not easily
modeled by a low-order parametric AR model.

Low-Pass Filtering

The low-pass filter used here is a Gaussian filter
matched to a commonly assumed HRF with parame-

FIG. 4. (a) Spatial maps of Sr in the brain volume after the non
histogram in Fig. 3b, with high Sr displayed as lighter gray and l
characteristic could be easily observed in five other null data sets.

FIG. 3. Histograms of Sr for a null FMRI data set with (a) no temp
matched to a Gaussian HRF followed by nonlinear high-pass filter
obtained for five other null data sets from three different subjects on
to white and gray matter; this can be seen in the spatial map of Sr
ters s 5 2.98 s and m 5 3 s (Friston et al., 1995). The
histogram for low-pass filtering demonstrates the idea
of coloring, in that the whole histogram is focused to a
peak centered on a Sr close to that entirely due to the
low-pass filtering. However, the standard deviation
around this peak (standard deviation 5 17.6) is greater
than the standard deviation of the estimator of Sr

(determined empirically on artificial data as standard
deviation 5 12.9). Since the data are showing a greater
variability in Sr than there is in just estimating Sr, this

ear high-pass filtering has been performed. This corresponds to the
Sr as darker gray. (b) EPI for the same slices. Exactly the same

l filtering, (b) nonlinear high-pass filtering, and (c) low-pass filtering
The only preprocessing is motion correction. Similar results were
same scanner. The two apparent populations in (b) are due largely
ig. 4.
lin
ow
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ing.
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suggests the requirement for local estimation of auto-
correlation even when low-pass filtering (coloring) is
performed. Although the autocorrelation estimate is
made more robust, the autocorrelation imposed by the
coloring does not completely smother the intrinsic au-
tocorrelation.

Spatial Variation

Figure 4 shows four slices of the Sr values in the
brain volume after nonlinear high-pass filtering has
been performed, along with the original functional im-
age, for comparison. Figure 4 shows considerable spa-
tial variation and structure, with lower Sr correspond-
ing to increased autocorrelation in the gray matter
compared to the white matter and CSF. Exactly the
same characteristic could be easily observed in five
other null data sets.

These findings appear to contradict Zarahn’s and
Lund’s conclusions that the autocorrelation is not at all
physiological in origin. It may be that the greater
smoothness in the gray matter is due to a larger num-
ber of edges in gray matter compared to white matter.
Edges within voxels may be subject to motion of any
type (inaccurate motion correction, physiological pul-

FIG. 5. (a) Autocorrelation for a typical gray-matter voxel in a
autocorrelation.

FIG. 6. (a) Gamma HRF, fG(t; a, b), has parameters set according
for the HRF.
sations), and this motion along with a partial volume
effect may produce increased low-frequency noise. Fur-
ther analysis is required to understand such sources of
the autocorrelations that could exhibit these character-
istics. This will be a topic for future research.

EFFECT OF DIFFERENT REGRESSORS

Methods

It turns out that the regressor used in the design
matrix considerably affects the relative efficiency be-
tween coloring and prewhitening. To illustrate this we
use a typical autocorrelation estimated for a gray mat-
ter voxel (shown in Fig. 5) to give a typical V matrix
and use for X one of four different types of regressors of
particular interest:

(a) a boxcar design with period 60 s;
(b) a single-event design with fixed ISI of 15 s and

stimulus duration of 0.1 s (Bandettini and Cox, 2000);
(c) a single-event design with stimulus duration of

0.1 s with jittering such that the ISIs are drawn from a
uniform distribution U (13.5 s, 16.5 s) (Josephs et al.,
1997);

st/null data set, and (b) the power spectral density for the same

mean a/b 5 6 s and variance a/b2 5 9 s2, and (b) the spectral density
re
to
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(d) a single-event design with randomized ISI taken
from a normal distribution with mean 6 s and standard
deviation 2 s with no ISI less than 2 s (Burock et al.,
1998; Dale and Buckner, 1997; Dale, 1999) and stimu-
lus duration of 0.1 s.

All four designs are convolved with the same gamma
HRF,

fG~t; a, b! 5
b a

G~a!
t a21e 2bt, (19)

where the gamma parameters a, b are set according to
mean a/b 5 6 s and variance a/b2 5 9 s2. The gamma

RF for these parameters is shown in Fig. 6. More
omplicated HRF models could be used. However, any
easonable HRF model would be expected to have a
imilar spectral density and therefore behave in a sim-
lar way in this context. For all regressors TR is taken
s 3 s and all regressors have their means removed.
The variance of the parameter estimates, keff s

2, is
inversely proportional to the efficiency and can give us
a measure of the relative efficiency of the different
temporal filtering strategies. Although the estimation
of s does depend upon the temporal filtering strategy

sed (Eq. (4) depends on S), this effect is negligible.
ubsequently, we define a measure of efficiency, E,

TABLE 1

Relative Efficiency E (Eq. (20)) Calculated Using the Three
ifferent Strategies for Dealing with the Autocorrelation and

or Four Different Types of Regressor

Boxcar
SE/fixed

ISI
SE/jittered

ISI
SE/random

ISI

Coloring (Eq. (6)) 0.96 0.70 0.68 0.21
Variance correction

(Eq. (7)) 0.99 0.98 0.98 0.80
Prewhitening (Eq.

(8)) 1.00 1.00 1.00 1.00

FIG. 7. Plots of (a) the regressor X, (b) the spectral density of X,
Toeplitz matrix, and (d) the spectral density of K21X where K21 is t
elative to the maximally efficient prewhitening esti-
ator for the regressor as

E 5
keff for prewhitening

keff
. (20)

This was computed for each regressor using each of the
three different temporal filtering strategies using Eqs.
(6), (7), and (8) accordingly (there is only one regressor in
each case so we use c 5 [1]). The low-pass filter used for
the coloring was matched to the HRF (Fig. 6). The values
of E for the randomized ISI and jittered ISI designs were
averaged over 100 randomly generated designs.

Results

The results are shown in Table 1. It can be seen that
even for the boxcar design, coloring is not as efficient as
variance correction or prewhitening. For the random-
ized ISI design, the contrast is even more apparent,
with prewhitening being more efficient than variance
correction, which in turn is much more efficient than
coloring. This concurs with the theory and work by
Friston et al. (2000).

Examination of the spectral density for the random-
ized ISI design before and after it has been low-pass
filtered (when coloring) illustrates the reason for the
loss in efficiency. These spectra are shown in Figs. 10b
and 10c, respectively. It might have been expected that
the frequency response in Fig. 10b would have rela-
tively little high-frequency content due to convolution
with the smooth HRF whose spectral density is shown
in Fig. 6b. However, there are clearly strong high-
frequency components in the regressor. These are in-
troduced when the high temporal resolution version of
the regressor is sampled to a lower temporal resolu-
tion. Figure 10c clearly shows a reduction in these
high-frequency components due to the low-pass filter-
ing, resulting in a loss of efficiency. In contrast, com-
paring Fig. 7b with Fig. 7c reveals little difference
particularly with regard to most of the power being in

the spectral density of SX where S is the coloring low-pass filtering
prewhitening matrix from V 5 KKT and X is a boxcar.
(c)
he
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the fundamental frequency. Also see Figs. 8 and 9.
Hence for the boxcar, coloring has efficiency similar to
variance correction and prewhitening.

However, this does not explain why variance correction
is less efficient than prewhitening for the randomized ISI
design. This loss in efficiency is instead due to using a
more inefficient estimator when using variance correc-
tion, compared with the BLUE of prewhitening. Here, the
prewhitening downweights the low frequencies compared
to the high frequencies (inverse of Fig. 5) to give the
BLUE. This is of particular benefit when the regressor
has substantial power across a larger range of frequen-
cies being weighted, such as is the case for the random-
ized ISI design (compare Figs. 10b with 10d).

NONLINEAR SPATIAL SMOOTHING

Given the similarity of temporal autocorrelation in
the local neighborhood of each voxel, we attempt to
improve the robustness of the autocorrelation esti-
mates using a small amount of local spatial smoothing.
However, our qualitative data analysis indicated
clearly that the autocorrelation differs between tissue
types. Isotropic spatial smoothing would blur the au-
tocorrelation estimates across tissue boundaries, re-
sulting in biased estimates of the autocorrelation near
tissue boundaries. An alternative approach is to use
some form of nonlinear spatial smoothing that does not
smooth across such boundaries.

Accurate segmentation of white matter, gray matter,
and CSF would provide the necessary information to

FIG. 8. As for Fig. 7, but X is a

FIG. 9. As for Fig. 7, but X is a
avoid blurring across tissue types. However, segmen-
tation of EPI is hard due to poor tissue type contrast,
bias field effects, low resolution, and the partial volume
effect.

Instead we use the “smoothing over univalue seg-
ment assimilating nucleus” (SUSAN) noise-reduction
filter (Smith and Brady, 1997), which is a nonlinear
filter designed to preserve image structure by smooth-
ing over only those neighbors which form part of what
is believed to be the “same region,” or USAN, as the
central voxel under consideration. This concept is illus-
trated in one dimension in Fig. 11.

The filter averages over all the pixels in the locality
which lie in the USAN using the weighting

w~rW, r0W! 5 e 2~~I~rW!2I~r0W!! 2!/~2t 2!, (21)

where t is the brightness difference threshold, I(rW) is
the brightness at any pixel rW, and w is the output of the
comparison. In one dimension the full univariate equa-
tion is

J~x! 5
SiÞ0I~x 1 i!e 2~i 2/2s s

2
!2~~I~x1i!2I~x!! 2!/~2t 2!

SiÞ0e 2~i 2/2s s
2
!2~~I~x1i!2I~x!! 2!/~2t 2!

, (22)

here ss controls the scale of spatial smoothing, i.e.,
the mask size.

We can use a 3D version of this filter to spatially
smooth the raw autocorrelation estimate at each lag or

gle-event design with fixed ISI.

le-event design with jittered ISI.
sin
sing
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to spatially smooth the spectral density estimate at
each frequency. Whether we smooth the autocorrela-
tion or the spectral density estimates will depend upon
the autocorrelation/spectral density estimation tech-
nique then used on the spatially regularized data.

Normally, the USAN is estimated from the same
data, or image, as that which is being smoothed. How-
ever, here we will be using one of the EPI volumes to
generate the USAN.

We would expect a ss of approximately 1 or 2 voxels
o be optimal, since the spatial autocorrelation of Sr

suggests that smoothness is in the immediate neigh-
borhood only. Simple histogram techniques are used to
assess the approximate standard deviation of gray
matter in the EPI. The brightness threshold t is then
et to 1

3 of the approximate standard deviation of gray
matter. This gives a very conservative brightness
threshold t, one which allows a small amount of
smoothing within gray matter while allowing negligi-
ble smoothing between matter types.

CALIBRATION

Methods

We now want to ascertain the difference in the bias
f the resulting statistical distributions that exists for
he different approaches for estimating the autocorre-
ation. This is determined experimentally on real rest
null) FMRI data by computing the t statistic at each
oxel for a dummy design paradigm. The t statistic is

iven by t 5 cB̂/ÎVar{cB̂}, where B̂ and Var{cB̂} are
given by Eqs. (2) and (3), respectively. The t statistics
are then probability transformed to Z statistics. The
probability transform involves converting the t statis-
tic into its corresponding probability (by integrating
the t distribution from the t statistic’s value to infinity)
and then calculating the Z statistic that corresponds to
the same probability (by integrating the normal distri-
bution from the Z statistic’s value to infinity).

These Z statistics form what we refer to as the null
distribution. A technique with low bias should give a
null distribution that closely approximates the theoret-
ical Z distribution (or Normal distribution).

FIG. 10. As for Fig. 7, but X is a si
For the theoretical, Normal probability density func-
tion, f (Z), we can obtain the Z statistic, ZP, for a chosen
probability P such that P 5 *ZP

` f (Z)dZ. This can then
be compared to Pnull 5 1

2 Prob(uZu . ZP) for the empiri-
cally obtained null distribution, d(Z). This is given by

Pnull 5
S uZu.ZP

d~Z!

2SZ d~Z!
. (23)

Since for purposes of inference the tail is the most
important part of the distribution, we examine Pnull as
ar into the tail as the sample size will allow. This is
ided by using both tails of the empirically obtained
ull distribution.
We intend to study data taken at TR 5 3 and 1.5 s.

Six different rest/null data sets (three normal volun-
teers, two data sets per volunteer) were obtained using
TR 5 3 s and nine null data sets (three normal volun-
teers, three data sets per volunteer) were obtained
using TR 5 1.5 s. For each data set 204 EPI were
acquired using a 3-T system with TE 5 30 ms, in-plane
resolution 4 mm, and slice thickness 7 mm. The first 8
scans were discarded to leave N 5 196 scans and the
data were motion corrected, intensity normalized by
subtracting the global mean time series from each vox-

e-event design with randomized ISI.

FIG. 11. The SUSAN smoothing method smooths only similar
pixels within a local region known as the univalue segment assimi-
lating nucleus (USAN). Here the USAN is shown as the white region
within the mask.
ngl
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el’s time series, and nonlinear high-pass filtered. We
computed an empirical distribution based on either all
of the TR 5 3 s data or all of the TR 5 1.5 s data. The

statistics for all of the brain voxels in the six or nine
ull data sets were all pooled together to give one
mpirical null distribution. The resulting distributions
onsisted of Z statistics from approximately 80,000
oxels. This allowed for examination into the tail to
robabilities as low as 1e 2 5. It is important that we
xamine this far into the tail of the distribution as this
s approximately where inference needs to take place
hen multiple comparison corrections are taken into
ccount (Worsley et al., 1992).

FIG. 12. Histogram showing the orders of the AR models re-
quired to estimate the autocorrelation for all voxels in all six null
data sets (TR 5 3 s) after applying the randomized ISI single-event
design.

FIG. 13. Comparison of Tukey autocorrelation estimation for d
against null distribution Pnull obtained from six different null data se
and (b) a stochastic single-event design convolved with a gamma HRF
the result for what would be a perfect match between theoretical an
We will consider two different paradigms—the sim-
le boxcar HRF convolved paradigm (on the TR 5 3 s

data) and the single-event with randomized ISI design
(on the TR 5 1.5 and 3 s data) as described earlier.
Various autocorrelation estimation techniques will be
compared on the calibration plots when performing
prewhitening.

Results

Tukey Single Taper

Recall that a suggested value for M is 2=N, which
for N 5 196 gives M ' 28. This value is compared along
with a range of others (M 5 5, 10, 15, 28) when using
Tukey tapering with no spatial smoothing of the auto-
correlation estimate. The results are shown in Figs. 13
(TR 5 3 s) and 17a (TR 5 1.5 s).

The first thing to note from Fig. 13 is that when no
autocorrelation estimation is made and the residuals
are assumed to be white (i.e., S 5 I), then the boxcar
design deviates far more from the theoretical distribu-
tion than the single-event design. This is because the
single-event design has power at frequencies across the
full range and is therefore less affected by not correct-
ing for the colored noise in the data which is concen-
trated at low frequency, whereas the boxcar design’s
power is mostly at its fundamental frequency, which is
within the range of low-frequency noise. This makes
the obvious point that designs which concentrate their
power as far away as possible from the low-frequency
end will suffer less from the low-frequency noise in the
data. However, the amount of bias for a randomized ISI
when no autocorrelation estimation is made is still

rent values of M via log probability plots comparing theoretical P
sing TR 5 3 s for (a) a boxcar design convolved with a gamma HRF
ll are calculated using prewhitening. The straight dotted line shows
ull distribution.
iffe
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1383TEMPORAL AUTOCORRELATION IN FMRI
quite considerable, and so there is still the requirement
for the estimation and correction of the autocorrela-
tion.

The values M 5 5 and M 5 10 perform about the
ame in Figs. 13a and 17a and M 5 5 performs slightly
etter than M 5 10 in Fig. 13b. The key point is that
ower values of M, i.e., those that smooth the spectral
ensity more than is normally recommended, perform
etter.

ultitapering

Having established that lower values of M perform
ell when using Tukey tapering, we can use Eqs. (16)
nd (13) with N 5 196, to give a multitaper with
pproximately the same spectral density estimate vari-
nce. For M 5 10 this gives NW 5 13. We compare this
ith NW 5 4, a commonly used value in the literature
nd which corresponds to M 5 32. The results are
hown in Fig. 14 for the TR 5 3 s data. NW 5 13
erforms much better and is similar to the Tukey es-
imator with M 5 10, which is not surprising since they
orrespond to the same variance and therefore to sim-
lar amounts of spectral density smoothing. Again, in-
reased spectral density smoothing compared with
hat which is normally recommended is better.

utoregressive Model and Nonparametric PAVA

When using the autoregressive model of general or-
er it was found to require orders of up to 6; Fig. 12
hows the histogram of different AR orders required,
ooled over all six of the null data sets taken with TR 5
s. The results of using the autoregressive model and

he nonparametric PAVA with the TR 5 3 s data are
hown in Fig. 15, along with Tukey with M 5 10 and
ultitapering with NW 5 13. Particularly for the box-

ar design the single-taper Tukey with M 5 10 per-
orms the best.

utocorrelation Spatial Smoothing

We have established that without any spatial regu-
arization of the autocorrelation estimate, the single-
aper Tukey with M 5 5, 10 performs best. We now
ant to explore the additional benefits, if any, of using

he SUSAN spatial smoothing of the raw autocorrela-
ion estimate before the Tukey tapering is applied and
lso to establish how much smoothing is of benefit.
patial autocorrelation of the Sr map suggests that the

autocorrelation is correlated only over a short range.
The voxel dimensions for the six data sets are 4 3 4 3
7 mm and hence we consider SUSAN filtering with
ss 5 4, 8, 12 mm.

Although the single-taper Tukey performed better
with M 5 10, because we are now regularizing spa-
ially, it turns out to be better to allow more flexibility
i.e., less smoothing) of the spectral density by choosing
Tukey taper with M 5 15. Figures 16 (TR 5 3 s) and

7b (TR 5 1.5 s) show the results of the different
mounts of spatial smoothing. A ss of 8 mm performs

best and shows improvement over performing no spa-
tial smoothing for the TR 5 3 s data and performs
similarly for the TR 5 1.5 s data.

DISCUSSION

Prewhitening requires a robust estimator of the au-
tocorrelation to maintain low bias and Friston et al.
(2000) suggest that current techniques for estimating
the autocorrelation are not accurate enough to give
prewhitening acceptable bias. However, in Friston et
al. (2000) efforts were focused on using global esti-
mates of autocorrelation for reasons of computational
efficiency. In this paper local estimation techniques
were considered and were found to perform at accept-
able speeds (less than 5 min for the null data sets used
in this paper).

One interesting characteristic of the calibration/bias
plots in Figs. 13–16 is that the empirically obtained
probabilities are predominantly less than the expected
theoretical probabilities. It is not clear why this should
be the case. One possibility is that all of the autocor-
relation techniques are overestimating the noise at low
frequency. This could be a symptom of the trade-off
between being sufficiently flexible to model the low-
frequency components and avoiding overfitting at
higher frequencies. One solution could be to use a
nonparametric model fitted in the spectral domain
which allows more flexibility at low frequencies
(Marchini and Ripley, 2000). In this paper nonlinear
spatial smoothing is used to regularize spatially and
this allows the use of a more flexible M 5 15 Tukey
window, while at the same time avoiding overfitting.
This reduces bias to close to zero.

In similar work by Burock and Dale (2000) a first-
order autoregressive model with an extra white noise
component is used when performing prewhitening on
randomized ISI designs. They also demonstrate the
efficiency gained through prewhitening and show that
their estimates are unbiased. However, they do not
appear to examine the bias as far into the tail as in this
paper. Perhaps more importantly, the plots used to
examine the bias are on a linear scale and this makes
assessment of bias at low probabilities very difficult to
assess. In this paper we use a log–log scale and find-
ings suggest that bias is evident in the tail for general
order AR models.

It would also be interesting to know more about the
source of temporal autocorrelation, particularly with
regard to its spatial nature. In particular, it would be
interesting to understand the source of the increased
autocorrelation in the gray matter, whether it is phys-
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iological in origin and how it varies within the gray
matter itself.

CONCLUSIONS

As in Friston et al. (2000) we have demonstrated that
when using designs such as a boxcar convolved with a
gamma HRF, coloring can be used with minimal loss of
efficiency. However, for single-event designs with ran-
domized ISIs, jittering, or just very short ISIs, coloring

FIG. 14. Comparison of multitapering autocorrelation estimat
theoretical P against null distribution Pnull obtained from six differe
a gamma HRF and (b) a stochastic single-event design convolved wi
dotted line shows the result for what would be a perfect match betw

FIG. 15. Comparison of the different autocorrelation estimation t
distribution Pnull obtained from six different null data sets using TR
stochastic single-event design convolved with a gamma HRF. All are c
for what would be a perfect match between theoretical and null dist
is much less efficient and hence prewhitening is desir-
able.

Prewhitening requires a robust estimator of the au-
tocorrelation to maintain low bias. To estimate the
autocorrelation or equivalently the spectral density for
use in prewhitening, different techniques were consid-
ered. These were single-tapering Tukey, multitaper-
ing, autoregressive model of general order, and a non-
parametric approach that assumes monotonicity in the
autocorrelation.

for different values of NW via log probability plots comparing
ull data sets using TR 5 3 s for (a) a boxcar design convolved with

a gamma HRF. All are calculated using prewhitening. The straight
theoretical and null distribution.

niques via log probability plots comparing theoretical P against null
3 s for (a) a boxcar design convolved with a gamma HRF and (b) a
ulated using prewhitening. The straight dotted line shows the result
ution.
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Crucially, nonlinear high-pass filtering is performed
as a preprocessing step to remove the worst of the
nonstationary components and low-frequency noise. A
Tukey taper, with much greater smoothing of the spec-
tral density than is normally recommended in the lit-
erature, performed the best when prewhitening.

Importantly, a small amount of spatial smoothing of
the autocorrelation estimates was also found to be nec-

FIG. 16. Comparison of different amounts of spatial smoothing
M 5 15, via log probability plots comparing theoretical P against nul

s for (a) a boxcar design convolved with a gamma HRF and (b) a
alculated using prewhitening. The straight dotted line shows the r
istribution. MS is the mask size used in the SUSAN smoothing an

FIG. 17. (a) Comparison of Tukey autocorrelation estimation for
smoothing of the raw autocorrelation estimate prior to using Tukey
is made via log probability plots comparing theoretical P against nu
stochastic single-event design convolved with a gamma HRF. All are c
for what would be a perfect match between theoretical and null d
corresponds to s .
s
essary to reduce bias to close to zero at low probability
levels. The autocorrelation was found to vary consider-
ably between matter types, with higher positive auto-
correlation (low-frequency noise) in the gray matter
compared with the white matter. Therefore, nonlinear
spatial smoothing of the autocorrelation was used,
which smoothed only within matter types. Using a
Tukey taper (M 5 15) along with the nonlinear spatial

he raw autocorrelation estimate prior to using Tukey tapering with
stribution Pnull obtained from six different null data sets using TR 5
chastic single-event design convolved with a gamma HRF. All are
lt for what would be a perfect match between theoretical and null

orresponds to ss.

erent values of M and (b) comparison of different amounts of spatial
ering with M 5 15, for data taken with TR 5 1.5 s. The comparison
distribution Pnull obtained from nine different null data sets with a
ulated using prewhitening. The straight dotted line shows the result
ibution. MS is the mask size used in the SUSAN smoothing and
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smoothing we were able to reduce bias to close to zero
at probability levels as low as 1 3 1025.
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