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Abstract

The notion of fractal has been largely used to describe geometrical properties of complex objects in biology and medicine. In the present
study the question is addressed whether the human cerebral cortex is self-similar in a statistical sense, which is commonly referred to as
being a fractal. A new calculational method is presented, which is volumetric and based on the fast Fourier transform (FFT) of segmented
three-dimensional high-resolution magnetic resonance images. The analysis covers a wide range of spatial scales from the size of the whole
cortex to the ultimate pixel size. Results obtained in six subjects confirm the fractal nature of the human cerebral cortex down to a spatial
scale of 3 mm. The obtained fractal dimension is D � 2.80 � 0.05, which is in reasonable agreement with previously reported results.
Deployment of FFT enables a simple interpretation of the results and yields a high performance, which is necessary to analyze the entire
cortex. Thus the FFT-based analysis of segmented MR images offers a comprehensive approach to study neurodevelopmental and
neurodegenerative changes in the fractal geometry of the cerebral cortex.
© 2003 Elsevier Inc. All rights reserved.

1. Introduction

The complexity of the human cerebral cortex geometry
suggests a description based on the notion of a fractal, a
mathematical construction dedicated to describe the self-
similarity of various objects in dead and living nature (see,
e.g., Liu, 1986; Cook et al., 1995; a brief introduction into
the notion of fractal is given below). The fundamental
question to be answered is whether the cortex is indeed
self-similar. This would mean that the statistical properties
of the gyral pattern of small cortex structures are similar to
those of large ones. This approach refers to averaged char-
acteristics of the brain in contrast to the precise anatomic
description of individual structures. If the human cerebral
cortex will be shown to be a fractal structure, then geomet-
rical abnormalities of the overall gyral pattern, which is
difficult to assess by standard morphometric tools, may be
studied by fractal analysis.

The present problem has its own history. Hofman (1991)
gave a strong argument in favor of the fractal geometry of
the human cortex based on a surface-to-volume relation in
the mammalian brains. Majumdar and Prasad (1988) found
a fractal dimension D � 2.60 � 0.5 for the external cortex
surface in normal subjects using magnetic resonance (MR)
images of brain sections. The performed analysis was based
on the box counting method, which provided a measure for
the length of cortical interface in each slice. The result was
extrapolated to three dimensions by adding unity, which is
a correct procedure for isotropic fractals. A three-dimen-
sional analysis of a fixed brain specimen was performed by
Chuang et al. (1991) with the result D � 2.20. They applied
the surface tracking, which is a generalization of the box
counting method for three dimensions. Both studies were
criticized by Free et al. (1996) for giving little information
about details of MR imaging and data processing. Free et al.
investigated the interface between the human white and
gray matter obtained from segmented volumetric MR data.
They found that smoothing of the reconstructed white mat-
ter surface reduces its area in agreement with the hypothesis
of fractal geometry and reported a fractal dimension D �
2.30 � 0.01. Note that this fractal dimension was obtained
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from five smoothing levels ranging from 1.4 to 6.1 mm with
interpolation of the original voxel size to 0.47 � 0.47 �
0.36 mm3. While this study provides support for the hy-
pothesis that the white matter surface is fractal, the small
amount of smoothing levels does not allow to draw conclu-
sions about its entire geometry.

Cook et al. (1995) showed that the cortex reveals basi-
cally similar patterns of folds and islands up to a magnifi-
cation of about 14 times the original. They studied MR
slices by the box counting method in the scale range 25–2.5
mm and found a fractal dimension 1.45 � 0.06 for the
gray–white matter interface using seven smoothing levels.
Moreover, a reduced fractal dimension of D � 1.27 was
found in about half of the studied patients with frontal lobe
epilepsy. This is in line with a previous report of this group
by Free et al. (1996) showing abnormal fractal dimensions
in about half of the patients with epilepsy.

The complexity of the cortex folding, which is charac-
terized by the fractal dimension, increases with the normal
brain development as studied over the first two decades of
life by Blanton et al. (2001) in normal children. The value
was close to 2.26 and varied between lobes with the most
pronounced age-dependant increase in the left superior and
inferior frontal gyri. The method was based on MR imaging
accompanied by the surface smoothing method developed
by Thompson et al. (1996) to analyze the cortical geometry
using brain sections. The latter study resulted in the fractal
dimension in the range 2.09–2.12 depending on the cortical
structure studied.

These studies indicate the potential of quantifying the
complexity of the cortical folding for further characteriza-
tion of normal and abnormal brain development including
mental and neurological diseases such as schizophrenia and
epilepsy.

The use of the fractal dimension as a measure for the
cortical complexity relies on the assumption of self-similar-
ity of the cortex. In all studies except of one performed by
Majumdar and Prasad (1988) this hypothesis has been ver-
ified only for restricted spatial scales. In this article we
propose a novel computational method and analyze the
entire geometry of the human cerebral cortex. The range of
spatial scales over which the cortex is self-similar and the
respective fractal dimensions are shown. This is enabled by
the use of the fast Fourier transform, well suited to fast
three-dimensional automated geometry analysis over the
whole range of spatial scales.

2. Materials and methods

2.1. Brief introduction to fractal geometry

Let us briefly review the properties of fractals which are
essential for the present study. A more detailed introduction
in the context of cortical folding was offered by Cook et al.
(1995) The notion of dimensionality stems from everyday

experience. For example, a thin wire is one- and a sheet of
paper is two-dimensional. A mathematical definition, which
digests this common sense, can be formulated as follows.
Consider an object, the dimension of which is to be deter-
mined. One has to take an element of this object. The
element may be, for example, a voxel or a molecule. One
has to surround it with a sphere of a given radius R and
count the amount of object elements, �, inside the sphere.
The measure of � can be arbitrary; it can be, for example,
the amount of voxels or the volume. Of importance is only
the dependence of � on the sphere radius after averaging
over the element put in its origin. This value scales as v �
RD where D is the dimension by definition. This definition
not only meets the everyday experience for the simplest
cases mentioned above, but also takes into account the fact
that the relevant dimension of an object depends on the
spatial scale. For example, both the wire and the paper sheet
show the dimension of three at short distances for which the
sphere radius, R, is smaller than their thickness. At higher R
a transition to the dimensions of one or two occurs. Thus
even the simplest examples instructively highlight the im-
portance of crossovers in the dependence of the dimension
on the spatial scale, R. These change points indicate the
characteristic lengths which are present in the investigated
object.

The above definition can be reformulated in order to
become a practical mathematical tool. Consider an object in
three-dimensional space. The average amount of matter, �,
in a sphere of radius R is equal to

��R� � �
r�R

��r�d3r, (1)

where �(r) is the probability to find two object elements at
the separation r. The integration is performed over the
sphere volume with r denoting the absolute value of vector
r: r � �r�. Function �(r) provides a detailed description of
the geometry of the considered object. This function is
known under different names in many physical contexts.
Here we refer to it as the density–density correlation func-
tion, �(r), the name is borrowed from condensed matter
physics.

Consider objects, which are isotropic in a statistical
sense. This implies in particular that the function �(r) does
not depend on the direction of vector r. The above definition
of the fractal dimension accounting for Eq. (1) requires � to
depend on a power of r:

��r)�Const · rD	3. (2)

Self-similarity is the second issue involved in the present
analysis. It implies that the object looks similar to its
zoomed part. The words “looks similar” demand a proper
mathematical definition. As such, one requires that the av-
eraged object density, which is obtainable from � (R), and
the density–density correlation functions derived from the
main and the zoomed images have the same form. In view
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of Eq. (2) this means an invariance of the object dimension
D with respect to zooming. This requirement defines the
self-similarity in the wide sense. In contrast, the strict-sense
self-similarity implies the conservation of all statistical
properties upon zooming. This property can hardly be ver-
ified in biological objects imaged with a finite resolution.
The self-similarity discussed hereafter is understood in the
wide sense.

The fractals are nontrivial self-similar objects. The trivial
ones are, for example, a straight line, a plane, or three-
dimensional space. The dimension D for fractals takes frac-
tional values, which has originated the name. For any fractal
object, which exists in nature, it is possible to find a range
of spatial scales over which the fractal geometry holds. For
example, the coast line remains a fractal over the lengths
from the island size to that of a single rock. In the present
study special attention is paid to inspecting the self-similar-
ity range of the human cerebral cortex.

2.2. Analysis of cortex geometry

The presented method refers to the density–density cor-
relation function �(r), which, for the case of the cerebral
cortex is the probability to find two voxels in the cortex
separated by a given vector r. In fractals this function scales
according to Eq. (2) as rD	3, where r � �r� and D is the
fractal dimension. This dependence yields a straight line
when plotted in the double logarithmic scale. The reported
method is applied to segmented brain images (obtained as
described below), in which the cortical gray matter is as-
signed a value of unity, while the brightness of all other
voxels is set to zero. Mathematically such an image can be
described as a function of voxel position, r. This function
will be refered to as the cortical shape function and will be
denoted as s(r).

In principle, calculation of �(r) is possible via a straight-
forward voxel counting in the segmented brain images.
However, this procedure results in a huge number of oper-
ations of the order of N2, where N is the total number of
voxels. For high-resolution anatomical MR images as those
used in the present study N 
 226 and data processing
becomes extremely time-consuming. A similar problem is
inherent in the previous approaches based on measuring the
cortical area (Cook et al., 1995; Free et al., 1996; Thompson
et al., 1996).

We solve this problem by working with the Fourier
transform, f (k), of the shape function, s(r), of the segmented
cortex from which we recollect the necessary information
about the correlation function �(r). The use of the fast
Fourier transform reduces the huge amount of computa-
tions, since it requires only about N ln N operations. The
gain in performance for the high-resolution anatomical im-
ages is two orders of magnitude.

For the analysis, the squared magnitude �f (k)�2 is aver-
aged over the directions of the wave vector k. This yields a

function F(k) which is real and depends only on the absolute
value k � �k�,

F�k� �
1

4��
0

2�

d� �
0

�

d� sin � �f�k��2, (3)

where � and � are the polar and the azimuthal angles that
define the direction of vector k.

As shown in the Appendix, F � k	D for fractals. Thus a
straight segment in the double logarithmic plot of F(k)
indicates a self-similarity range of the cortex. There might
be several straight sections with different values of D. The
cross-overs between them indicate scales at which the cor-
tex geometry changes.

2.3. MR brain imaging

Magnetic resonance images were obtained at 1.5 T (Sig-
na Echospeed, GE Medical Systems, Milwaukee, WI).
High-resolution, whole-brain T1-weighted spoiled gradient
echo data sets (SPGR, IR-PREPPED, repetition time (TR)
� 10.3 ms, echo time (TE) � 3.4 ms, field of view (FOV)
� 23 � 23 cm2, matrix size � 256 � 256, flip angle � 20°)
were acquired in the sagittal plane with an in-plane resolu-
tion of 0.90 � 0.90 mm2. The three-dimensional data sets
consisted of 128 contiguous slices of thickness 1.4 mm. Six
subjects were included in this study, consisting of four
young healthy male volunteers (Subjects 2–5, age range 21
to 30 years), a middle-aged healthy man (Subject 1, 56
years), and a women with focal cortical malformation (Sub-
ject 6, 55 years).

2.4. Image segmentation

The gray matter was segmented from the measured data
by a method which was published in preliminary versions in
several proceedings (Hahn et al., 2000, 2001a, 2001b); an
essentially improved variant is applied in the present work.
The corresponding preprint can be delivered on request.
This nonparametric intensity segmentation method elimi-
nates after skull pealing via several correction steps distor-
tion and noise artifacts. Finally, after nonlinear edge pre-
serving noise elimination global thresholds are introduced
to separate CSF, and gray and white matter. No shape prior
is used, so the method applies equally well to normal and
malformed brains. The main new features are axial and
irregular bias corrections which are based on an estimate of
the cortex distortions in contrast to the frequently used
white matter-based corrections with subsequent extrapola-
tion to the cortex, see, e.g., Dale et al. (1999). The non-
equivalence of gray or white matter-based distortion fields
is one of the interesting outcomes of this segmentation study
(Hahn et al., 2001a, 2001b). This method is especially well
suited to the present fractal analysis, as the considered
measure is derived from volumetric cortex properties and as
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the cortex distortions are removed with higher precision
than those in white matter. The method requires few user
interactions to control the parameter settings; by renuncia-
tion of a perfect automation it gains flexibility and precision.
To test precision, the Montreal brain phantom (Kwan et al.,
1996; Cocosco et al., 1997) was segmented for a noise level
of 3% and a distortion of 40% RF nonuniformity, which
roughly approximates the distortions in our real data. A
quantitative measure of the segmentation quality is given by
the � statistics (Ashburner and Friston, 2000), measuring
the separation of CSF, and gray and white matter for the
whole brain. The presented segmentation method improves
� � 0.913 for the distorted and noisy phantom to � � 0.962.
A recently published value of � � 0.95 achieved by the
SPM method (Ashburner and Friston, 2000) indicates this to
be a good quality. This is also exemplified by Fig. 1, in
which the segmentation result for an axial and a sagittal
slice is compared with the corresponding phantom tissues.

2.5. Analysis of geometry

The brain extraction was manually corrected if needed
and the cerebellum as well as subcortical gray matter (basal
ganglia, thalamus, preserving the hippocampus–amygdalar
formation) were manually removed prior to segmentation.
Applying the resulting maps on the segmented images

yielded 3D maps of the cortical gray matter (GM) voxels of
unitary brightness. The shape function of these images were
Fourier-transformed with a routine for fast Fourier trans-
form resulting in function f(k), Eq. (3). The integration in
Eq. (3) was performed numerically by subdividing k space
in a number of spherical shells with logarithmically spaced
thickness and computing the average k and F(k) in each
shell. The fractal dimension was found by fitting a linear
function to the dependence of lg F on lg k. All computations
were performed with in-house C programs.

3. Results

The main steps of the segmentation procedure are illus-
trated in Fig. 2 by showing representative T1-weighted
images images of a segmented brain, and of the extracted
supratentorial cortical gray matter, which was subjected to
the geometry analysis.

Plots of the function F(k) are shown in Fig. 3. The
presence of an initial segment, which can be approximated
by a straight line, suggests that the cortex is self-similar up
to a region around k � 1 mm	1. The corresponding length
defined as �/k is 3 mm. The fractal dimensions in this range
were found by fitting a linear function to the data points
from the 1st to the 41st (which corresponds to k � 1.0

Fig. 1. CSF, and gray and white matter of an axial and a sagittal slice in obvious coloring. Left panels show the labeling of the Montreal brain phantom, right
panels the thresholded result of the segmentation method applied to the phantom with a 3% noise level and with 40% RF nonuniformity.
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Fig. 2. An axial and a sagittal slice in one volunteer. Top panels: T1-weighted images. Middle panels: Results of the segmentation procedure. Bottom panels:
Extracted cortical gray matter.

Fig. 3. Function F(k) plotted vs k in double logarithmic scale. Left: Data for Subject 1. The straight lines show the result of an equal-weight fitting of function
lg F(k) � Const 	 D 1g k to the data for the points through 1st to 41th. This results in the fractal dimension D � 2.74 � 0.05 shown in Table 1. The arrows
indicate the values of k which correspond to given structure sizes in real space defined as �/k. The errors in the data are discussed in the text. Right: Similarly
presented data for all six subjects with artificial shifts in the vertical direction.
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mm	1, Fig. 3). The results for all six subjects investigated
are collected in Table 1. The group mean value is D � 2.80
� 0.05 � 0.02, where the first error defined at one standard
deviation describes the interindividual variability and the
second results from the fitting errors for individual subjects.
The actual accuracy of the calculated fractal dimension is
smaller due to the ambiguity in the interval in which the
fitting is performed. For example, an application of the
fitting to the data points from the 13th to the 41st (Fig. 3),
which correspond to the length interval 31–3.1 mm, results
in the group mean D � 2.69 � 0.07 � 0.01. Exclusion of
the pathologic brain (Subject 6) does not result in any
significant change in the mean fractal dimensions: D � 2.81
� 0.05 � 0.02 and D � 2.71 � 0.07 � 0.01 for the two
above defined length intervals, respectively.

4. Discussion

The main result of the performed study is that the human
cerebral cortex does show a nearly fractal geometry down to
the spatial scale of 3 mm. This limit corresponds reasonably
well to the cortical thickness. At larger k a finer spatial scale
is probed at which the cortex is not subjected to folding.

The coarse spatial scale (small k in Fig. 3) is described
with poor statistics. This follows from small numbers of
grid points in Fourier space, which are averaged by com-
puting individual F values (Fig. 4). One could expect that
the shape of the F(k) curve in this range is determined by the
overall cortex structure, which is not subjected to statistical
averaging involved in the definition of the fractal dimen-
sion. In contrast to these expectations, the self-similarity of
the cortex folding sets up already for the largest spatial
scales as suggested by the averaged linear behavior seen in
Fig. 3 for the smallest k.

The present study shows the method’s feasibility and
reports first results for five healthy subjects and a focally
abnormal brain. It is beyond the scope of this methodologic
article to report a systematic analysis of cortical pathologies.

4.1. Comparison with spherical geometry

Let us compare the function F(k) characterizing the cor-
tical geometry with that for a sphere of radius R. The latter
can be obtained by a straightforward analytic calculation of
the Fourier integral for the shape function, which equals
unity inside and zero outside the sphere. Taking the squared
magnitude results in

F�k� � �4�R

k2 � 2 �cos kR �
sin kR

kR � 2

. (4)

We selected R � 85 mm in order to match the peculiar-
ities seen for low k data points in Fig. 3. This value reason-
ably matches the brain size. Both dependencies are shown in
Fig. 5. Although similar for the initial few points, the curves
significantly differ from each other. First, the overall slope
set by the first factor in Eq. (4) is equal to 	4. Second, the
oscillating factor in Eq. (4) results in many dips, which are

Table 1
Fractal dimensions, D, found in all subjects for two length intervals

Subject D (115–3.1 mm) R D (31–3.1 mm) R

1 2.74�0.05 0.99977 2.76�0.04 0.99994
2 2.85�0.05 0.99980 2.62�0.04 0.99992
3 2.78�0.05 0.99979 2.65�0.03 0.99996
4 2.83�0.04 0.99985 2.75�0.04 0.99994
5 2.84�0.05 0.99978 2.76�0.03 0.99995
6 2.76�0.05 0.99983 2.62�0.03 0.99995
mean 2.80�0.05�0.02 2.69�0.07�0.01

Note. The error (shown at one standard deviation) and the correlation
coefficient, R, reflect the quality of fitting. The first error in the mean values
is the standard deviation of the group averaging. The second error results
from the fitting uncertainty for individual subjects.

Fig. 4. Number of data points involved in the averaging over the directions
of vector k in computing F(k). The upper line is obtained for 61 intervals
presented in Fig.3. The lower line shows the same value for 5409 intervals.
F(k) for this case is presented in Fig. 7. The coinciding initial parts of both
lines are determined by a few grid points near the origin of k space. The
slope of their main parts shows the dependence N � k3. To explain this
exponent, note that each k interval represents a thin spherical shell of radius
k selected in three-dimensional k space. The shell surface increases qua-
dratically, and its thickness is proportional to k for the used logarithmic
spacing. The drop at large k is due to the rectangular shape of sampled k
space.

Fig. 5. A comparison of F(k) for the cortex (the same data as shown in the
left Fig. 3 with F(k) calculated for a sphere of radius 85 mm, Eq. (4) (the
irregular line). The dashed line shows the first nonoscillating factor in Eq.
(4).
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asymmetric in logarithmic scale. The apparently irregular
shape of F(k) for the sphere is due to an insufficient sam-
pling of an oscillating line. The number of periods of the
second factor in Eq. (4) is close to 14 for k � 1 mm	1. This
comparison suggests that the peculiarities seen in the left
Fig. 3 at small k do not originate from any noise. Rather
they can be attributed to the overall brain shape. The same
conclusion is suggested by the similarity of F(k) for all
subjects seen in Fig. 3.

4.2. More details about data averaging

The coarse brain structure clarifies the origin of the
apparently large error in the data presented in Fig. 3. Fig. 6
shows the error corridor for the data presented in the left
Fig. 3. The error bars were obtained as the standard devia-
tion 	 of the F values upon averaging in each k interval. The
nearly constant 	(k) rules out a purely random origin. In-
deed, the number of averaged voxels enormously increases
for large k as shown in Fig. 4. The conventional averaging
of randomized deviations would result in a fast decreasing
	(k). Why this is not the case can be explained by the
following reasons. Consider an idealized cortex having an
overall shape of an ellipsoid and the folding of which is
similar in any direction from its center. Consider the func-
tion � f (k)�2 of Eq. (3), which results in F(k) after averaging
over the direction of vector k. The dependence � f (k)�2 plot-
ted against k would show a fractal dimension, which would
be the same for all directions of vector k. At the same time,
the magnitude of � f (k)�2 would be different in different
directions according to the ellipsoid shape. The F(k) values
are obtained by the angular averaging in Eq. (3). In the
considered example, this would be an averaging of many
parallel lines with a significant spreading in their offsets. It
would result in a constant 	(k) similar to one presented in

Fig. 6. For the ellipsoid, this effect could be corrected by an
appropriate rescaling of, e.g., kx and ky. For real cortex, this
is difficult due to its more complicated structure even at the
coarser spatial scales.

The above reasoning is supported by data presented in
Fig. 7 showing the effect of a finer k-gridding by computing
the function F(k). Treatment of F(k) with less k intervals
leads to more averaged values in each of them, while the
smaller intervals present more individual contributions.
Practically an apparently smooth F(k) emerges when the
number of averaged data points reaches one hundred, as it is
seen from comparison of Fig. 7 and 4. The averaging, which
is not performed in the fine k intervals, is effectively done
later by fitting applied for computing the fractal dimension.
It is possible to calculate more averaged F(k) or let the
averaging be achieved by fitting. These ways are not equiv-
alent though. The former methods works with F(k), thus
complying with the definition of fractal dimension, while in
the latter the effectively averaged quantity is lg F(k). The
averaging of logarithm should yield a smaller dimension,
which is the case shown in Fig. 7.

4.3. Summary of result uncertainties

The notion of fractal dimension is applicable to definite
scale intervals, which should be given along with the final
results. Obviously, intersubject comparison is meaningful
only if equal intervals are applied. There may be several
ways to equalize them. The simplest would be to always
select equal k intervals. This is however less meaningful for
cortices with a significant difference in size. A better way
would be to appropriately rescale the considered k interval.
Note that an image scaling does not change its fractal
dimension up to the obvious restriction of the finite sam-
pling. This uncertainty produces an error of a few percent,
which is comparable with the accuracy of fitting.

Fig. 7. Effect of reducing the k intervals in computing F(k). The gray line
with dots presents the same data as in the left Fig. 3. The less regular black
line shows F(k) for a subdivision of k axis in 5409 intervals. The number
of data points in each interval is shown in Fig. 4. The fractal dimension
found for the finely gridded data for the same k interval as in Fig. 3 is D
� 2.52 � 0.008 (R � 0.99977). This is smaller than D � 2.74 � 0.05
obtained for the coarse gridding (Fig. 3, left, and Table 1), as should be
expected by mathematical reasons discussed in the text.

Fig. 6. Apparent errors in data shown in Fig. 3. The middle line reproduces
function F(k) for Subject 1 (Fig. 3 left). The error corridor is formed by the
standard deviation, 	, of data averaged to obtain the values attributed to
each k interval. Its magnitude is typically close to that of F(k) and it
marginally depends on k. The upper line shows F(k) � 	(k). The lower line
presents F(k)e		(k)/F(k). The latter formula coincides with F(k) 	 	(k) for
small 	(k) and helps avoiding negative values in the logarithmic scale. A
deterministic origin of this seemingly large error is discussed in the text.
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Another uncertainty stems from the above-discussed way
of averaging, which yields the F(k) curve (Fig. 7). As is
shown by the considered example, the fractal dimension can
change by up to 10% for the extreme case presented in Fig.
7. The way of averaging should obviously be the same to
enable intersubject comparison.

The results are also affected by the quality of segmenta-
tion. The ultimate accuracy of segmentation is limited by
the presence of voxels containing tissue interfaces (the par-
tial volume effect). Changing the segmentation thresholds
might reassign such voxels to other tissue. In order to assess
this effect, a segmentation threshold, which was used in
assigning a voxel to either gray or white matter, was varied
to produce once a 12% decrease and once an 11% increase
in the number of gray matter voxels found in Subject 1. The
corresponding variation in the fractal dimension in the in-
terval 115–3.1 mm was nearly linear with the coefficient
0.006 per one percent change in the gray matter volume. As
is seen from the data for individual subjects shown in Table
1, the fractal dimension remains within its error bar as long
as the gray matter volume changes by less than 7–8%.

4.4. Comparison with other methods

Let us discuss how the present method relates to known
approaches to characterize the cortical folding. Hofman
(1991) has observed that the convoluted brains of terrestrial
mammals possess an overproportional increase in the total
cortical surface as a function of the brain volume, which is
an indication of the fractal geometry. This areametric ap-
proach was further developed to the currently available
methods (Majumdar and Prasad, 1988; Chuang et al., 1991;
Cook et al., 1995; Free et al., 1996; Thompson et al., 1996).
Appropriate computational methods imply counting the
smoothed cortical area as a function of the smoothing ex-
tent. The smoothing hides fine details, thus providing a
probe for different spatial scales. The difference between
the known methods can be formulated in terms of the
specific realization of measuring and smoothing the cortical
surface. For example, Free et al. (1996) applied a dilation of
the gray–white matter interface. This approach suffers from
the abuttal of gyri, which explains its application to only the
inner cortical surface (Free et al., 1996). The most precise
surface reconstruction performed by Cook et al. (1995),
Free et al. (1996), and Thompson et al. (1996) requires
intensive computations, thus yielding a restricted amount of
points for fitting the fractal dimension (from five to seven in
the cited articles). The good fit quality obtained in these
studies does not show this restriction as a disadvantage.
However, it does not allow us to probe the cortical geometry
over all scales.

In contrast, the present method is based on a volumetric
approach. It avoids the problem of defining the interface
areas in discretized three-dimensional images. The high
computational efficiency allows for visualizing the gray

matter geometry over all scales as shown, for example, in
Fig. 3.

The price for these advantages is an incomplete compa-
rability of the results derived from either areametric or
volumetric calculations of the fractal dimension. Basically,
both methods should yield similar results. Consider, for
example, an idealized situation of the cortex with a constant
thickness. Smoothing implies that the convolved cortex is
replaced by a flat slightly curved surface at fine spatial scale
up to some size R (Fig. 8). The surface structure at coarser
scales is preserved. The original surface area a(0) inside the
smoothing sphere can be estimated as the volume inside this
sphere divided by the cortex thickness �. This is a(0) �
RD/� according to the definition of the fractal dimension.
This area is replaced upon smoothing by a(R) � R2/�, which
corresponds to an unfolded surface. Thus the surface area
inside the smoothing sphere is reduced by a factor a(R)/a(0)
� R2	D. As this estimate is applicable to each cortex ele-
ment, the same relation holds for the whole smoothed sur-
face area. This is the formula used in previous studies to
measure the fractal dimension in three dimensions (Chuang
et al., 1991; Free et al., 1996; Thompson et al., 1996).

This example supports the idea that the areametric and
the volumetric approaches should yield similar results for
the fractal dimension. How close the results would be is
however difficult to predict. First, the cortical thickness is
not constant. Second, any practical realization of the area-
metric approach needs to specify the means of smoothing.
The implementation by Free et al. (1996) involves nonana-
lytical operations such as thresholding, which hinders a
precise analytical analysis. Third, the available in vivo area-
metric results are obtained for either inner or outer cortical
surface, while the present method works with the whole
cortical volume. Against this background, one may expect
numerically small, but systematic differences between the
fractal dimensions derived from the two methods and from
different realizations of the areametric approach.

This is supported by the available results. The fractal
dimension found by Free et al. (1996) for the inner cortical
surface is 2.30 � 0.01. Extrapolation of the planar fractal
dimension 1.45 � 0.06 obtained by Cook et al. (1995) from

Fig. 8. An illustration of the smoothing of a convolved surface. The extent
of smoothing is set by a sphere of radius R, which is shown before (left)
and after the smoothing (right). Inside this sphere the convolved surface is
replaced with a piece of a flat one (transition from left to right in the figure).
At larger scales the overall surface shape is preserved (figure in the
middle). The black dots represent a cortex element put in the origin of the
sphere.
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two to three dimensions would give D � 2.45. Blanton et al.
(2001) presented graphical results centered near D � 2.26.
These values are reasonably smaller than the volumetric one
found in the present study. One can expect that the volu-
metric result is closer to the outer cortical area, as the latter
is larger. The fractal dimension of this interface was found
to be 2.60 � 0.05 (Majumdar and Prasad, 1988). The
deviation from the presented result D � 2.80 � 0.05 can be
accepted in view of the above-discussed systematic differ-
ence in the computation methods.

An alternative established measure of the cortical folding
is the gyrification index (GI) (Zilles et al., 1988). It is based
on length measurements in brain sections. The gyrification
index for a section is the ratio of the total length of the
dissected cortical area to the length of outer contour around
the section. The mean GI for a hemisphere is defined as the
ratio of sum over sections of all total lengths to the sum of
all outer contour lengths.

The notions of both the fractal dimension and the GI rely
on a comparison between the overall size of the brain and
the size of the folded cortex. The similarity ends here
though. Calculations of GI make use of the extreme of the
largest scale (the outer contour) and of the finest scale, at
which the total cortical section length is measured. Since the
outer contour cannot be treated statistically, it is difficult to
deduce a mathematical relation between the GI and the
cortical fractal dimension. It would be in the spirit of fractal
calculus to consider the contours, which are smoothed to
different extent. In practice, the GI focuses on rather loca-
tion-specific information without referring to variable spa-
tial scales. Both measures may provide complementary in-
formation which may be useful for characterizing abnormal
cortical folding. The fractal dimension over all spatial scales
in the presented structurally malformed brain was unre-
markable despite a clearly abnormal focal cortical thicken-
ing. This is in line with only about half of the patients with
structural abnormalities studied by Free et al. (1996) show-
ing abnormal fractal dimensions. On the other hand, fractal
analysis may be adapted to detect locally restricted abnor-
malities when applied to regions of interest. The advantage
of the whole cortical analysis to study brain diseases can be
mainly seen in assessing subtle global changes in folding
structure which may be associated with abnormal brain
development and neurodegeneration.

5. Summary

An analysis of the geometry of the human cerebral cortex
has been performed over all spatial scales. It was shown that
the cortex does possess a self-similarity extending to details
of about 3 mm. The fractal dimension in this range agrees
reasonably well with previously reported values. The new
calculational method is based on the fast Fourier transform
of segmented three-dimensional high-resolved magnetic

resonance images. The resulting computational algorithm is
extremely effective and involves only standard methods of
classical mathematics, making this approach well suited to
further neuroimaging studies focusing on cerebral shape
abnormalities.
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Appendix

Equivalence of direct and Fourier determination of
fractal dimension

The presented proof is a modification of one given by
Liu (1986) for the context of brain MRI.

The cortex is described by the shape function, s(r),
introduced in Section 2.2, which is unity in the cortical gray
matter and zero otherwise. The Fourier transform of this
function, f (k), in Eq. (3), has the following explicit form:

f�k� � �
	�

�

dx �
	�

�

d y �
	�

�

dzs�r�eikr

� � s�r�eikrd3r. (5)

Here x, y, and z are the components of vector r. The
second integral form introduces a short-hand notation,
which is useful for writing the following multidimensional
integrals. In this notation only the integration measure is
given explicitly. F(k) defined in Eq. (3) takes the form

F�k� �
1

4� �
0

2�

d� �
0

�

d� sin � f�k� f *�k�

� � f�k� f *�k�
d
k

4�
,

� � s�r�s�r��e	ik�r	r�� d3rd3r�
d
k

4�
. (6)

Here � and �, which have been introduced in Eq. (3), define
the direction of k. The second integral in the first line
introduces a short-hand notation for the integration over
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these two angles. Let us change the integration variable
from r to �r � r 	 r� and integrate then over r�. This gives

F�k� � � s�r� 
 �r�s�r��e	ik�rd3�rd3r�
d
k

4�

� � ���r�e	ik�rd3�r
d
k

4�
, (7)

where �(�r) is the two-point correlation function of the
cortex for the given spacing �r. Now we use the property of
the Fourier transform that a rotation in the source results in
the opposite rotation of the image. To do it accurately, let us
define a fixed vector k0 and obtain all directions of the
integration variable k as k � Ok0, where O is a rotation
matrix. This results in the following form of F(k),

F�k� � � ���r�e	ik0O	1�rd3 �r
d
k

4�

� � ��O�r��e	ik0�r�d3 �r�
d
k

4�
, (8)

where we have changed the integration variable �r to �r�
� O	1 �r and used the property Ot � O	1. Note that 
k

still defines the rotation angles of the matrix O. Thus the
integration over 
k performs the averaging of �(O�r�) over
the orientations of its argument. This gives the definition of
the fractal dimension D:

� ���r�
d
k

4�
���r�D	3. (9)

Substituting this into Eq. (8) and calculating the Fourier
integral we finally obtain that

F�k��k	D (10)

if D does not depend on �r.
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