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The advent of high-throughput sequencing technologies has led to
an increasing availability of large multi-tissue data sets which contain
gene expression measurements across different tissues and individu-
als. In this setting, variation in expression levels arises due to contri-
butions specific to genes, tissues, individuals, and interactions thereof.
Classical clustering methods are ill-suited to explore these three-way
interactions and struggle to fully extract the insights into transcrip-
tome complexity contained in the data. We propose a new statistical
method, called MultiCluster, based on semi-nonnegative tensor de-
composition which permits the investigation of transcriptome varia-
tion across individuals and tissues simultaneously. We further develop
a tensor projection procedure which detects covariate-related genes
with high power, demonstrating the advantage of tensor-based meth-
ods in incorporating information across similar tissues. Through sim-
ulation and application to the GTEx RNA-seq data from 53 human
tissues, we show that MultiCluster identifies three-way interactions
with high accuracy and robustness.

1. Introduction. Owing to advances in high-throughput sequencing
technology, multi-tissue expression studies have provided unprecedented op-
portunities to investigate transcriptome variation across tissues and individ-
uals (Lonsdale et al. 2013; Melé et al. 2015; Hawrylycz et al. 2012). A typical
multi-tissue experiment collects gene expression profiles (e.g. via RNA-seq or
microarrays) from different individuals in a number of different tissues, and
variation in expression levels often results from complex interactions among
genes, individuals, and tissues (Melé et al. 2015) . For example, a group
of genes may perform coordinated biological functions in certain contexts
(e.g. specific tissues or individuals), but behave differently in other settings
through tissue- and/or individual-dependent gene regulation mechanisms.
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Clustering has proven useful to reveal latent structure in high-dimensional
expression data (Tibshirani et al. 1999; Lazzeroni and Owen 2002; Liu
et al. 2008). Traditional clustering methods (such as K-means, PCA, and
t-SNE (Maaten and Hinton 2008)) assume that gene expression patterns
persist across one of the different contexts (either tissues or individuals), or
assume that samples are i.i.d. or homogeneous. Direct application of these
algorithms to multi-tissue expression data requires concatenating all avail-
able samples from different tissues into a single matrix, precluding potential
insights into tissue × individual specificity (Bahcall 2015). Alternatively, in-
ferring gene modules separately for each tissue ignores commonalities among
tissues and may hinder the discovery of differentially-expressed (DE) genes
that characterize tissues or tissue groups. Likewise, individuals vary by their
biological attributes (such as race, gender, and age), and ignoring such het-
erogeneity impedes the accurate estimation of gene- and/or tissue-wise cor-
relations. The development of a statistical method that integrates multiple
modes (defined in Section 3) simultaneously is therefore essential for elu-
cidating the complex biological interactions present in multi-tissue multi-
individual gene expression data.

Several methods have been proposed in multi-tissue multi-individual ex-
pression studies, but they are often unable to fully exploit the three-mode
structure of the data. Pierson et al. (2015) propose a hierarchical transfer
learning algorithm to learn gene networks in which they first construct a
global tissue hierarchy based on mean expression values and subsequently
infer gene networks for each tissue conditioned on the tissue hierarchy. Dey,
Hsiao and Stephens (2017) instead use topic models to cluster samples (i.e.
tissues or individuals) and identify genes that are distinctively expressed in
each cluster. Both algorithms take a two-step procedure to uncover expres-
sion patterns in tissues and genes. Other methods offer one-shot approaches
by identifying subsets of correlated genes that are exclusive to, for example,
female individuals. Gao et al. (2016) adopt the biclustering framework and
propose decomposing the expression matrix into biclusters of subsets of sam-
ples and features with latent structure unique to the overlap of particular
subsets. However, in the case of multi-tissue measurements across individu-
als, concatenating the data sample-wise to create a single expression matrix
will not explore the three-way interactions among genes, tissues, and individ-
uals. A more recent work (Hore et al. 2016) develops sparse decomposition of
arrays (SDA) for multi-tissue expression experiments. Because their focus is
not on clustering tissues or individuals, the proposed i.i.d. prior on individ-
ual/tissue loadings may not be suitable to detect tissue- and individual-wise
correlation.
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Fig 1 Three-way clustering problem. (a) Input tensor of gene expression.
(b) Shuffled, de-noised output tensor containing local blocks. Both (a) and
(b) are color images of a data tensor Y = JYijkK, with each entry colored
according to the value of Yijk.

We address the aforementioned challenges by developing a tensor-based
method, called MultiCluster, to simultaneously cluster genes, tissues, and
individuals. As illustrated in Figure 1a, multi-tissue multi-individual gene
expression measurements can be organized into a three-way array, or order-
3 tensor, with gene, tissue, and individual modes. Our goal is to identify
subsets of genes that are similarly expressed in subsets of tissues and indi-
viduals; mathematically, this reduces to detecting three-way blocks in the
expression tensor (Figure 1b). We utilize the flexible tensor decomposition
framework to directly identify gene modules in a tissue × individual specific
fashion, which traditional clustering methods would struggle to capture.

Our tensor decomposition method can be viewed as a generalization of
matrix PCA. Compared to matrices, tensors provide greater flexibility to de-
scribe data but entail a higher computational cost. Indeed, extending famil-
iar matrix concepts such as SVD to tensors is not straightforward (De Silva
and Lim 2008; Kolda and Bader 2009; Wang et al. 2017), and the associated
computational complexity has proven to be NP-hard (Hillar and Lim 2013).
Motivated by recent advances in tensor decomposition (Anandkumar et al.
2014; Wang and Song 2017), we develop a robust clustering method to si-
multaneously infer common and distinctive gene expression patterns among
tissues and individuals which utilizes triplets of sorted loading vectors in a
constrained tensor decomposition. This approach handles heterogeneity in
each mode and learns the clustering patterns across different modes of the
data in an unsupervised manner analogous to PCA and SVD. In addition,
we develop a tensor projection procedure which detects covariate-related
genes with high power, demonstrating the advantage of tensor-based meth-
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ods in incorporating information across similar tissues. When applied to the
Genotype-Tissue Expression (GTEx) RNA-seq data, our method uncovers
different types of gene expression modules, including (i) global, shared ex-
pression modules; (ii) expression modules specific to certain subsets of tis-
sues; (iii) modules with differentially expressed genes across individual-level
covariates (e.g., age, sex or race); and (iv) expression modules that are spe-
cific to both tissues and individuals.

Section 2 discusses the GTEx data set which serves as the motivating
example for our method. Section 3 covers tensor preliminaries and presents
our three-way clustering method via the use of semi-nonnegative tensor de-
composition. We then describe the fitting procedure and develop a tensor
projection method for detecting covariate-related genes. Section 4 presents
simulation studies that compare our method with a number of alternatives.
In Section 5 we describe the application of our method to the GTEx multi-
tissue multi-individual gene expression data set. We conclude in Section 6
with a discussion of our findings and avenues for future work.

2. Motivating data set. We demonstrate the usefulness of MultiClus-
ter using the GTEx v6 gene expression data, which consist of RNA-seq
samples collected from 544 individuals across 53 human tissues, including
13 brain subregions, adipose, heart, artery, skin, and more. These data are
available from https://www.gtexportal.org/home/datasets. The experi-
ment is described in detail in Lonsdale et al. (2013) and further in Melé et al.
(2015). After cleaning and preprocessing the data as detailed in the Supple-
ment (Wang, Fischer and Song 2018), gene expression measurements were
organized into a gene × individual × tissue multi-way array Y ∈ RnG×nI×nT ,
where nG = 18, 481 (genes), nI = 544 (individuals) and nT = 53 (tissues).

The GTEx data set contains categorical clinical variables such as sex
(n = 357 females vs. n = 187 males), race (n = 77 African Americans vs.
n = 467 European Americans), and age (1st and 3rd age quantiles of 47
and 62, respectively). Given its inherent structure and levels of individual
heterogeneity, this data set naturally lends itself to a tensor framework and
allows us to systematically investigate multifactorial patterns of transcrip-
tome variation.

3. Models and methods. We begin by reviewing a few basic facts
about tensors (Kolda and Bader 2009). We use Y = JYi1i2...ikK ∈ Rd1×d2×···×dk
to denote a (d1, d2, . . . , dk)-dimensional real-valued tensor, where k corre-
sponds to the number of modes of Y and is called the order. Given our
intended application to multi-way gene expression data, we describe the
method in the context of order-3 tensors, though it is also applicable to

https://www.gtexportal.org/home/datasets
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higher-order tensors. A tensor Y is called a rank one tensor if it can be
written as an outer product of vectors such that Y = x ⊗ y ⊗ z, where
x ∈ Rd1 , y ∈ Rd2 , z ∈ Rd3 , and ⊗ denotes the Kronecker product.

The inner product between two tensors Y = JYijkK and Y ′ = JY ′ijkK in

Rd1×d2×d3 is the sum of the product of their entries given by

〈Y, Y ′〉 =

d1∑
i=1

d2∑
j=1

d3∑
k=1

YijkY
′
ijk.

The Frobenius norm of Y is defined as

‖Y‖F =
√
〈Y,Y〉 =

 d1∑
i=1

d2∑
j=1

d3∑
k=1

Y 2
ijk

1/2

.

Following Lim (2005), we define the covariant multilinear matrix multipli-

cation of a tensor T ∈ Rd1×d2×d3 by matrix M1 = Jm(1)
i`1

K ∈ Rd1×s1 ,M2 =

Jm(1)
j`2

K ∈ Rd2×s2 , and M3 = Jn(3)
k`3

K ∈ Rd3×s3 as

Y(M1, M2, M3) =
r d1∑
i=1

d2∑
j=1

d3∑
k=1

Yijkm
(1)
i`1
m

(2)
j`2
m

(3)
k`3

z
,

which results in a tensor in Rs1×s2×s3 . When M1 is an identity matrix, we
often write Y(·, M2, M3) for brevity; similar shorthand rules apply to other
modes. Note than when s1 = 1, Y(M1, M2, M3) degenerates to an s2-by-
s3 matrix, and when both s1 = s2 = 1, Y(M1, M2, M3) degenerates to a
length-s3 vector. Mildly abusing notation, we use symbols such as Y(·, ·, k)
to denote the k-th matrix slice of the tensor in which the first two indices
may vary and the last index is held fixed for some 1 ≤ k ≤ d3.

For ease of notation, we allow the basic arithmetic operators (+, −, ≥,
etc) to be applied to pairs of vectors in an element-wise manner. We use the
shorthand [n] to denote the n-set {1, . . . , n} for n ∈ N+.

3.1. Tensor decomposition model. Figure 2 provides a schematic illus-
tration of the MultiCluster method. In a multi-tissue multi-individual gene
expression experiment, the data take the form of an order-3 tensor, Y =
JYijkK ∈ RnG×nI×nT , where Yijk denotes the expression value (possibly after
a suitable transformation) of gene i measured in individual j and tissue k,
nG is the total number of genes, nI is the total number of individuals, and
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Fig 2 Schematic diagram of MultiCluster method. (a) Multi-tissue multi-
individual gene expression data. (b) Input expression tensor after normaliza-
tion and imputation. (c) Our method decomposes the expression tensor into
a set of rank-1 tensors, Gr⊗Ir⊗Tr, where Gr, Ir, and Tr are, respectively,
gene, individual, and tissue singular vectors. (d) Each three-way cluster is
represented by the three sorted singular vectors. (e) We utilize metadata,
such as gene ontology (GO) annotation, tissue labels, and individual-level
covariates, to identify the sources of variation in each loading vector.

nT is the total number of tissues. We propose to model the expression tensor
Y as a perturbed rank-R tensor,

(3.1) Y =
R∑
r=1

λrGr ⊗ Ir ⊗ Tr + E ,

where λr ∈ R+ are singular values; Gr, Ir, and Tr are norm-1 singular
vectors in RnG ,RnI , and RnT , respectively; and E = JEijkK is a noise tensor
with each entry Eijk i.i.d. N(0, σ2

e). We refer to the loading vectors Gr, Ir,
Tr as “eigen-genes”, “eigen-individuals”, and “eigen-tissues”, respectively.

The rank-1 component Gr ⊗ Ir ⊗ Tr in (3.1) can be interpreted as the
basic unit of an expression pattern (called an expression module), in which
the (i, j, k)-th entry of Gr⊗ Ir⊗Tr is the multiplicative product of the cor-
responding entries in the three modes, i.e., (Gr⊗Ir⊗Tr)(i,j,k) = Gr,iIr,jTr,k.
The tissue loadings indicate the “activity” of the expression module r for
each tissue. To facilitate the biological interpretation, we impose entry-wise
nonnegativity conditions, Tr ≥ 0, on the tissue loading vectors Tr; the man-
ner of execution and motivation for this constraint are discussed in Sec-
tion 3.2. Note that no sign constraint is imposed on individual and gene
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loadings, so our method is flexible enough to handle mixed-sign data tensors.
We refer to such constraints as “semi-nonnegative” tensor decomposition.

3.2. Estimation via optimization. We wish to recover the tensor compo-
nents of interest,

{(λr,Gr, Ir,Tr) : ‖Gr‖2 = ‖Ir‖2 = ‖Tr‖2 = 1, λr > 0,Tr ≥ 0, r ∈ [R]},

from the observation Y. The negative log-likelihood under the Gaussian
model (3.1) is equal (ignoring constants) to

(3.2) ‖Y −
R∑
r=1

λrGr ⊗ Ir ⊗ Tr‖2F ,

which will be the cost function in our estimation procedure. Before present-
ing the algorithm, we first state some conditions for the model identifiability.
The first complication is the indeterminacy due to sign flips and permuta-
tion:

– Sign flips: changing the factors from (Gr, Ir,Tr) to (−Gr,−Ir,Tr) does
not affect the likelihood.

– Permutation: applying permutation to the index set [R] does not affect
the likelihood.

To deal with the above indeterminacy, we adopt the following convention.
The sign of Ir is chosen such that maxj∈[nI ] Ir,j = maxj∈[nI ] |Ir,j | for all
r ∈ [R]. Because of the nonnegativity constraints on Tr, this convention
fixes the sign of Ir (and thus Gr). Furthermore, component indices are
arranged such that λ1 ≥ λ2 ≥ · · · ≥ λR. In the degenerate case where not
all eigenvalues are unique, we break ties by first choosing the module r with
larger maxj∈[nI ] Ir,j .

The second complication comes from the possible non-uniqueness of ten-
sor decomposition even after accounting for sign and permutation inde-
terminacy. Fortunately, we are able to utilize sufficient conditions for the
uniqueness of tensor decomposition. These conditions were initially devel-
oped for unconstrained tensor decomposition, but they also apply to our
semi-nonnegative tensor decomposition.

– (Kruskal 1977) A rank-R semi-nonnegative tensor decomposition is unique
if kG + kT + kI ≥ 2R+ 2, where kG is the Kruskal-rank of the gene factor
matrix G = [G1, . . . ,GR], i.e., the maximum value k such that any k
columns are linearly independent. The definitions for kT and kI are simi-
lar, except that the tissue factor matrix T = [T1, . . . ,TR] is nonnegative
in our case.



8 M. WANG, J. FISCHER, AND Y.S. SONG

– (De Lathauwer 2006) Suppose nG > nI > nT (as in the GTEx data). If
R ≤ nT and R(R− 1) ≤ nG(nG − 1)nI(nI − 1)/2, then the rank-R semi-
nonnegative tensor decomposition is unique for almost all such tensors
except on a set of Lebesgue measure zero.

In parameter estimation, we decompose the tensor Y via successive rank-1
approximations coupled with deflation. Although successive rank-1 approx-
imations of a tensor do not necessarily yield its best rank-R approxima-
tion, recent work shows that they provide a flexible estimation procedure
with well-controlled error in many cases (Allen 2012; Mu, Hsu and Goldfarb
2015).

We modify our earlier algorithm (Wang and Song 2017) to solve for
λ̂r, Ĝr, Îr, T̂r via the following optimization:

minimize
λr,Gr,Ir,Tr

‖Y − λrGr ⊗ Ir ⊗ Tr‖F ,(3.3)

subject to ‖Gr‖2 = ‖Ir‖2 = ‖Tr‖2 = 1, and Tr ≥ 0,

where Y denotes either the original or residual tensor after deflation. As the
optimization (3.3) is separable into each of its factors, we can optimize this
in an iterative block-wise manner:

Property 1. Let (λ̂r, Ĝr, Îr, T̂r) be the optimizer of (3.3). Then the
following properties hold (assuming the denominators are non-zero):

Ĝr = Y(·, Îr, T̂r)/‖Y(·, Îr, T̂r)‖2,(3.4)

Îr = Y(Ĝr, ·, T̂r)/‖Y(Ĝr, ·, T̂r)‖2,

T̂r = Y(Ĝr, Îr, ·)+/‖Y(Ĝr, Îr, ·)+‖2,

λ̂r = Y(Ĝr, Îr, T̂r),

where a+ := max(a, 0) and we allow this operator to be applied to vectors in
an element-wise manner.

A proof is provided in Supplement (Wang, Fischer and Song 2018). The
above result suggests an alternating optimization scheme. The tensor fac-
tors Ĝr, Îr and T̂r are initialized using outputs from unconstrained tensor
decomposition (Wang and Song 2017). Each factor is then updated alterna-
tively while keeping the other two factors fixed. The update step requires
solving a (either constrained or unconstrained) least-square problem and the
optimal solution is given explicitly by the right-hand side of equality (3.4).
In particular, the entry-wise nonnegativity of the tissue loading vectors T̂r
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is imposed by setting negative values of T̂r to 0. As each coordinate update
reduces the objective function, which is bounded below by 0, convergence of
this scheme is assured. After obtaining the r-th component (λ̂r, Ĝr, Îr, T̂r),
we take the residual tensor as the new input and repeat the algorithm to
find the next component via the update Y ← Y − λ̂rĜr ⊗ Îr ⊗ T̂r. The full
algorithm is provided in the Supplement (Wang, Fischer and Song 2018).

The requirement of nonnegative tissue loadings effectively introduces ze-
ros in the vector T̂r; a sparse T̂r implies that the module r is active in
only a few tissues, whereas a dense T̂r implies that the module r is com-
mon to several tissues. Without the nonnegativity constraint, it is possible,
and in our experience likely, that each T̂r contains two tissue groups: one
corresponding to positively-loaded tissues and one to negatively-loaded tis-
sues. Consequently, gene and individual loading patterns become less inter-
pretable due to ambiguities in the identity of the tissue group with which
they are associated.

Before concluding this section, we briefly comment on two implemen-
tation details. First, the algorithm assumes that R is given. In practice,
the rank R is often unknown and must be determined from the data Y.
There are many heuristics developed for choosing R in the matrix case, and
similar ideas can be adopted here. For example, one can plot the sum of
squared residuals (3.1) as a function of R and identify the elbow point in
the curve. Second, when some entries Yijk are missing, tensor decomposition
is not well-defined. In such a case, one could instead use the cost function∑

[i,j,k]∈Ω(Yijk −
∑

r λrGr,iIr,jTr,k)
2, where Ω ⊂ [nG] × [nI ] × [nT ] is the

index set for non-missing entries. To implement this, we iteratively approx-
imate missing data with fitted values based on current parameter estimates
and proceed with the algorithm until convergence. This procedure has been
commonly used in matrix factorization (Lee, Huang and Hu 2010; Lee and
Huang 2014), and we adopt it for tensor factorization.

3.3. Characterizing expression modules. For each expression module 1 ≤
r ≤ R, we propose a straightforward procedure to characterize the biological
significance of the loading vectors Ĝr, Îr, and T̂r. For ease of presentation,
in what follows we drop the subscript r and simply write Ĝ, Î, and T̂.

3.3.1. GO enrichment based on gene loadings. Let Ĝ = (Ĝ1, . . . , ĜnG)T

be the estimated eigen-gene. Genes with extreme loadings contribute more
to this module, and we are particularly interested in the overexpressed and
underexpressed gene clusters Gtop = {i ∈ [nG] : Ĝi ≥ ctop} and Gbottom =

{i ∈ [nG] : Ĝi ≤ cbottom}, respectively, where ctop and cbottom are thresholds
which control the cluster sizes.
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We use a permutation-based procedure (see Supplement (Wang, Fischer
and Song 2018)) to determine the cut-off values at significance level α = 0.05.
To characterize the biological significance of the declared gene clusters, we
perform gene ontology (GO) enrichment analyses among both the overex-
pressed and underexpressed genes. A standard test for enrichment is to con-
duct a hypergeometric test for each GO, and we employ such a procedure
to identify GO terms that are overrepresented in the gene clusters Gtop

and Gbottom. The Benjamini-Hochberg correction (Benjamini and Hochberg
1995) is applied to the set of enrichment p-values to account for multiple
hypothesis testing.

3.3.2. Covariate effects on individual loadings. To identify the sources of
variation in the individual loadings, we consider the following linear model
for the estimated eigen-individual Î = (Î1, . . . , ÎnI )T :

(3.5) Î = Xβ + ε,

where X represents the nI -by-p covariate matrix including the intercept,
β = (β1, . . . , βp)

T represents the column vector of unknown coefficients, and
the error vector satisfies E(ε) = 0 and Var(ε) = σ2InI×nI .

If one wishes to test whether covariate ` (1 ≤ ` ≤ p) affects the expression
of the candidate gene, the following hypothesis test can be carried out:

H0 : β` = 0 vs. Hα : β` 6= 0.

To perform this test we use the standard Wald statistic, which under weak
assumptions (i.e., the first two moments concerning the means and variance-
covariance matrix of ε) asymptotically follows a standard normal distribu-
tion, permitting approximate inference in large samples. We declare expres-
sion modules as “age-, sex-, or race-related” if the eigen-individual loadings
are significantly correlated with age, sex, or race, respectively. Upon fitting
the model (3.5), we calculate the proportion of variance explained by each
covariate using ANOVA.

3.3.3. Tensor projection for detecting tissue-specific differentially expressed
(DE) genes. Let T̂ = (T̂1, . . . , T̂nT )T be the estimated eigen-tissue. Recall

that the nonnegative tissue loading T̂i indicates the strength of tissue i in
this expression module. We define Y(·, ·, T̂) to be the tensor projection of
Y through the eigen-tissue T̂,

Y(·, ·, T̂) =

nT∑
k=1

T̂kY(·, ·, k).
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Note that Y(·, ·, T̂) is an ng-by-nI matrix, with each entry encoding the
weighted average of gene expression across tissues.

Given a candidate gene to be tested for covariate-association, we propose
the following linear model:

Y(test gene, · , T̂) = Xβ + ε,

where Y(test gene, · , T̂) ∈ RnI denotes the row in Y(·, ·, T̂) corresponding
to the test gene,Xβ represents the intercept and covariate (such as age, sex,
and race) effects of interest, and the error vector ε satisfies E(ε) = 0 and
Var(ε) = σ2InI×nI . Here we take the tensor projection Y(test gene, · , T̂)
as the response variable and test for the covariate effects. Such an analysis
differs from (3.5) in that the detected covariate effect corresponds to a single
gene rather than the overall gene module. By examining the entries of the
tissue vector T̂, we can infer which tissues drive the signal of differential
expression.

4. Numerical comparison. We now compare our method with several
competing approaches.

4.1. A simple example. As a basic illustration, we generated an expres-
sion tensor consisting of 60 genes, 20 individuals and 10 tissues. The 20
individuals were partitioned into two groups (“young” vs. “elderly”), each
of size 10. The genes and tissues were each partitioned into three groups
(denoted by A, B, C). The mean expression value for each block is described
in Table 1. Such pattern represents the tissue-specific DE structure across
individuals. In particular, the Gene Group A are age-downregulated in Tis-
sue Group A but are age-upregulated in Tissue Group B. The Gene Group
B are age-downregulated in both Tissue Groups B and C but with differ-
ent effect sizes. The Gene Group C are age-downregulated in only Tissue
Group C. All other gene-by-tissue combinations have no age effects. Finally,
independent N(0, 1) noise was added to every entry of the tensor.

Table 1
Mean expression value of the illustrative tensor.

Tissue Group A Tissue Group B Tissue Group C

Gene
Individual

Young Elderly Young Elderly Young Elderly

Gene Group A 1 −1 −1 1 0 0
Gene Group B 0 0 0.5 −0.5 0.1 −0.1
Gene Group C 0 0 0 0 0.5 −0.5
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a.

c.

b.

Fig 3 Performance comparison for the illustrative example. (a) First two
gene/tissue factors in the matrix PCA. (b) Power comparison for detecting
age effects in three gene groups. (c) First two gene/tissue factors in the
tensor decomposition.

This example represents a challenging scenario in which traditional meth-
ods may fail. For example, if we average the expression over individuals and
apply matrix PCA to the resulting data, then neither the mode-specific
grouping nor the three-way interaction can be recovered. In fact, matrix
PCA (Figure 3a) reveals little information on the gene/tissue clustering.
This is because the matricization destroys the three-way structure encoded
in the higher-order tensor data.

The standard (fixed-effect) meta-analysis also suffers from low power for
detecting DE genes in this example. To see this, we tested the age effects in
each tissue separately and combined the test statistics into a pooled estimate
using z-score method (Kelley and Kelley 2012). This approach detected few
DE genes in group A and also exhibited limited power in groups B and
C (Figure 3b). The meta-analysis’ poor performance is due to the tissue-
specificity of DE genes: genes in Gene Group A have opposite age effects
in two of the tissue groups, so the signals partially cancel out; moreover,
genes in Gene Groups B and C have age effects in only subsets of tissues,
potentially diluting observed DE patterns.

In contrast to matrix PCA, the factors from our tensor decomposition
ably capture the true clustering patterns (Figure 3c). Furthermore, tensor
projection significantly improves detection power across all three gene groups
(Figure 3b). As the tissue loadings are used as the weights in the tensor pro-
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jection (Section 3.3.3), testing based on eigen-tissues allows us to test for age
effects in a group-specific fashion. Consider Gene Group A as an example.
Genes in this group have opposite age effects in Tissue Groups A and Group
B. Since the first eigen-tissue has nearly-zero loadings in Tissue Group A,
it only contains information about differential expression in Tissue Group
B without including unwanted noise from Tissue Group A. This toy exam-
ple demonstrates the ability of MultiCluster to improve detection power by
automatically identifying similar tissues and borrowing information among
them.

4.2. Accuracy of three-way clustering. We also performed more exten-
sive simulations to evaluate the ability of MultiCluster to perform multi-
way clustering. Since matrix methods may perform poorly in such cases
(see Section 4.1), we focus our attention on tensor-based methods. Specif-
ically, we compare MultiCluster with: (i) sparse decomposition of arrays
(SDA) (Hore et al. 2016) and (ii) tensor higher-order singular value decom-
position (HOSVD) (Omberg, Golub and Alter 2007).

Both MultiCluster and SDA are built upon the Canonical Polyadic decom-
position (Hitchcock 1927), which decomposes a tensor into a sum of rank-1
tensors. Conversely, HOSVD is based on the Tucker decomposition (Tucker
1966), which factorizes a tensor into a core tensor multiplied by orthogonal
matrices in each mode.

We simulated noisy expression tensors Y = JYijkK ∈ R500×50×10 with
three-way blocks from models which are detailed in the next paragraph.
In each tensor, we created five gene clusters, four individual clusters, and
three tissue clusters. Block means {µlmn} were generated according to the
following two block models (as well as sparse versions):

i) Additive-mean model: µlmn = µgl + µim + µtn, where µgl , µ
i
m, and µtn

represent the marginal means for gene cluster l, tissue cluster m, and
individual cluster n, respectively.

ii) Multiplicative-mean model: µlmn = µgl µ
i
mµ

t
n, where the notation re-

mains the same.

The marginal means (µgl , µ
i
m, and µtn) were drawn independently from a

N(1, 1) distribution. Let Ytrue denote the noiseless tensor with three-way
block means generated from each of the above schemes, i.e., Ytrue(i, j, k) =
µlmn when i is in block l, j in block m, and k in block n. For both the
additive- and multiplicative-mean models, we also considered a sparse set-
ting in which expression matrices Ytrue(i, ·, ·) were zeroed out for 90% of
genes i = 1, . . . , 500. The observed expression data were then simulated as
Y = Ytrue +E , where E ∈ R500×50×10 is a random Gaussian tensor with i.i.d.
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N(0, σ2) entries. We assessed the recovery accuracy of each algorithm using
the relative error, defined as

RelErr = min
R≤10

∥∥∥Ŷest,R − Ytrue

∥∥∥2

F

‖Ytrue‖2F
,

where Ŷest,R denotes the rank-R approximation obtained from tensor de-
composition.

The simulation models we consider here span a range of scenarios. The
additive-mean model can be viewed as an extension of the plaid model
for biclustering (Lazzeroni and Owen 2002) to three-way clustering while
the multiplicative-mean model is a special case of the tensor decomposition
model (3.1). The sparse setting represents a realistic scenario in RNA-seq
studies in which a high number of genes are lowly expressed across individ-
uals and tissues. As we designed these simulations to potentially violate the
modeling assumptions in (3.1), they are well suited to evaluate the robust-
ness of each method.

As seen in Figure 4, MultiCluster is able to recover the block structure well
in all scenarios, demonstrating its robustness to model misspecification. In
particular, the recovery error of MultiCluster grows noticeably more slowly
than that of SDA in the non-sparsity settings (Figure 4a and Figure 4b). One
possible explanation is that SDA is designed to cluster genes rather than
tissues and individuals, so the i.i.d. prior imposed on tissues/individuals
may not be optimized to detect local blocks, especially when the blocks
are small. Another possibility is the algorithmic stability of MultiCluster
relative to SDA; the latter usually requires multiple restarts in order to
reduce spurious components (Hore et al. 2016). We also found that, even
in the sparse settings, MultiCluster compares favorably with the other two
methods (Figure 4c and Figure 4d). Note that these three methods adopt
different regularization schemes: tissue nonnegativity for MultiCluster, gene
sparsity for SDA, and orthogonality for HOSVD. Our results suggest the
flexibility of MultiCluster to handle a range of models.

4.3. Power to detect differentially-expressed genes. To study how our
tensor projection procedure affects the detection of covariate-associated gene
expression, we simulated age-related genes. This required modifying the ear-
lier additive model to

(4.1) Yijk = µgl + µ[i:n]Age(j) + µtn + εijk, where εijk
i.i.d∼ N(0, 1),

where Yijk denotes the expression level of gene i, individual j, and tissue k;
µgl and µtn denote the same parameters as before (the marginal means for
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M

Fig 4 Recovery accuracy of different tensor-based methods. MultiCluster
achieves the lowest error rates.

gene cluster l = l(i) and tissue cluster n = n(k)); and

µ[i:n]
i.i.d.∼

{
Unif[α, β], if gene i is age-related in the tissue cluster n,

0, otherwise.

We again simulated 50 tensors Y ∈ R500×50×10. In each tensor, we planted
five gene clusters plus three tissue clusters and further assigned 100 genes to
be age-related. We considered two parameter settings: 1) α = 0, β = 0.06,
i.e., age effects are in the same direction, and 2) α = −0.06, β = 0.06, i.e.,
age effects are in the opposite direction. Individual ages were drawn i.i.d.
from Unif[40, 70]. The final expression data were generated based on model
(4.1).

We decomposed each simulated tensor into R = 3 and 10 components
and applied our tensor-projection procedure to test for age-relatedness. We
declared a gene age-related if its p-value was less than the nominal signifi-
cance level in at least one of the R eigen-tissues. To compare to single-tissue
tests, we performed standard linear regressions in each tissue separately and
declared a gene age-related if its p-value was less than the nominal level in at
least one of the 10 tissues. We also performed a fixed-effect meta-analyses by
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a. b.

Fig 5 ROC curves for detecting age-related genes. The ROC curves were
obtained under various nominal significance levels using 50 simulations.

aggregating the age effects across single-tissue tests using z-score method.
Neither SDA (Hore et al. 2016) nor HOSVD (Omberg, Golub and Alter
2007) allow association tests on single-gene bases, so we did not consider
them here.

Figure 5 shows the receiver operating characteristic (ROC) curves for
each method. We found that the testing procedure based on tensor projec-
tion had higher detection power than single-tissue analyses, demonstrating
the advantage gained when tensor-based methods incorporate information
from similar tissues. Notably, the power appears stable when the decomposi-
tion rank R increases from 3 (the number of latent tissue groups) to 10 (the
number of total tissues). We note that the power of a meta-analysis relies on
genes being age-related in several tissues with effects primarily in the same
direction (Figure 5a). Violations of these assumptions may well arise in prac-
tical applications and result in substantial losses in power (Figure 5b). In
contrast, our tensor approach teases apart tissue-specific expression patterns
by using eigen-tissues to synthesize information from sufficiently similar tis-
sues. Subsequent examination of the entries of eigen-tissues allows one to
determine in which tissues DE patterns are present, something that requires
additional steps in meta-analyses.

4.4. Run time. To compare the computational performance of each al-
gorithm, we simulated a large order-3 tensor of 18,000 genes × 500 individ-
uals × 40 tissues as these dimensions mimic those of the processed GTEx
RNA-seq data set. We then recorded the run times for each method when



CLUSTERING VIA TENSOR DECOMPOSITION 17

decomposing the tensor into 10 components. We found that MultiCluster is
computationally competitive with HOSVD while being more computation-
ally efficient than SDA. In particular, it took ≈ 1.6 hours for HOSVD, ≈ 1.7
hours for MultiCluster, and ≈ 20.1 hours for SDA to complete the task.

5. Analysis of GTEx RNA-seq data. The GTEx V6 gene expres-
sion data consist of RNA-seq samples collected from 544 human individuals
spanning 53 tissues. Prior to analysis, we performed a standard data pro-
cessing procedure described in depth in the Supplement (Wang, Fischer and
Song 2018). Briefly, these steps included correction for sequencing depth,
removal of lowly expressed genes, log transformation of the data, correction
for nuisance variation arising due to technical effects, removal of sex-specific
tissues, and imputation of missing data. We focus here on two tissue col-
lections, one consisting of 44 somatic tissues and the other consisting of 13
brain tissues. Results for other tissue groups can be found in the Supple-
ment (Wang, Fischer and Song 2018).

5.1. Analysis of 44 somatic tissues. To interrogate the dominant features
in the human transcriptome, we performed a global clustering analysis to
identify gene × tissue × individual expression modules in 44 somatic tissues
by applying MultiCluster to the GTEx tensor after excluding Y chromosome
genes and sex-specific tissues. Supplemental Table S1 summarizes the top
expression modules.

5.1.1. Component I: shared, global expression. Tissues with positive load-
ings in a given eigen-tissue are said to be active in the associated module.
As expected, the first eigen-tissue and eigen-individual are essentially flat
(Supplemental Table S1), so this expression module captures baseline global
expression common to all samples. The top genes in the corresponding eigen-
gene (Supplemental Table S1) are mainly mitochondrial genes (15/20 top
genes), comporting with their high transcription rates and the large num-
ber of mitochondria within most cells (Melé et al. 2015). In addition, we
detected several non-mitochondrial genes, most of which are related to es-
sential protein synthesis functions and eukaryotic cell activities (Supplemen-
tal Table S1). For example, ACTB encodes highly conserved proteins and is
known to be involved in various types of cell motility (Fishilevich et al. 2016).
Two other nuclear genes, EEF1A1 and EEF2, encode eukaryotic translation
elongation factors, and their isoforms are widely expressed in the brain, pla-
centa, liver, kidney, pancreas, heart, and skeletal muscle (Fishilevich et al.
2016).
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5.1.2. Component II: brain tissues. The second eigen-tissue clearly sep-
arates brain tissues from non-brain tissues, with the pituitary gland being
the only non-brain tissue in the cluster (Figure 6a). We note that while not
explicitly labeled as a brain tissue, the pituitary gland protrudes from the
base of the brain. The sharp decline in tissue loadings (Figure 6a) high-
lights the distinctive expression pattern in the brain. We found that, in
the eigen-individual (Figure 6c and Figure 6e), age explains more varia-
tion (24.4%, p < 2 × 10−16) than sex (0.3%, p = 0.12) or race (4.3%, p =
2.3 × 10−8). The eigen-gene (Figure 6b) produces a gene clustering that is
biologically coherent with aging signals in the brain (Yang et al. 2015), and
we observed an enrichment of genes associated with the glutamate receptor
signaling pathway (p = 1.2 × 10−20), chemical synaptic transmission (p =
1.8× 10−16), excitatory postsynaptic potential (p = 2.4× 10−16), and mem-
ory (p = 1.2× 10−11) (Figure 6d). Among the 899 genes in this cluster, we
identified 675 age-related genes using tensor-projection (with significance
threshold α = 10−3/899 ≈ 10−7 via Bonferroni correction), 556 of which
exhibit decreased expression with age. The association of brain disease and
neurological disorders with age is well-documented, and our findings support
that aging affects brain tissues in a manner not shared by other tissues. We
present further evidence of multi-way clustering in the brain in Section 5.2.

5.1.3. Component III: tissues involved in immune response. The third
component captures an expression module heavily loaded on tissues with
roles in the immune system. The eigen-tissue is led by two blood tissues
(whole blood and EBV-transformed lymphocytes), the spleen, and the liver
(Supplemental Table S1). These tissues mediate the direct immune response
(whole blood and lymphocytes), production and storage of antibodies (spleen),
and filtering of antigens (spleen and liver). Correspondingly, the eigen-gene
loads heavily on immunity-related genes (e.g. IGHM, FCRL5, IGJ, MS4A1 )
(Supplemental Table S1). The eigen-individual does not correlate with any
covariate as strikingly as the brain does with age, but we do find a sig-
nificant correlation with race (explaining 4.5% variation among individu-
als, p = 5.8 × 10−7; Supplemental Table S1). The top genes in the eigen-
gene are functionally related to the B cell receptor signaling pathway (p =
3.0×10−15), humoral immune response mediated by circulating immunoglob-
ulin (p = 7.5×10−13), phagocytosis recognition (p = 5.3×10−10), and plasma
membrane invagination (p = 2.1× 10−9) (Supplemental Table S1).

5.1.4. Other expression modules identified in the global analysis. Like
modules II and III, each of the remaining expression modules is active in only
a subset of tissues, indicating the presence of tissue specificity (Supplemental
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ranked genes

Fig 6 Expression module II: brain tissues. (a) Barplot of the sorted tissue
loading vector. (b) Barplot of the sorted gene loading vector, where the
dotted line represents the threshold for the top genes. (c) Barplot of the
sorted individual loading vector. (d) Enriched GO annotations among the
top 899 genes identified from the gene loading vector. Enrichment p-values
are obtained from hypergeometric tests with BH correction. (e) Boxplot of
individual loadings against age.

Table S1). These detected modules are specific to artery (tibial, aorta, coro-
nary), skin (exposed and non-exposed), cell lines (EBV-transformed lym-
phocytes and transformed fibroblasts), liver, muscle (skeletal and cardiac),
and cerebellar regions (Supplemental Table S1). Of note is the strong sig-
nal of gender-related differential expression in the cerebellum. As seen in
Supplemental Table S1, the enriched gene ontologies are consistent with the
functions of the associated tissues. For example, the artery-specific module
is enriched with collagen catabolic/metabolic genes, the skin-specific mod-
ule is enriched with keratin-related genes, the two cell lines are enriched
with genes responsible for cell division (e.g. chromosome segregation, meio-
sis, sister chromatid segregation). Conversely, most eigen-individuals have
limited descriptive power compared to eigen-genes and eigen-tissues (Sup-
plemental Table S1). This was expected because variation in gene expression
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is usually lower among individuals than among tissues (Melé et al. 2015).
Consequently, we turned our attention to smaller tensors of similar tissues
to fully showcase MultiCluster ’s three-way clustering capabilities.

5.2. Brain transcriptome data. Although our global analysis successfully
uncovers distinctive expression patterns in the GTEx data, it may miss finer-
scale structure within similar tissues or within similar individuals because
of the high degree of inter-tissue heterogeneity. In order to reveal the crucial
individual × tissue specificity, we considered 13 brain tissues and applied
MultiCluster to the resulting tensor, revealing substantial individual-level
variation most notably associated with age.

-0.06

Fig 7 Top expression modules in the brain tensor. The top expression mod-
ules are ranked by their singular values. For each module, we plot the
barplots for the sorted tissue loadings, gene loadings, and individual load-
ings, respectively.



CLUSTERING VIA TENSOR DECOMPOSITION 21

Table 2
Top expression modules in the brain tensor. Number in bold indicates p < 10−3.

Module
Eigen-tissue Eigen-gene Eigen-individual

enriched region enriched GO
% variance explained
age sex race

1 all neuronal synaptic plasticity 1.5 7.8 2.2
2 cerebellum dorsal spinal cord development 0.0 8.0 0.2
3 spinal cord embryonic skeletal system morphogenesis 9.3 0.9 5.2
4 cortex fear response, behavior defense response 17 0.6 1.4
5 basal ganglia forebrain generation of neurons 3.4 0.8 2.2
6 hypothalamus and hippocampus neuropeptide signaling pathway 32 2.2 2.2

5.2.1. Comparison with other tensor methods. Figure 7 shows the top
six expression components for the brain tensor identified by MultiCluster.
To assess the goodness-of-fit, we plotted the sum of squared residuals (see
equation (3.2)) as a function of rank R (Supplemental Figure S1). Visual
inspection suggested R = 6 in our case. We also applied HOSVD and SDA
to the brain tensor; the results are summarized in Supplemental Figures S2
and S3. Both MultiCluster and HOSVD successfully clustered the 13 tissues
into functionally similar groups, while SDA failed in tissue clustering. Fur-
thermore, MultiCluster enjoyed better interpretability as it yielded sparse
tissue factors. In particular, we found that most expression modules are spa-
tially restricted to specific brain regions, such as the two cerebellum tissues
(component 2), three cortex tissues (component 4), and three basal ganglia
tissues (component 5).

5.2.2. Spatially-restricted expression in the brain. Table 2 summarizes
the biological interpretation for the expression modules detected in the
brain tensor. Consistent with the tissue clustering, the gene clusters capture
distinctly-expressed genes that are over- or underexpressed in each brain re-
gion. Genes overexpressed in the cerebellum region are strongly enriched for
dorsal spinal cord regulation (p = 9.8 × 10−7) whereas the underexpressed
genes are most strongly enriched for forebrain development (p = 3.4×10−8);
the opposite enrichment pattern is observed for basal ganglia region. The
enriched GOs are consistent with the spatial locations of the cerebellum (lo-
cated in the hindbrain) and basal ganglia (situated at the base of the fore-
brain). In addition, we noticed an abundance of overexpressed HOX genes
in the spinal cord (cervical C-1) compared to other brain regions (Supple-
mental Figure S4a). The HOX gene family (HOXA–HOXD) is a group of
related genes that control the body plan and orientation of an embryo. The
non-uniform expression of HOX genes across brain regions may suggest the
particularly important role of the spinal cord during early embryogenesis.
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5.2.3. Sex/age-related expression in the brain. Many expression modules
in the brain also exhibited considerable individual-specificity. We identified
two sex-related and three age-related expression modules among the top
tensor components (bold in Table 2). The second gene module was found to
be both cerebellum-specific and sex-related. By ranking genes based on their
p-values for sex effect in the direction of eigen-tissue, we found that the top
sex-related signal in this module is the X-Y gene pair PCDH11X/Y. In fact,
the combined expression of PCDH11X/Y was significantly lower in the cere-
bellum (paired t-test p-value < 2× 10−16) and in females (p = 8.0× 10−11),
with expression levels also decreasing with age (p = 3 × 10−3). Notably,
PCDH11X was the first reported gender-linked susceptibility gene for late-
onset Alzheimer’s disease (Carrasquillo et al. 2009), and it may also be
implicated in developmental dyslexia (Veerappa et al. 2013). However, its Y-
chromosome paralog, PCDH11Y, is believed to be regulated differently. Pre-
vious studies (Priddle and Crow 2013) have shown that this difference is due
at least in part to retinoic acid, which stimulates the activity of PCDH11Y
but suppresses PCDH11X and perhaps explains the sex-specificity we ob-
served for this gene pair in most brain tissues.

Significant age effects are widely present in the identified expression mod-
ules (Table 2). In particular, age explains over 15% of individual-level varia-
tion in module 4 (cortex) and module 6 (hypothalamus and hippocampus).
Notably, the hippocampus is associated with memory, in particular long-
term memory, and is vulnerable to Alzheimer’s disease (Lam et al. 2017).
In module 4, GPR26 is found to be the top age-related gene. For compar-
ison with our results we used linear regression, confirming the significant
decrease of GPR26 expression with age in all three cortex tissues (cortex, p
= 1.9 × 10−18; frontal cortex, p = 8.8 × 10−12, anterior cingulate cortex, p
= 1.9 × 10−7) but not in the substantia nigra (p = 0.17) or cerebellum (p
= 0.64). It is worth noting that both the substantia nigra and cerebellum
have zero loadings in the 4th eigen-tissue, so our tensor-based approach au-
tomatically detects the tissue-specificity of this aging pattern. In line with
our findings, a recent study shows that GPR26 plays an important role in
the degradation of intranuclear inclusions in several age-related neurodegen-
erative diseases (Mori et al. 2016).

6. Discussion. We presented a new multi-way clustering method, Mul-
tiCluster, and demonstrated its utility in identifying three-way gene expres-
sion patterns in multi-tissue multi-individual experiments. We were able to
uncover three-way specificities with clear statistical and biological signif-
icance in both simulations and the GTEx data set, and we showed that
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our method effectively identifies tissues which drive expression modules. In
particular, it is able to do so even when gene × covariate interactions are
not common across tissues, and clustering into modules provides informa-
tion about joint expression patterns that may not be identified by meta-
analyses without additional steps. Moreover, we provided evidence that the
distinctions among human tissue gene expression profiles are usually driven
by small sets of functionally coherent genes and that many age-, race- or
gender-related genes exhibit tissue-specificity even within functionally sim-
ilar tissues.

We also implemented a tensor projection procedure to test for differen-
tial expression of genes that are correlated with biological attributes (age,
sex, or race) and found that we generically achieve improved power rel-
ative to single-tissue tests. Additionally, higher power is attained relative
to meta-analyses when genes are differentially expressed in opposing direc-
tions in different tissues, allowing for finer resolution when seeking relevant
genes. The tensor projection approach can be naturally extended to (trans-
)eQTL analyses by testing the projected expression of each gene against
genetic variants across the genome. Alternatively, one can test each individ-
ual loading vector against genetic variants to identify eQTLs (Hore et al.
2016). Existing multi-tissue eQTL analyses usually proceed by identifying
eQTLs in each tissue separately before combining single-tissue results via
meta analysis (Battle et al. 2017). However, the large numbers of genes,
tissues, and genetic variants potentially incur a substantial penalty for mul-
tiple testing and there is also the risk of under-powered tests due to limited
sample sizes. Hence applying MultiCluster to perform eQTL discovery in
large multi-tissue expression studies is an avenue worth pursuing.

One benefit of MultiCluster and tensor projection, as well as tensor-based
methods in general, over existing tissue comparison methods (GTEx Consor-
tium 2015) is the substantially reduced number of comparisons which must
be considered (Hore et al. 2016). For instance, if one wanted to analyze every
possible tissue pairing in a set of n tissues, roughly n2 analyses would have
to be performed and the results would need to be synthesized via a meta-
analysis. Such an analysis could be even more prohibitive if one wanted to
examine the 2n possible tissue-specific configurations (GTEx Consortium
2015). In contrast, MultiCluster constructs clusters across each mode of
the data and associates the resulting variation with biological contexts via
eigen-genes, -tissues, and -individuals. Each of these resulting components
can then serve as the basis for testing, removing the need for many marginal
tests. Though prior knowledge of tissue function can greatly reduce the num-
ber of pairwise comparisons, doing so constrains potential insights to the set
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of hypothesized tissue modules. For instance, components III and IV of our
global tensor decomposition consist of diverse tissues which may not have
been grouped together a priori.

One assumption made by our algorithm is that expression matrices for
different tissues are of the same dimension. In the present work, we do not
directly model the missing data mechanisms but instead iteratively impute
them based on the fitted value. This allows the implementation to exploit
standard fast array operation routines. Another possible approach which
avoids the need for imputation is to make use of the connection between
tensor decomposition and joint matrix factorization (Lock et al. 2013; Hore
et al. 2016). For example, one could model the nG-by-nIt expression matrix
Mt, where t indexes the tissue, as Mt ≈ AΛtBt with some identifiability
conditions. This model is a relaxation of tensor decomposition because it
allows different tissues to have different column (individual) spaces Bt while
sharing the same row (gene) space A. The diagonal matrix Λt captures the
tissue-sharing and specificity as before. Another potential approach is to
implement tensor imputation and decomposition simultaneously via a low-
rank approximation, an idea which has roots in the matrix literature (Candès
and Recht 2009).

Statistical inference based on tensor decomposition can be further ex-
tended. Measures of uncertainty, such as confidence intervals for tissue-,
gene-, or individual-loadings, would be useful. Standard resampling tech-
niques such as bootstrapping may help in this regard, and we have employed
this approach to select gene cluster sizes. Further details on our bootstrap
analysis can be found in Section 1.6 of the Supplement (Wang, Fischer and
Song 2018).

Although we have presented MultiCluster in the context of multi-tissue
multi-individual gene expression data, the general framework applies to more
general multi-way data sets. One possible extension is the integrative anal-
ysis of omics data, in which multiple types of omics measurements (such as
gene expression, DNA methylation, microRNA) are collected in the same set
of individuals (Lock et al. 2013). In such cases, tensor decomposition may be
applied to a stack of data or correlation matrices, depending on the specific
goals of the project. Other applications include multi-tissue gene expression
studies under different experimental conditions in which one may be inter-
ested in identifying 4-way expression modules arising from the interactions
among individuals, genes, tissues, and conditions. The tensor framework can
also be applied to time-course multi-tissue gene expression. In this instance
one may treat time as the 4th mode and extend the tensor projection ap-
proach to identify the time trajectories of three-way expression modules.
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Finally, in certain experimental designs, our method could be used to model
batch effects while preserving biological information.
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SUPPLEMENTARY MATERIAL

Supplementary Material:
(supplementary material.pdf). Supplementary Material includes data pro-
cessing procedure and further results on our GTEx data analysis.

Our software MultiCluster and the data used in our analysis are publicly
available at https://github.com/songlab-cal/MultiCluster.

https://github.com/songlab-cal/MultiCluster
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