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Abstract

A prespecified set of genes may be enriched, to varying degrees, for genes
that have altered expression levels relative to two or more states of a cell. Knowing
the enrichment of gene sets defined by functional categories, such as gene ontol-
ogy (GO) annotations, is valuable for analyzing the biological signals in microarray
expression data. A common approach to measuring enichment is by cross classi-
fying genes according to membership in a functional category and membership on
a selected list of significantly altered genes. A small Fisher's exact test p-value,
for example, in thi22 x 2 table is indicative of enrichment. Other category anal-
ysis methods retain the quantitative gene-level scores and measure significance by
referring a category-level statistic to a permutation distribution associated with the
original differential expression problem. We describe a class of random-set scoring
methods that measure distinct components of the enrichment signal. The class in-
cludes Fisher’s test based on selected genes and also tests that average gene-level
evidence across the category. Averaging and selection methods are compared em-
pirically using Affymetrix data on expression in hasopharyngeal cancer tissue, and
theoretically using a location model of differential expression. We find that each
method has a domain of superiority in the state space of enrichment problems, and
that both methods have benefits in practice. Our analysis also addresses two prob-
lems related to multiple-category inference, namely that equally enriched categories
are not detected with equal probability if they are of different sizes, and also that
there is dependence among category statistics owing to shared genes. Random-set
enrichment calculations do not require Monte Carlo for implementation. They are
made available in the R packaghez

KEYWORDS: Conditional testing; Gene ontology; Gene set enrichment analy-
sis; Host-virus association in nasopharyngeal carcinoma; Selection versus average
evidence; Significance analysis of function and expression.

1 Introduction

In processing results of a microarray study, one is faced with the daunting task of
relating differential-expression evidence to other information about the genes. Any
interesting connections that can be revealed are critical in developing a fuller under-
standing of the biology and in providing guidance towards the next experiment (e.qg.,

Rhodes and Chinnaiyan, 2005). Much of the exogenous information is organized



in networks of functional categories; genes are annotated to the same category by
virtue of a shared biological property. The Gene Ontology (GO) project is perhaps
the best example of how biological information is carried by networked collections

of functional categories (Gene Ontology Consortium, 2000, 2004). Initiated as a
collaboration among different genome projects, GO has become a fundamental re-
source that records attributes of genes and gene products and that organizes these
attributes using networks of connected functional categories.

The problem of enrichment emerges in relating gene-level expression results
with functional categories. To what extent, if at all, are genes with altered expres-
sion over-represented in a named category? At the risk of oversimplifying things,
the extensive research and development towards solving this problem may be clas-
sified by two statistical approaches. The first begins by selecting a short list of genes
that are altered significantly relative to the cell grouping under study: for instance
genes with extreme fold change or with extreme value of a test statistic. The in-
tersection of the selected list and the functional category is then evaluated, perhaps
by Fisher’s exact test or a variant, which scores the category highly for enrichment
if many more selected genes than expected belong to the categ@aghibDiet al.

2003; Berrizet al. 2003; Donigetet al. 2003; Al-Shahrouet al. 2004; Bepbarth
and Speed 2004; Chemrg al. 2004; Zhonget al. 2004; Doddet al. 2006). Avail-
able informatics tools and related problems are reviewed in Khatri aadHoi
(2005). A second approach is developed in Virtanetal. (2001) and Barret al.

(2005), called SAFEdignificance analysis of function and expressiand also in Mootha



et al. (2003) and Subramaniaat al. (2005), called GSEAGene set enrichment analy-

sis). Briefly, expression information on all the genes under study is retained; then a
permutation analysis is used to measure the significance of category-level statistics
computed from these gene-level statistics.

Existing tools have been effective in adding value to expression results, but they
remain limited for evaluating enrichment signals. Analysis is simplified when con-
sidering selected gene lists, since quantitative scores from the gene-level analysis
are not required. But then the enrichment results depend on the stringency of the
selection, and give equal weight to genes at both ends of the selected list. This prob-
lem is redressed in the SAFE/GSEA approach. The permutation method adopted by
SAFE/GSEA refers back to the labeled microarray data themselves rather than to
the results of the differential-expression analysis. There is an added computational
burden in this strategy and also it can become ineffective when few microarrays en-
ter the permutation. A technical issue, further, concerns the null hypothesis at work
in the SAFE/GSEA permutation. It refers to the complete absence of differential
expression rather than to the absence of enrichment.

In this paper, we explore properties @indom-semethods for measuring en-
richment. We adopt category-level statistics like in SAFE/GSEA, but we calibrate
them in the same way that Fisher’s exact test calibrates the intersection of a func-
tional category and a selected list. That is, we calibrate them conditionally on results
of the differential expression analysis by considering values of the category-level

statistic that would be achieved by a random set of genes (Section 2). Calculations



are simplified by formulae for the expected value and variance of this conditional
distribution, so that Monte Carlo approximations may not be required. Random-set
scoring is applicable to a variety of gene-level scores; we compare two schemes
empirically in a study of nasopharyngeal cancer in Section 3. One measures en-
richment by counting the intersection with a selected gene list; the other considers
average differential-expression evidence across all genes in the category. In con-
junction with empirical evidence we pursue a theoretical analysis to compare these
two category scoring methods (Section 4). We find that two parameters affect the
power to detect enrichment, and these play out so that neither the selection approach
nor the averaging approach is uniformly superior. Additionally, we show how the
random-set approach facilitates simultaneous inference among multiple categories.
Two important issues are (1) how to accommodate the power imbalance caused by
differently sized-categories, and (2) how to obtain the joint distribution of category
scores in order to have valid type-I error rate control (Section 5). We offer approxi-

mate analytical solutions to these problems.

2 Random-set enrichment scoring

We describe a general method to score categories for enrichment with expression-
altered genes. Sengupaal. (2006) (especially Supplementary Data) introduced

the method and described it briefly. It forms the basis of our approach and so here
we amplify and clarify the presentation. The class extends Fisher’s exact test by

allowing a variety of gene-level scores, denofegl}, for different geneg. These



may be binary indicators of extreme differential expression, but we allow more
general quantitative expression scores. We focus initially on a single catégory
containingm genes.

The idea is to consider the unstandardized enrichment siio#e% Z S4 @S
a random variable wherein the randomness comes not through the ggéﬁe{sg}_)res
but rather through the sét. We are concerned, after all, with measuring enrichment
for a specific categoryg’ compared to other hypothetical categories from the same
system. Itis useful to treat the random &edis drawn uniformly at random from the
(fi) subsets ofn distinct genes from the population 6fgenes. This is equivalent
to a permutation scheme in which gene-level scores are randomly shuffled among
the gene labels. Precisely this scheme underlies Fisher's exact test in the special
case thas, is the binary indicator of selection onto the significantly altered gene
list (Supplementary Table 1). The random-set model is applicable beyond the binary
case to any sort of gene-level scores, though the induced distributiérbetomes
intractable. Rather than resort to Monte Carlo, we find that the first two moments
of the otherwise intractable distribution are available analytically (Appendix A),
and that the induced distribution is approximately Gaussian. These findings are the

basis of our proposed standardization.

Under the random-set model, and thus conditional on gene-level scgres

G
= 29:1 Sg

p= B(X) = =2 (1)



and

G 9 G s 2
o = var(X) :% (Z:T) (ZgGl g) _ (%) (2)

which are easily computed from the full set of gene-level scores and the category
size. Notably the mean does not depend on attributes of the category, though the
variance depends on the category size We propose the standardized category-
enrichment scor& = (X — p) /o, which is a mean zero, unit variance score on the
null hypothesis that categoly is not enriched for differentially expressed genes.
Analysis is simplified, especially in the case of multiple categories, because
computable without using permutation. Large valueg& d&vor the enrichment hy-
pothesis. For moderate to large categories, central limit theory indicatef ikat
distributed approximately as a standard normal on the no-enrichment null hypothe-
Sis.

Enrichment scoring is enlivened by the possibility of using a variety of gene-
level scores. We may udeg fold changest statistics, or other local measures of
differential expression. In the special case whigig are the ranks associated with

gene-level scores, we get a version of the Wilcoxon test for enrichment,sice

is a sum of ranks, and boghando? simplify as

M:G+1 02:(G—m)(G—|—1)’
2 12m

with suitable adjustments for ties. Gene-level scores from an empirical Bayesian
analysis might be posterior probabilities of differential expression (Kendzietski

al. 2003), in which case:.X equals the posterior expected number of altered genes



in the category, and calibrates this relative to the population of genes. Section 3
develops an example in whidls, } are transformed Spearman correlations between
host genes and the expression of a particular viral gene. Efficiency and approximate
normality of theZ score will be improved if the distribution of gene-level scores
is suitably regular. For instance, it is preferred to ugetransformedp—values
instead ofp—values, andog fold instead of raw fold change.

Another important special case happens wkgJ} are binary scores indicat-
ing selection to a short list of significantly differentially expressed genes. Then
7% = (%) U whereU is Pearson’s chi-squared statistic for testing independence
between category and short-list assignment (calculations not shown, but following,
for example, Bickel and Doksum, 2001, page 402). To a minor approximation,
then, our proposed score corresponds to Fisher’s or Pearson’s test Whghare
binary gene-level scores. Else it generalizes those category scores and measures

other aspects of the enrichment signal, as we demonstrate next.

3 An analysis of host/virus associations in cancer

A recent expression study of nasopharyngeal carcinoma (NPC) used the proposed
methodology for category enrichment (Senguetal. 2006). NPC is a cancer

of the nasopharynx that is responsible for 60-70,000 deaths per year worldwide.
Nearly all cases are associated with Epstein-Barr virus (EBV) infection, though the
molecular determinants and the nature of the host-virus interactions remain poorly

understood. Sengupé al. (2006) studied tumor tissue from= 31 NPC patients



using Affymetrix hgul33plus2 microarrays to measure host gene expression and
using RT-PCR to measure the expression of 10 viral genes. The hgu133plus2 mi-
croarrays probe the transcriptome with= 54, 675 probe sets. Here we reconsider
associations between host expression and the expression of the single viral gene
EBNAL.

The statistical analysis of host-virus association rests on pairwise Spearman
correlations between individual Affymetrix probe set values and the expression
of EBNAL. Supplementary Figuig 1 shows one probe set and its correlation with
EBNAL. Supplementary Figufe 2 shows correlations with EBNAL for all host probe
sets. The most extreme negative correlation4s —0.75, which is unusually small
(Supplementary Figuig 3, p-valae0.04). A striking feature of the empirical dis-
tribution of correlations is that5% of host probe sets are negatively correlated with
EBNAL. This is significantly more than expected if truly there is no association be-
tween host and virus expression (p-valse$ x 10~%, Supplementary Figuig 3).
Globally there is evidence for significant negative association between EBNA1 ex-
pression and the expression of host genes in NPC. Fjgure 1 highlights a selected
list of the 574 most significantly altered host probe sets; the list targets a 5% false
discovery rate (FDR) according to the g-value method of Storey (2003). In this

calculation p-values were obtained by recalling that

1 1-—
S9=75 vn — 3 log i 3)

1+,
is approximately standard normal in the absence of a true correlation begween

and EBNAL (Fisher, 1921). The sign change employed (compared to the usual



inverse hyperbolic tangent transform) means that genes which correlate negatively
with EBNA1 have a positive gene scofg Naturally we may examine the genes on
this selected list, but a study of functional categories that are enriched for negatively
associated genes exposes more of the relevant biology.

Figure[2 summarizes two category-enrichment scoring methods applied to all
GO categories (2761) containing at least= 10 annotated hgu133plus2 probe
sets. (This used the October 2005 build of Bioconductor package hgul33plus2.)
Many probe sets were unannotated, and to avoid potential biases we restricted at-
tention to the universe off = 27,152 annotated probe sets (Al-Shahraairal.

2004). The two enrichment scoring methods are conditignstores as described

in Section 2. The firstZ,.., is based on gene-level transformed correlations

from @). The secondZ,., is based on binary scoréés, > k] wherek defines

the 5% FDR list of the most significantly negatively correlated host genes. Recall
that Z is the normal-score version of Fisher's exact test. Since ¢gasbore is
nominally standard normal in the absence of enrichment, Figure 2 seems to indicate
that many GO categories are enriched for altered genes. Reference linesat

are drawn for guidance (nominal p-vakiel0~%). A noteworthy feature in Figufg 2

is thatZ,,; and Z,,,. are not perfectly correlated. They capture different aspects of
the enrichment signal, and thus they deserve separate consideration. Some cate-
gories have higl¥,., but negligibleZ,,.. They are enriched for genes on the short
list of most significantly negatively correlated genes, but the average correlation

is not unusual. Other categories have high. but negligibleZ,.,. These would



not be detected by Fisher’s test, for example, though on the average the negative
correlation exhibited by the contained genes is extremely unusual.

That Z,, and Z,,. capture different aspects of the enrichment signal is ex-
emplified by the immune response category, GO:0006955, which conmeets
1494 probe sets on the hgul33plus2 microarray. Recall that a significant mass of
host probe sets are negatively correlated with the EBNAL, though most of these
do not occupy the 5% FDR selected list of most significantly altered host probe
sets. Among the 2761 GO categories are many (marked in red) that are subsets of
GO0:006955; i.e. they represent specific forms of the immune response. Notably,
all these subsets havg,. > 0, which indicates that their average correlation with
EBNAL is more negative than average. Taken together we get strong evidence of
enrichment byZ,... At the same time many of the subsets haig < 0, which
indicates that they have less representation on the selected list than we expect, and
thus selected probe sets are not particularly over-represented in the immune re-
sponse category.

Senguptaet al. (2006) followed up on some of the categories that showed both
extremeZ,, and extremeZ,.., such as G0O:0019883, which is in the biological
process network, with GO termntigen presentation, endogenous antigérhis
category is marked up in subsequent figures. Thererare 48 probe sets anno-
tated to this category, and= 8 occupy the selected list, giving, = 10.6. Also
the average correlation with EBNAL is unusually low, with. = 7.68. An infor-

mal look at the short list of 574 significantly altered probe sets probably would not
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have revealed a preponderance of GO:0019883 genes. Indeed the best ranking is at
the 90th position, there are only three probe sets in the top 250. Followup experi-
ments on the genes in GO:0019883 confirmed the negative correlation findings that
were suggested by the enrichment analysis. Ongoing research aims to understand
whether viral EBNAL is taking advantage of host cells that have disabled antigen
presentation function, or whether the virus is effecting a change in the host expres-
sion itself.

It is routine that named genes are associated with multiple probe sets on an
Affymetrix microarray (Supplementary Figyrg 4A). GO:0019883, for example, rep-
resents onlyn, = 12 genes though it hag, = 48 probe sets. The fact is important
for enrichment calculations since we ought to avoid spurious findings that reflect
over-representation of certain genes in the system rather than biologically signifi-
cant enrichment. Various solutions are available. Ideally we would first reduce the
probe set data to the gene level, and then proceed with enrichment calculations on
this reduced space (giving.q..)). A computationally much simpler adjustment is
suggested by the variance formJla (2). It uses the probe set Baseore, and the

numbersn, andm,, to compute
Zadjust =2\ — 75— (4)

The rationale is thak and;: may not change much in the reduction step; most of
the effect will be on the variance. The naive, ideal (reduce by median), and ad-
justed enrichment scores are compared in Supplementary Figure 4B,C. The ideal

scores tend to be more conservative than the naive ones; GO:0019883 remains im-
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pressive Withzigeat.ave = 4.78 @aNdzigearser = 11.3 (latter not shown). Globally the
adjustment|[(4) is similar to the ideal score and it tends to be conservative. In the
example category GO:0019883,jjust;ave = 3.84 @nd zagjust;sel = 5.3. Thus, ef-
fective approximations accommodate the multiple probe sets per gene problem. In
some cases it may be possible to select the most reliable probe sets from among
the multiple probe sets associated with a gene. For example, a probe set showing
high average intensity and high dynamic range across multiple tissue types may be
better than one measuring near the background signal in most samples. We do not
address the selection of probe sets in this paper, but if probe sets are selected for
some genes, equation (4) could be applied to the selected probe sets.

For further comparison we applied the SAFE procedure (Bairgl. 2005) to
all 2761 GO categories using the original microarray data and EBNA1 expression
data on all 31 tumor samples. We adopted the same category-level statistic in or-
der to control the comparison. Specifically, gene-level Spearman correlations were
transformed to ranks to be usedsgwalues, and the category-level statisiiovas
the average rank (ranks were relative to the 27,152 probe sets having some annota-
tion). Results for GO:0019883 are summarized in Figlre 3. Visually the category
appears to have a preponderance of negative correlations with EBNAL (Panel A),
and this is supported by both statistical calibrations. Yet random-sets and SAFE
evaluate the significance of the same average-rank statistic rather differently. Com-
pared to average ranks obtained on random, same-sized sets, the average rank for

G0:0019883 is extremely unusual. Compared to the statistic we would compute on
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G0:0019883 if viral expression is not associated with host expression, the observed
average rank is modestly significant. A similar pattern recurs for many categories
(Supplementary Figufg 5). The two calibration approaches agree broadly but differ
substantially in their ranking of categories, which suggests that distinct enrichment

signal is identified by the random-set approach.

4 Averaging or selection? A theoretical comparison

In the preceding case study we observed empirical characteristics of two random-
set methods for scoring category enrichment. The selection approach begins with a
short list of extremely altered genes and asks if there is over-representation in the
category. The averaging approach scores the category simply by averaging gene-
level evidence across all genes in the category. The associated categooyes
exhibit some positive correlation but evidently they capture different components
of the enrichment signal. Some theoretical findings are available which expose
properties of the enrichment testing problem.

Our findings are developed in the context of a generic mixture model, one that is
structurally similar to models commonly described in the microarray literature. The
model is presented in order to develop a comparison of category scoring methods.
It is not used for the analysis of dapeer se but it sheds light on an interesting
phenomenon created by this two-level (gene/category) inference problem. We find
that each category-scoring method has its own domain of superiority in the state-

space of enrichment problems; neither is always preferred. The result is somewhat
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surprising since information is obviously lost in the selection approach and not so
obviously lost by averaging evidence. The result is related to the debate in statistics
about model selection versus model averaging.

Consider geneg € {1,2,...,G} and quantitative gene-level scores }. The
largers, the more evidence for differential expression of gené\ categoryC' is
a known subset ofr < G genes sharing some particular biological function. The

category may be scored for enrichment by one of two statistics:

_ 1 _ 1
Xave = Xse = 1 >k
1y, L S
gel geC
avnglging selection

To enable a comparison of the category scores we frame the problem as a test
of the null hypothesis that' is not enriched. More specifically, suppose that each
geney is either truly differentially expressgd, = 1) or not(/, = 0) between the

two cellular states. We allow that some fraction
1 G
= el Z I,
g=1
of genes are truly differentially expressed. The categoitgelf contains a fraction

WC:%ZIQ

geC

of differentially expressed genes. No enrichment medps 7~ = =, and this
is tested against the alternati¥h : =~ > 7. We can define enrichment simply
asmc — w. Lack of enrichment does not mean there is no differential expression;

it just means there is not more than in the whole system. (One could also adjust
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for discreteness of but the adjustment would be negligible for modestly large
category sizen, and so it is not pursued.) Statisti&s,; and X,,. are two possible
test statistics for testingf,. We compare their power against various alternatives.

The latent differential expression indicatdy affects the distribution of the
gene-level scorg,. A simple location model asserts thgtis normally distributed
with unit variance and with mea#/, for a gene-level effecd > 0, and that all
variables are independent. Normality is often reasonable for suitably transformed
gene-level scores, such &g, (fold) or the transformed correlation (Section 3).
Differential expression could potentially alter the variation of scores, but as a first
approximation we focus on the location shifts only. The possible effects of among-
gene dependence are important but they are secondary in the present comparison
of enrichment-scoring methods, hence our demonstration is in the independence
model (see discussion).

A test based on the average quantitative scafg uses the sampling distribu-
tion Normaldnc, 1/m). Thus the power of a level test isl — ®(7,,.) whered(-)
is the standard normal cumulative distribution and

Tove = 20 — VM (70 =) 0. 5)

enrichment effect

Naturally the power of the averaging approach increases with effect, enrichment,
and category size. One scenario is presented in Figure 4B: a category of size m=20
is tested for enrichment at level= .05 in a system withr = 0.2 of genes differ-
entially expressed.

The power of the selection approach is similarly derived. It entails a normal
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approximation forX,,, that is well justified in large categories by the central limit

theorem. The power is — ®(7,) where

el = Za (’((”> —m (e — ) [®(k) — ®(k — )] Jo(nc). (6)
7 TC) ichment h eff:e,ct* 7

Herek = k(7, d, &) is chosen to deliver a FDR-controlled gene list at leve(See
Appendix B.) Also the variance functiar?(m¢) records the variance gfmXs.
Figure 4A shows how the power to detect enrichment by the selection method is
affected byr. — m and¢ for categories of sizen = 20, whenn = 0.2 anda =
a = 0.05.

The power surfaces in Figure 4 reveal an intriguing phenomena in enrichment
testing. Both selection and averaging increase in power as either enrichment
or effectd increase. However they increase differently, creating domains of superi-
ority for each approach. The lower panels in Figure 4 show these domains for the
case indicated. When the, — 7 is small, but) is large, then it is better to use the
selection approach. On the other hand it small butro — = is large, then it is
better to average evidence across all genes in the category. The fact that selection
can be superior is somewhat striking, since it entails a significant amount of infor-
mation loss; each gene score is replaced by a binary indicator of whether or not the
score is extremely large. On the other hand, if enrichment is weak, then averaging
evidence combines a lot of noise with signal, thus diminishing power.

The nonlinearity of the power functions complicates a general comparison, but
we have identified sufficient conditions for one or the other approach to be supe-

rior (Appendix B). To state the result, first put= an/ {(1 — &)(1 — 7)}, where,
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again,r is the proportion of differentially expressed genes in the whole system and
& is the FDR of the gene list used by the selection approach. We require < 1,
else it is not possible to have the desired FDR control; this is a weak condition,

since it is implied if bott) < & < 1/2 and0 < 7 < 1/2, for example.

Theorem 1 If 207" (=) <4 < \/Lg — /K, then for sufficiently largen, selection
is more powerful than averaging. Also, given any > w, there exist9*(r¢, 7)
such that if0 < § < §*(m¢, ), then for sufficiently largen, averaging is more

powerful than selection.

This is a finding about sub-optimality of two enrichment detection methods. In
using a selection approach, there is limited power to detect enrichment when the
category under test contains lots of genes that are altered by a small amount, re-
flecting the fact that these genes are not selected as the most significantly altered
ones. By contrast, selection is superior to averaging if the category under test is
enriched for a small number of highly altered genes. We note that the interval for

in the first claim is nonempty whenis sufficiently small (say smaller than133).

We also note that averaging is superior both whas very small and whea is

very large. Interesting power dynamics emerge in the interior of the state space, as

for instance in Figure 4.

5 Simultaneous inference with multiple categories

An unsolved problem with enrichment calculations concerns the comparison of

many categories that vary in size. On the null hypothesis of no enrichment, each
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7 score is well calibrated by design, with zero mean and unit variance. But many
categories may be enriched, and unlike simpler genomic testing problems, there is
different power associated with these different tests. The distributioh whder

the enrichment hypothesis is a function of both the unknown enrichment =

and the known category size. For instance in the location-shift modéel,,. has

unit variance and meagym (rc — ) §. Owing to this size effect, the ranking of
categories by’ alone may not be optimal since large enriched categories will tend
to have much large¥ scores. The phenomenon is illustrated in the host-virus ex-
ample in Figurg BA. The problem is not limited #€,,.; it occurs too withZ,
especially when the selected set is relatively large (data not shown). A partial so-
lution, demonstrated in Figu@ 5B is to rank categories accordiriy tgm; then
categories are ranked by the estimated enrichmgnt =. In itself this does not
provide an error-controlled list of enriched categories; nor does it account for the
non-constant variance df//m, but the ranking may be calibrated and remains
useful for prioritizing categories across the GO networks.

A complete solution to simultaneous multiple-category testing will involve the
joint distribution of category statistics, rather than their marginal distributions con-
sidered so far. Without developing calculations fully here, we note that the joint
distribution of Z scores across categories (conditionakep}) is accessible by an
analysis of intersections among the different categories. Proper-subset information,
for example, is provided by the directed graphical structure of GO. Two elements

of the random-set approach simplify the analysis of multiple categories. Firstly, the
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permutation perspective described in Supplementary Table 1 carries over readily
to multiple categories. The only difference is that we have an additional row for
each category. The multiple-category information is equivalent to a (complicated)
cross-classification of genes, and a permutation of the, with the remaining tab-
ulation fixed, is enough to generate the full joint distribution of category statistics
(Supplementary Table 2). Secondly, valid and readily computed approximations
to the joint distribution of category statistics are available. By restricting to mod-
erate and large categorie®, scores are approximately multivariate normal. The
dependence is carried completely by between-category correlations, which can be
computed following the same approach as in Appendix A (see Newton 2007). We
find that if Z; and Z, are standardized category scores for two categories of sizes
my andmsy which have an overlap of.; » genes, then

Gmy o — mymy
cornz, Zs) = : . 7
( ! 2) \/m1m2<G—m1>(G—m2> ( )

For largeG this is approximatelyn, ,/\/mim,. In other words dependence is
induced by the overlap of categories, and increases the larger is this overlap.

A full analysis of the multiple-category testing problem is beyond the scope
of this paper. However, we illustrate the utility of the correlation formpja (7) and
the multivariate normal approximation to describe one possible approach. Suppose
there aré: categories under study. On the global null of no enrichment for any cate-
gory, the vecto( 7, Zs, . . ., Zx,) of enrichment statistics is approximately Gaussian
with mean zero, unit variances, and covariances in equatjon (7). Ideally we would

simulate the exact distribution by permuting gene scores as in Supplementary Ta-
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ble 2, but the Guassian provides a computational solution that is more convenient,
especially with largé:. By a Cholesky factorization of the known covariance matrix
(even when it is less than full rank), we can easily simulate the multivariate normal
vector. Sampled vectors respect the joint distribution of scores, for instance as af-
fected by category overlap, and provide input to various multiple testing schemes.
For the NPC example, we report results of thexTprocedure (Dudoiét al. 2003)

when the categories are ranked’By= Z/,/m to accommodate the effects of cat-
egory size on power. For each simulated vector we computed the maximum of the
T statistics across categories. Since we did notfgby permutation, we did not
need to recompute category statistics; rather we simply converteéfighe7’s us-

ing the category sizes. In the NPC example, 11 categories fiachlue exceeding

the 95th percentile of thenaxTnull distribution. A global view of the results is in

Figure 5. Supplementary Table 3 summarizes the 11 interesting categories.

6 Discussion

In analyzing functional categories related to nasopharyngeal cancer tissue, Sen-
guptaet al. (2006) used the random-set enrichment method discussed here, with
both binary selections from gene-level scores and averages of gene-level scores.
The Supplementary Material associated with that paper presented the method; here
we have amplified that discussion, derived formulas (1) and (2) for standardization,
evaluated the methodology empirically and theoretically, and provided comparative

analyses. Evidence shows that the proposed category-scoring methods capture pre-
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viously hidden components of the enrichment signal. Results are also provided that
guide simultaneous inference across multiple categories.

The random-set calibration approach is the same one that underlies Fisher’s
exact test for independence between the selected gene list and the category under
study. The simplicity of Fisher’s test makes it compelling, but the test is limited by
its focus on selected gene sets. Transferring random-set calculations to quantitative
gene-level scores is complicated by the fact that the Fisher-test hypergeometric dis-
tribution no longer applies; an intractable distribution takes its place. In deriving
the random-set mean and variance of a category score, we offer an easily computed
approximation and standardized statistics for measuring category enrichment. This
has several practical advantages over other schemes that use quantitative scores.
By conditioning on results of the differential expression analysis, our calculations
can handle a wide variety of output from that analysis and we need not revisit the
raw data. Methods such as in Baeyal. (2005) and Subramaniast al. (2005)
calibrate category scores by recomputing the differential expression results over
random permutations of raw data. Not only can this be limited when the number of
microarrays is small, but also the null hypothesis at work for such a permutation is
the exchangeability of microarray labels, which asserts the absence of any differen-
tial expression. Insofar as enrichment concerns excess differential expression in a
category rather its absence, the random-set approach may be targeting enrichment
more directly. Certainly the calibration is such that different aspects of the enrich-

ment signal are being detected by the random-set approach. Further comparative
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analysis are warranted.

The issue of among-gene dependence is a subtle one that is relevant in enrich-
ment calculations. The SAFE/GSEA permutation guards against ill-effects of such
dependence by shuffling microarray labels and fixing whole profiles. Random-
set scoring guards against these effects by conditioning on results of the differen-
tial expression analysis; sinde,} are fixed, whatever factors caused them to be
dependent cannot enter the calculation. The flip side is that our interpretation of
random-setZ scores is focused on comparing the category statistic in hand to its
hypothetical value from a random set (as opposed to its value on some hypotheti-
cal rerun of the whole expression study). Indeed the dependence that in sampling
theory terms would inflate the variance of the category score and speak against ran-
dom sets is precisely the dependence that we aim to detect as the enrichment signal.
Random-set calibration gains by its simple interpretation; still one must take care
that significant findings are attributable to biologically relevant enrichment rather
than to something spurious.

In the context of a location-shift model for differential expression we compared
two random-set methods in terms of their power to detect enrichment in a given cat-
egoryC'. A clear picture of the sub-optimality of each method is available, pointing
to the benefits of using several methods together to identify different aspects of the
enrichment signal. Whefi' contains lots of modestly altered genes, then averaging
evidence from all genes in the category is more powerful than selection; @/en

enriched just slightly, but the alteration effect is high, then the use of selected genes
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is preferred.

The random-set approach becomes feasible in multi-category inference because
various properties can be explicitly calculated. Ranking categories byAtsziore
normalized by the square root of category size gives a ranking based on estimated
enrichment. This partially addresses the problem that large categories that are en-
riched at all will be detected with high probability, contrary, perhaps, to the aim
to identify the most enriched categories. The joint distributiorZ afcores across
multiple categories is induced by shuffling in a certain contingency table, and it is
approximately multivariate normal under the complete null hypothesis. The depen-
dence between scores is mediated by the extent of category overlap (eqliation 7).
Multiple testing schemes can take advantage of this known dependence to assure the
identification of significantly enriched categories, though optimal schemes remain
to be worked out. We demonstrated the single-ategTapproach in Section 5 and
produced useful findings for the NPC study. Refinements are surely possible, either
using stepwise approaches to control family-wise error or using one of the methods
for false discovery rate control. It is tempting to convert thecores tg—values
and adopt one of these standard multiple testing adjustments, but size and depen-
dence issues complicate a simple technology transfer. Further work in this direction
may help to sort out reporting protocols when, for instance, multiple nodes in one

branch of the GO graph exhibit varying degrees of enrichment.
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Computing notes

An R packageallez was developed to implement random-set enrichment calcula-
tions, especially for GO categories. The source is available at
http://lwww.stat.wisc.edu/"newton/

Calculations reported here used R (R Development Core Team 2005) version 2.1
and Bioconductor (Gentlemaet al. 2004) package hgul33plus2 built 200509 by

AnnBuilder using

<URL: http://gopher5/compbio/annotationSourceData/

archive.godatabase.org/latest/go_200509-termdb.rdf-xml.gz>
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Appendix A: Proof of standardization, egs (1) and (2)
We have fixed gene-level scores, ss, ..., ss and a random category drawn
uniformly from the (%) subsets of sizen from G genes. Call this set of subsets
C and note that eacti’ € C has probabilityp(C) = 1/ (¢). Then withX =

dec s, = mX, and by switching the order of summation,

E(X) = ) »(C) <ng>

cec geC
ml(G —m)! &
- Y LYol
’ g=1 ceC

Here, the inner sum counts the number of subSai§sizem from G which include

a fixed gengy. This is precisely(“"!), so

ml(G-—m)  (G—1) <
E(X) = (G’! )(m—l)!(G)—m)!z;Sg

from which the result follows foiX .

For the variance term we proceed similarly. First compute

E(X?) = > p(0) (Z%)

cec geC

ml(G = m)! o= o
= TZZZSQShl[QEC]l[hEC]

CceC g=1 h=1

m!(G —m)! &
alrc ) DO DL

g=1 h=1
wherek,, = 3o 1lg € C|1[h € C). Wheng = h, k,;, = ($7}) as above.

Wheng # h, thenk,; counts the number of subsetsof sizem from G' which

contain two fixed genes and k; we see this is simply(©~3). Simplifying we
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obtain

< m  m(m—1) < i m(m — 1)

E(X?) = 2 I S A I

) <Z> (5-aE-n)* <Z> (Ge—1)
g=1 g=1

The variance is then computed from (&) = E(X?) — (E(X))?. Note that ran-

dom set sampling is equivalent to sampling without replacement from the popula-

tion.

Appendix B: Selection vs averaging (Theorem 1)
Which category-testing approach is more powerful depends on the sign -ef
Tsel — Tave, the difference between thie-score critical values corresponding to level

a tests. Averaging is better ik > 0; selection is better i < 0. Combining [(b)

and [6),
A_za{”(”) —1}—m(wc—ﬁ){“1_’“‘°—5} (8)

o(mc) o(re)

wherepy = 1 — ®(k) is the mean of the Bernoulli tridl[s, > k] wheng is not
differentially expressedy; = 1 — ®(k — ¢) is the mean whep is differentially
expressedy — 7 is the enrichmeny is the effect of differential expression ap,
m is the category size}() is the standard normal cumulative distribution function,
andc?(-) is a variance function. In this treatment gene scapeare random, and
the tests are marginal rather than conditional.

The threshhold = k(x, 6, @) can be chosen to target a levefalse discovery
rate (FDR) owing to properties of the function

1—®(x)

Me) = TS =)
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for each fixed) > 0. By examining the derivative df(x) and invoking Mills’ ratio
(e.g. Gordon, 1941), one can prove:

Lemma: h(z) is monotone decreasing withm A(x) =0and lim h(z) = 1.

Thush(zx) is invertible, and with fixedk = an/{(1 — &)(1 — 7)} € (0, 1), we can
certainly findk uniquely satisfyingi(k) = . Thisk, furthermore, must define the

threshhold for for the level FDR gene-selection procedure, since by Bayes'’s rule

po(1 — )
po(l =) + pum

& = P(Hols, > k) = (9)

wherepy = 1 — ®(k) andp; = 1 — ®(k — §). Reorganizing[(9) we get the defining
relationh(k) = uo/p1 = k. The 1-1 correspondence between(or p;) andé

is further revealed through = ®~'(1 — p) — @' (1 — po/k). Both g and
converge td) asd — 0. Asd — oo, g — ~andu; — 1. Always g = K.
Supplementary Figuré¢|(6) provides another view of these objects.

The behavior of the variane@ (rr¢) = p10(1—po)+mc {p1(1 — p1) — po(1 — o)
depends on the sign of the coefficientf. Indeed there is a critical poinpt, =
k/(1+ k) < 1/2, when this coefficient equals 0, and(7¢) = /(1 + x)? for all
7o. Forug > k/(1 + k), 0(mc) is decreasing inr¢; for uy < k/(1 + k), it is
increasing int¢. Noting the 1-1 correspondence ®fnd .y, we see the critical
point occurs ab = 20~ ().

Consider the first claim on superiority of selection. We seek conditions under

which A < 0. Figure 4 suggests looking at the case of larg@/ith > 29! (),

o*(m¢) is descreasing im¢, and so the first term ir[K8) is positive but bounded
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above by

za(%—l>>0.

Being positive, this term works against havidg < 0, but the term is finite and
not dependent on category size Thus the second term ip|(8) dominates for suffi-

ciently largem, and will drive A < 0 as long as

M1 — Ho
o) > 0. (20)

With the effectd larger than the critical point mentioned above, we have
o?(me) < o?(m) < 0*(0) = po(1 — po) < k/(1 + K)?
and so[(ID) holds if
o s, (11)
\/ (1+r)?
Noting ; = o/, rearranging|(11) is equivalent to
5 < k41 1—-k
\/E P Ko,

and finally notingug > /(1 + k) in this case, we obtain the upper bouhd<

1/\/k — y/k. Thus we have sufficient conditions establishing the superiority of
selection over averaging in gene-set enrichment. Numerically we find the interval
in Theorem 1is non-empty fol) < k < 0.133.

We prove the second claim similarly, and thus, in contrasf t¢ (10), we seek

conditions under which

Lo ) s (12)
o*(mc)
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The left hand sidd. can be simplified, noting first that; = 1o/~ and also that

o?(mc) = po {1+ 7c (£ = 1)} + O(ud) aspy — 0. Immediately we obtain

. G-y
ulgglo Lino = 14+ 7o (% — 1)

< 00.

On the other hand, if the right hand side [of|(12) diverges when normalized,by
then the stated inequality must hold for an interval of sufficiently small effects.
Using Mills’ ratio, we find the threshholél ~ (—log x)/d for smallé and conse-

guently

po = 1— (k)

Q

v )

for small§. Evaluating further shows that /., diverges asi, — 0, completing

the proof.
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Figure 1: Gene selection. For the host-virus association example, plotted is
a histogram of theb4,675 Spearman correlations between expression of each
Affymetrix probe set and the expression of the viral gene EBNAL. Correlations
are computed using microarray datadintumor samples as described in Sengupta
et al. (2006). Highlighted on the left are selected probe sets that have significant
negative correlation with EBNA1 according tgavalue analysis that targets a 5%
FDR gene list (correlation less thaf.55).
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Figure 2: Random-set scoring. Shown are results of two category-scoring meth-
ods applied to 2761 GO categories for whieh> 10 and based on the gene-level
correlations from Figure 1. Both methods aim to detect enrichmet of the category
for genes that are negatively associated with EBNAL viral expression. Category
G0:0019883, ‘antigen presentation, endogenous antigen’ contais48 probe

sets and scores highly by both methods (large red dot). The large (494) ‘im-

mune response’ category (GO:0006955) scores extremely highty byput not so
highly by Z,., (green dot). Shown in red are categories that are subsets of ‘immune
response’. The average correlation of immune response genes with EBNAL is ex-
tremely significant, but the number of significantly negatively correlated genes is
less significant.
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Figure 3: Comparison with SAFE/GSEA: Panel A is a rank plot of probe set cor-
relation scores for the host-virus example. The positions ofithe 48 probe sets

from G0O:0019883 are marked, and suggest a preponderence of correlations on the
negative side. The average rank is noted with an arrow (5478). Panel B compares
the empirical distribution functions (edfs) of two different null distributions for the
average rank statistic (red = random sets; blue = SAFE). Associated histograms
are in Panels C and D, but the edfs reveal the scale difference more dramatically;
B = 10,000 random draws are used in each case. Recall that the random set (red)
distribution is obtained by shuffling the GO:0019883 ranks in Panel A. By contrast,
the SAFE (blue) distribution returns to the original data and shuffles chip labels (as
in Figure 3, Supplementary material). The p-value from SAFE4s.02 and from
random sets i < 107! (z = —7.1) based on a normal approximation to Panel D.
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Figure 4: Power comparison. Power to detect enrichment is shown for a category
of sizem = 20 in a system withr = 0.2 differential expression overall (A and

B). Selection and averaging are being compared, with low power in red and power
increasing into the yellows and whites. The lower panels show domains of supe-
riority for each method (by imaging the threshholded difference on a -1, 1 scale).
The enrichment is- — 7, and the effect of differential expresion per gené.i¥he
maximum power differential is 0.46 (C) and 0.74 (D).
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Figure 5: Power imbalance. Large enriched categories may get a sfrecgre by
virtue of their sizem more so than by the level of enrichmert — 7 (panel A).

The simple correctioty //m provides a ranking of interesting categories that is ad-
justed for this size effect (panel B). Eleven categories, including GO:0019883 (red
dot), have enrichment scores exceedinty) (dashed line). These are significant

at the5% level by themaxT multiple testing correction computed from a multi-
variate normal simulation of category enrichment scores. Table 3 [Supplementary
material] lists characteristics of these 11 interesting categories.
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Supplementary Tables

Represent
Gene 1 2 3 N G Selected
Selected [0 1 O 11 1] n c y;as - rlox m
:Rgg&ﬁgory ! i’ ! ::II'_ 0 0 TZ notC [n—z G—n—m+z | G—m
n G—n G
Permute
Permuted [T 0 1 --- 0 O --- O] n N .
Incategory| 1 1 1 --- 1 0 --- O|m implies X ~ Hypergeometric
In both 1 1 X
Generalize
Genescord s;  Sso s S .
In category (1) 1 36 e 10 - % m permuting,X/m ~ (,0?)
Combined 52 g x

Table 1: [Supplementary Material] Random sets. The standard approach of Fisher’s
exact test involves cross classifyigggenes by their presence in a functional cate-
gory C (sizem) and in a selected list of altered genes (size This is compactly
displayed in & x 2 table (upper right), though it is derived from a more extensive
binary table (upper left) containing a row for each classifying factor and a column
for each gene. A gene on both lists has 1's in both rows of its column; a third, sum-
mary row based on products indicates this feature. The hypergeometric distribution
for X, the number of genes on both lists, corresponds to permuting one row and
recomputing the summary row of the big table (middle left), which is equivalent
to sampling a random set of columns. Generalizing this concept (lower left),

we can use guantitative gene-level scores in place of the selection indicators. The
induced distribution orX is intractable but has a computable mean and variance.



Gene score s; Sy S3 sa
InC;| 0 1 O 1 0 - my
InC, | 1 1 1 0O 0 - 1| my
InCs | 1 0 1 1 - ms

Table 2: [Supplementary material] Multiple categories. A network of categories
may be represented in an extended table, as indicated here, with a row for gene
scores and then additional binary rows indicating membership of genes in each cat-
egory. With all the lower rows fixed (to retain the overlap structure in the network),
one randomizes by permuting the top row of gene scores, as in Table 1.



ID Term m X  Z Z/ym
GO0:0001772 immunological synapse 59 3.88 8.46 1.10
G0:0008332 low voltage-gated calcium channel activity 11 4.54 4.40 1.33
G0:0008113 protein-methionine-S-oxide reductase activity 10 4.45 4.11 1.30

G0:0004423 iduronate-2-sulfatase activity 12 4.10 4.08 1.18
G0:0019883 antigen presentation, endogenous antigen 48 3.90 7.68 1.11
G0:0000185 activation of MAPKKK activity 15 3.92 4.32 1.12
G0:0005031 tumor necrosis factor receptor activity 18 3.91 4.71 1.11
G0:0019911 structural constituent of myelin sheath 11 3.92 3.70 1.12
G0:0019903 protein phosphatase binding 11 3.88 3.65 1.10
G0:0003840 gamma-glutamyltransferase activity 13 4.18 4.34 1.20
G0:0042101 T cell receptor complex 11 4.55 4.42 1.33

Table 3: [Supplementary material] Continuing with the NPC example, shown are
categories that are significant at th% level according to thenaxT procedure,
based on the enrichment scdfgé,/m and using the average transformed Spearman
correlation as the category statistic.
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Scatterplot of one host/one virus: rank transformed
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Figure 1: [Supplementary Material] Scatterplot of one host gene expression against

the expression of the viral gene EBNA1, NPC example
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Correlations of EBNA1 with host probes

Figure 2: [Supplementary Material] Histogram showing all 54,675 host probe set
Spearman correlations with EBNA1. Proportion negative and minimal correlation
are highlighted, and shown to be significant if there is truly no host/virus association
(next Figure). [This is a reproduction of Figure 3C from Sengugttal. (2006),

included here for easy reference.]
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Figure 3: [Supplementary Material] Permutation analysis (10,000 replications ran-
domly reassigning EBNAL values to host microarrays, top) shows that the global
association features from previous figure are significant: Minimum correlation p-

value= 0.04; proportion negatively correlated p-valaet x 10~
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Figure 4: [Supplementary Material] On the number of probe sets per gene. Panel
A shows the ratio of probe sets per gene on the Affymetrix hgu133plus2 microar-
ray as this ratio is related to 2761 GO categories containipg> 10 probe sets.
Various modifiedZ scores are considered; for illustration all are based on trans-
formed Spearman correlations as the gene level scoréhe naive approach is to
ignore the probe set to gene ratio, giviAg Ideally, we would work at the level of

the genes themselves, by first collapsing the probe set data to the gene level, and
then applying the enrichment machinery. This is computationally more challenging
(we summarized by median), and givEs... A much simpler adjustment uses
Zadjust = Z+/mg/mp\/(G —my) /(G — my,) to accommodate that the number of
genesn, in the category differs from the number of probes. Notem,, was used

in standardizing the category score in the first place. GO:0019883 is marked in red.
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Figure 5: [Supplementary Material] Comparison with SAFE/GSEA: SAFE was
applied to all 2761 GO categories that contain> 10 probe sets, and resulting
p—values are plotted against the-values obtained by converting random-get
scores into normal probabilities. In both cases the category statistic is the mean
rank of probe-set statistics, so the differences are attributable only to the calibration
used. The lower panel highlights smaltvalues from the upper panel, and shows
the results for GO:0019883 in red.
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Figure 6: [Supplementary Material] Theoretical components. Given a gene effect
d > 0, the functionh(z) = [1 — ®(z — 9)] / [1 — ®(=)] is key in finding the thresh-
hold for an FDR controled selection method. Starting ah the vertical axis, we
map back tak whereh(k) = . Then we get mean valugg and; from these
threshholds.
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