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Abstract

A prespecified set of genes may be enriched, to varying degrees, for genes
that have altered expression levels relative to two or more states of a cell. Knowing
the enrichment of gene sets defined by functional categories, such as gene ontol-
ogy (GO) annotations, is valuable for analyzing the biological signals in microarray
expression data. A common approach to measuring enichment is by cross classi-
fying genes according to membership in a functional category and membership on
a selected list of significantly altered genes. A small Fisher’s exact test p-value,
for example, in this2 × 2 table is indicative of enrichment. Other category anal-
ysis methods retain the quantitative gene-level scores and measure significance by
referring a category-level statistic to a permutation distribution associated with the
original differential expression problem. We describe a class of random-set scoring
methods that measure distinct components of the enrichment signal. The class in-
cludes Fisher’s test based on selected genes and also tests that average gene-level
evidence across the category. Averaging and selection methods are compared em-
pirically using Affymetrix data on expression in nasopharyngeal cancer tissue, and
theoretically using a location model of differential expression. We find that each
method has a domain of superiority in the state space of enrichment problems, and
that both methods have benefits in practice. Our analysis also addresses two prob-
lems related to multiple-category inference, namely that equally enriched categories
are not detected with equal probability if they are of different sizes, and also that
there is dependence among category statistics owing to shared genes. Random-set
enrichment calculations do not require Monte Carlo for implementation. They are
made available in the R packageallez.

KEYWORDS: Conditional testing; Gene ontology; Gene set enrichment analy-
sis; Host-virus association in nasopharyngeal carcinoma; Selection versus average
evidence; Significance analysis of function and expression.

1 Introduction

In processing results of a microarray study, one is faced with the daunting task of

relating differential-expression evidence to other information about the genes. Any

interesting connections that can be revealed are critical in developing a fuller under-

standing of the biology and in providing guidance towards the next experiment (e.g.,

Rhodes and Chinnaiyan, 2005). Much of the exogenous information is organized
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in networks of functional categories; genes are annotated to the same category by

virtue of a shared biological property. The Gene Ontology (GO) project is perhaps

the best example of how biological information is carried by networked collections

of functional categories (Gene Ontology Consortium, 2000, 2004). Initiated as a

collaboration among different genome projects, GO has become a fundamental re-

source that records attributes of genes and gene products and that organizes these

attributes using networks of connected functional categories.

The problem of enrichment emerges in relating gene-level expression results

with functional categories. To what extent, if at all, are genes with altered expres-

sion over-represented in a named category? At the risk of oversimplifying things,

the extensive research and development towards solving this problem may be clas-

sified by two statistical approaches. The first begins by selecting a short list of genes

that are altered significantly relative to the cell grouping under study: for instance

genes with extreme fold change or with extreme value of a test statistic. The in-

tersection of the selected list and the functional category is then evaluated, perhaps

by Fisher’s exact test or a variant, which scores the category highly for enrichment

if many more selected genes than expected belong to the category (Drǎghiciet al.

2003; Berrizet al. 2003; Donigeret al. 2003; Al-Shahrouret al. 2004; Beiβbarth

and Speed 2004; Chenget al. 2004; Zhonget al. 2004; Doddet al. 2006). Avail-

able informatics tools and related problems are reviewed in Khatri and Drǎghici

(2005). A second approach is developed in Virtanevaet al. (2001) and Barryet al.

(2005), called SAFE (Significance analysis of function and expression)and also in Mootha
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et al. (2003) and Subramanianet al. (2005), called GSEA (Gene set enrichment analy-

sis). Briefly, expression information on all the genes under study is retained; then a

permutation analysis is used to measure the significance of category-level statistics

computed from these gene-level statistics.

Existing tools have been effective in adding value to expression results, but they

remain limited for evaluating enrichment signals. Analysis is simplified when con-

sidering selected gene lists, since quantitative scores from the gene-level analysis

are not required. But then the enrichment results depend on the stringency of the

selection, and give equal weight to genes at both ends of the selected list. This prob-

lem is redressed in the SAFE/GSEA approach. The permutation method adopted by

SAFE/GSEA refers back to the labeled microarray data themselves rather than to

the results of the differential-expression analysis. There is an added computational

burden in this strategy and also it can become ineffective when few microarrays en-

ter the permutation. A technical issue, further, concerns the null hypothesis at work

in the SAFE/GSEA permutation. It refers to the complete absence of differential

expression rather than to the absence of enrichment.

In this paper, we explore properties ofrandom-setmethods for measuring en-

richment. We adopt category-level statistics like in SAFE/GSEA, but we calibrate

them in the same way that Fisher’s exact test calibrates the intersection of a func-

tional category and a selected list. That is, we calibrate them conditionally on results

of the differential expression analysis by considering values of the category-level

statistic that would be achieved by a random set of genes (Section 2). Calculations
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are simplified by formulae for the expected value and variance of this conditional

distribution, so that Monte Carlo approximations may not be required. Random-set

scoring is applicable to a variety of gene-level scores; we compare two schemes

empirically in a study of nasopharyngeal cancer in Section 3. One measures en-

richment by counting the intersection with a selected gene list; the other considers

average differential-expression evidence across all genes in the category. In con-

junction with empirical evidence we pursue a theoretical analysis to compare these

two category scoring methods (Section 4). We find that two parameters affect the

power to detect enrichment, and these play out so that neither the selection approach

nor the averaging approach is uniformly superior. Additionally, we show how the

random-set approach facilitates simultaneous inference among multiple categories.

Two important issues are (1) how to accommodate the power imbalance caused by

differently sized-categories, and (2) how to obtain the joint distribution of category

scores in order to have valid type-I error rate control (Section 5). We offer approxi-

mate analytical solutions to these problems.

2 Random-set enrichment scoring

We describe a general method to score categories for enrichment with expression-

altered genes. Senguptaet al. (2006) (especially Supplementary Data) introduced

the method and described it briefly. It forms the basis of our approach and so here

we amplify and clarify the presentation. The class extends Fisher’s exact test by

allowing a variety of gene-level scores, denoted{sg}, for different genesg. These
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may be binary indicators of extreme differential expression, but we allow more

general quantitative expression scores. We focus initially on a single categoryC

containingm genes.

The idea is to consider the unstandardized enrichment scoreX̄ =
1

m

∑
g∈C

sg as

a random variable wherein the randomness comes not through the gene scores{sg}

but rather through the setC. We are concerned, after all, with measuring enrichment

for a specific categoryC compared to other hypothetical categories from the same

system. It is useful to treat the random setC as drawn uniformly at random from the(
G
m

)
subsets ofm distinct genes from the population ofG genes. This is equivalent

to a permutation scheme in which gene-level scores are randomly shuffled among

the gene labels. Precisely this scheme underlies Fisher’s exact test in the special

case thatsg is the binary indicator of selection onto the significantly altered gene

list (Supplementary Table 1). The random-set model is applicable beyond the binary

case to any sort of gene-level scores, though the induced distribution ofX̄ becomes

intractable. Rather than resort to Monte Carlo, we find that the first two moments

of the otherwise intractable distribution are available analytically (Appendix A),

and that the induced distribution is approximately Gaussian. These findings are the

basis of our proposed standardization.

Under the random-set model, and thus conditional on gene-level scores{sg},

µ = E(X̄) =

∑G
g=1 sg

G
(1)
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and

σ2 = var(X̄) =
1

m

(
G−m

G− 1

)
(∑G

g=1 s2
g

G

)
−

(∑G
g=1 sg

G

)2
 (2)

which are easily computed from the full set of gene-level scores and the category

size. Notably the meanµ does not depend on attributes of the category, though the

variance depends on the category sizem. We propose the standardized category-

enrichment scoreZ = (X̄ −µ)/σ, which is a mean zero, unit variance score on the

null hypothesis that categoryC is not enriched for differentially expressed genes.

Analysis is simplified, especially in the case of multiple categories, becauseZ is

computable without using permutation. Large values ofZ favor the enrichment hy-

pothesis. For moderate to large categories, central limit theory indicates thatZ is

distributed approximately as a standard normal on the no-enrichment null hypothe-

sis.

Enrichment scoring is enlivened by the possibility of using a variety of gene-

level scores. We may uselog fold changes,t statistics, or other local measures of

differential expression. In the special case where{sg} are the ranks associated with

gene-level scores, we get a version of the Wilcoxon test for enrichment, sincemX̄

is a sum of ranks, and bothµ andσ2 simplify as

µ =
G + 1

2
σ2 =

(G−m)(G + 1)

12m
,

with suitable adjustments for ties. Gene-level scores from an empirical Bayesian

analysis might be posterior probabilities of differential expression (Kendziorskiet

al. 2003), in which casemX̄ equals the posterior expected number of altered genes
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in the category, andZ calibrates this relative to the population of genes. Section 3

develops an example in which{sg} are transformed Spearman correlations between

host genes and the expression of a particular viral gene. Efficiency and approximate

normality of theZ score will be improved if the distribution of gene-level scores

is suitably regular. For instance, it is preferred to uselog transformedp−values

instead ofp−values, andlog fold instead of raw fold change.

Another important special case happens when{sg} are binary scores indicat-

ing selection to a short list of significantly differentially expressed genes. Then

Z2 =
(

G−1
G

)
U whereU is Pearson’s chi-squared statistic for testing independence

between category and short-list assignment (calculations not shown, but following,

for example, Bickel and Doksum, 2001, page 402). To a minor approximation,

then, our proposedZ score corresponds to Fisher’s or Pearson’s test when{sg} are

binary gene-level scores. Else it generalizes those category scores and measures

other aspects of the enrichment signal, as we demonstrate next.

3 An analysis of host/virus associations in cancer

A recent expression study of nasopharyngeal carcinoma (NPC) used the proposed

methodology for category enrichment (Senguptaet al. 2006). NPC is a cancer

of the nasopharynx that is responsible for 60-70,000 deaths per year worldwide.

Nearly all cases are associated with Epstein-Barr virus (EBV) infection, though the

molecular determinants and the nature of the host-virus interactions remain poorly

understood. Senguptaet al. (2006) studied tumor tissue fromn = 31 NPC patients
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using Affymetrix hgu133plus2 microarrays to measure host gene expression and

using RT-PCR to measure the expression of 10 viral genes. The hgu133plus2 mi-

croarrays probe the transcriptome withG = 54, 675 probe sets. Here we reconsider

associations between host expression and the expression of the single viral gene

EBNA1.

The statistical analysis of host-virus association rests on pairwise Spearman

correlations between individual Affymetrix probe set values and the expression

of EBNA1. Supplementary Figure 1 shows one probe set and its correlation with

EBNA1. Supplementary Figure 2 shows correlations with EBNA1 for all host probe

sets. The most extreme negative correlation isr = −0.75, which is unusually small

(Supplementary Figure 3, p-value= 0.04). A striking feature of the empirical dis-

tribution of correlations is that65% of host probe sets are negatively correlated with

EBNA1. This is significantly more than expected if truly there is no association be-

tween host and virus expression (p-value== 6 × 10−4, Supplementary Figure 3).

Globally there is evidence for significant negative association between EBNA1 ex-

pression and the expression of host genes in NPC. Figure 1 highlights a selected

list of the 574 most significantly altered host probe sets; the list targets a 5% false

discovery rate (FDR) according to the q-value method of Storey (2003). In this

calculation p-values were obtained by recalling that

sg =
1

2

√
n− 3 log

1− rg

1 + rg

(3)

is approximately standard normal in the absence of a true correlation betweeng

and EBNA1 (Fisher, 1921). The sign change employed (compared to the usual
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inverse hyperbolic tangent transform) means that genes which correlate negatively

with EBNA1 have a positive gene scoresg. Naturally we may examine the genes on

this selected list, but a study of functional categories that are enriched for negatively

associated genes exposes more of the relevant biology.

Figure 2 summarizes two category-enrichment scoring methods applied to all

GO categories (2761) containing at leastm = 10 annotated hgu133plus2 probe

sets. (This used the October 2005 build of Bioconductor package hgu133plus2.)

Many probe sets were unannotated, and to avoid potential biases we restricted at-

tention to the universe ofG = 27, 152 annotated probe sets (Al-Shahrouret al.

2004). The two enrichment scoring methods are conditionalZ scores as described

in Section 2. The first,Zave, is based on gene-level transformed correlationssg

from (3). The second,Zsel, is based on binary scores1[sg > k] wherek defines

the5% FDR list of the most significantly negatively correlated host genes. Recall

that Zsel is the normal-score version of Fisher’s exact test. Since eachZ score is

nominally standard normal in the absence of enrichment, Figure 2 seems to indicate

that many GO categories are enriched for altered genes. Reference lines atz = 5

are drawn for guidance (nominal p-value< 10−6). A noteworthy feature in Figure 2

is thatZsel andZave are not perfectly correlated. They capture different aspects of

the enrichment signal, and thus they deserve separate consideration. Some cate-

gories have highZsel but negligibleZave. They are enriched for genes on the short

list of most significantly negatively correlated genes, but the average correlation

is not unusual. Other categories have highZave but negligibleZsel. These would
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not be detected by Fisher’s test, for example, though on the average the negative

correlation exhibited by the contained genes is extremely unusual.

That Zsel and Zave capture different aspects of the enrichment signal is ex-

emplified by the immune response category, GO:0006955, which connectsm =

1494 probe sets on the hgu133plus2 microarray. Recall that a significant mass of

host probe sets are negatively correlated with the EBNA1, though most of these

do not occupy the 5% FDR selected list of most significantly altered host probe

sets. Among the 2761 GO categories are many (marked in red) that are subsets of

GO:006955; i.e. they represent specific forms of the immune response. Notably,

all these subsets haveZave > 0, which indicates that their average correlation with

EBNA1 is more negative than average. Taken together we get strong evidence of

enrichment byZave. At the same time many of the subsets haveZsel < 0, which

indicates that they have less representation on the selected list than we expect, and

thus selected probe sets are not particularly over-represented in the immune re-

sponse category.

Senguptaet al. (2006) followed up on some of the categories that showed both

extremeZsel and extremeZave, such as GO:0019883, which is in the biological

process network, with GO termantigen presentation, endogenous antigen. This

category is marked up in subsequent figures. There arem = 48 probe sets anno-

tated to this category, andx = 8 occupy the selected list, givingzsel = 10.6. Also

the average correlation with EBNA1 is unusually low, withzave = 7.68. An infor-

mal look at the short list of 574 significantly altered probe sets probably would not
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have revealed a preponderance of GO:0019883 genes. Indeed the best ranking is at

the 90th position, there are only three probe sets in the top 250. Followup experi-

ments on the genes in GO:0019883 confirmed the negative correlation findings that

were suggested by the enrichment analysis. Ongoing research aims to understand

whether viral EBNA1 is taking advantage of host cells that have disabled antigen

presentation function, or whether the virus is effecting a change in the host expres-

sion itself.

It is routine that named genes are associated with multiple probe sets on an

Affymetrix microarray (Supplementary Figure 4A). GO:0019883, for example, rep-

resents onlymg = 12 genes though it hasmp = 48 probe sets. The fact is important

for enrichment calculations since we ought to avoid spurious findings that reflect

over-representation of certain genes in the system rather than biologically signifi-

cant enrichment. Various solutions are available. Ideally we would first reduce the

probe set data to the gene level, and then proceed with enrichment calculations on

this reduced space (givingZideal). A computationally much simpler adjustment is

suggested by the variance formula (2). It uses the probe set basedZ score, and the

numbersmg andmp to compute

Zadjust = Z

√
mg

mp

(G−mp)

(G−mg)
. (4)

The rationale is that̄X andµ may not change much in the reduction step; most of

the effect will be on the variance. The naive, ideal (reduce by median), and ad-

justed enrichment scores are compared in Supplementary Figure 4B,C. The ideal

scores tend to be more conservative than the naive ones; GO:0019883 remains im-
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pressive withzideal;ave = 4.78 andzideal;sel = 11.3 (latter not shown). Globally the

adjustment (4) is similar to the ideal score and it tends to be conservative. In the

example category GO:0019883,zadjust;ave = 3.84 andzadjust;sel = 5.3. Thus, ef-

fective approximations accommodate the multiple probe sets per gene problem. In

some cases it may be possible to select the most reliable probe sets from among

the multiple probe sets associated with a gene. For example, a probe set showing

high average intensity and high dynamic range across multiple tissue types may be

better than one measuring near the background signal in most samples. We do not

address the selection of probe sets in this paper, but if probe sets are selected for

some genes, equation (4) could be applied to the selected probe sets.

For further comparison we applied the SAFE procedure (Barryet al. 2005) to

all 2761 GO categories using the original microarray data and EBNA1 expression

data on all 31 tumor samples. We adopted the same category-level statistic in or-

der to control the comparison. Specifically, gene-level Spearman correlations were

transformed to ranks to be used assg values, and the category-level statisticX̄ was

the average rank (ranks were relative to the 27,152 probe sets having some annota-

tion). Results for GO:0019883 are summarized in Figure 3. Visually the category

appears to have a preponderance of negative correlations with EBNA1 (Panel A),

and this is supported by both statistical calibrations. Yet random-sets and SAFE

evaluate the significance of the same average-rank statistic rather differently. Com-

pared to average ranks obtained on random, same-sized sets, the average rank for

GO:0019883 is extremely unusual. Compared to the statistic we would compute on
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GO:0019883 if viral expression is not associated with host expression, the observed

average rank is modestly significant. A similar pattern recurs for many categories

(Supplementary Figure 5). The two calibration approaches agree broadly but differ

substantially in their ranking of categories, which suggests that distinct enrichment

signal is identified by the random-set approach.

4 Averaging or selection? A theoretical comparison

In the preceding case study we observed empirical characteristics of two random-

set methods for scoring category enrichment. The selection approach begins with a

short list of extremely altered genes and asks if there is over-representation in the

category. The averaging approach scores the category simply by averaging gene-

level evidence across all genes in the category. The associated categoryZ scores

exhibit some positive correlation but evidently they capture different components

of the enrichment signal. Some theoretical findings are available which expose

properties of the enrichment testing problem.

Our findings are developed in the context of a generic mixture model, one that is

structurally similar to models commonly described in the microarray literature. The

model is presented in order to develop a comparison of category scoring methods.

It is not used for the analysis of dataper se, but it sheds light on an interesting

phenomenon created by this two-level (gene/category) inference problem. We find

that each category-scoring method has its own domain of superiority in the state-

space of enrichment problems; neither is always preferred. The result is somewhat
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surprising since information is obviously lost in the selection approach and not so

obviously lost by averaging evidence. The result is related to the debate in statistics

about model selection versus model averaging.

Consider genesg ∈ {1, 2, . . . , G} and quantitative gene-level scores{sg}. The

largersg the more evidence for differential expression of geneg. A categoryC is

a known subset ofm < G genes sharing some particular biological function. The

category may be scored for enrichment by one of two statistics:

X̄ave =
1

m

∑
g∈C

sg︸ ︷︷ ︸
averaging

X̄sel =
1

m

∑
g∈C

1[sg > k]︸ ︷︷ ︸
selection

To enable a comparison of the category scores we frame the problem as a test

of the null hypothesis thatC is not enriched. More specifically, suppose that each

geneg is either truly differentially expressed(Ig = 1) or not(Ig = 0) between the

two cellular states. We allow that some fraction

π =
1

G

G∑
g=1

Ig

of genes are truly differentially expressed. The categoryC itself contains a fraction

πC =
1

m

∑
g∈C

Ig

of differentially expressed genes. No enrichment meansH0 : πC = π, and this

is tested against the alternativeH1 : πC > π. We can define enrichment simply

asπC − π. Lack of enrichment does not mean there is no differential expression;

it just means there is not more than in the whole system. (One could also adjust
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for discreteness ofπC but the adjustment would be negligible for modestly large

category sizem, and so it is not pursued.) Statistics̄Xsel andX̄ave are two possible

test statistics for testingH0. We compare their power against various alternatives.

The latent differential expression indicatorIg affects the distribution of the

gene-level scoresg. A simple location model asserts thatsg is normally distributed

with unit variance and with meanδIg for a gene-level effectδ > 0, and that all

variables are independent. Normality is often reasonable for suitably transformed

gene-level scores, such aslog2(fold) or the transformed correlation (Section 3).

Differential expression could potentially alter the variation of scores, but as a first

approximation we focus on the location shifts only. The possible effects of among-

gene dependence are important but they are secondary in the present comparison

of enrichment-scoring methods, hence our demonstration is in the independence

model (see discussion).

A test based on the average quantitative scoreX̄ave uses the sampling distribu-

tion Normal(δπC , 1/m). Thus the power of a levelα test is1−Φ(τave) whereΦ(·)

is the standard normal cumulative distribution and

τave = zα −
√

m (πC − π)︸ ︷︷ ︸
enrichment

δ︸︷︷︸
effect

. (5)

Naturally the power of the averaging approach increases with effect, enrichment,

and category size. One scenario is presented in Figure 4B: a category of size m=20

is tested for enrichment at levelα = .05 in a system withπ = 0.2 of genes differ-

entially expressed.

The power of the selection approach is similarly derived. It entails a normal
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approximation forX̄sel that is well justified in large categories by the central limit

theorem. The power is1− Φ(τsel) where

τsel = zα
σ(π)

σ(πC)
−
√

m (πC − π)︸ ︷︷ ︸
enrichment

[Φ(k)− Φ(k − δ)] /σ(πC)︸ ︷︷ ︸
effect∗

. (6)

Herek = k(π, δ, α̃) is chosen to deliver a FDR-controlled gene list at levelα̃. (See

Appendix B.) Also the variance functionσ2(πC) records the variance of
√

mX̄sel.

Figure 4A shows how the power to detect enrichment by the selection method is

affected byπC − π andδ for categories of sizem = 20, whenπ = 0.2 andα =

α̃ = 0.05.

The power surfaces in Figure 4 reveal an intriguing phenomena in enrichment

testing. Both selection and averaging increase in power as either enrichmentπC−π

or effectδ increase. However they increase differently, creating domains of superi-

ority for each approach. The lower panels in Figure 4 show these domains for the

case indicated. When theπC − π is small, butδ is large, then it is better to use the

selection approach. On the other hand ifδ is small butπC − π is large, then it is

better to average evidence across all genes in the category. The fact that selection

can be superior is somewhat striking, since it entails a significant amount of infor-

mation loss; each gene score is replaced by a binary indicator of whether or not the

score is extremely large. On the other hand, if enrichment is weak, then averaging

evidence combines a lot of noise with signal, thus diminishing power.

The nonlinearity of the power functions complicates a general comparison, but

we have identified sufficient conditions for one or the other approach to be supe-

rior (Appendix B). To state the result, first putκ = α̃π/ {(1− α̃)(1− π)}, where,
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again,π is the proportion of differentially expressed genes in the whole system and

α̃ is the FDR of the gene list used by the selection approach. We require0 < κ < 1,

else it is not possible to have the desired FDR control; this is a weak condition,

since it is implied if both0 < α̃ < 1/2 and0 < π < 1/2, for example.

Theorem 1 If 2Φ−1
(

1
1+κ

)
< δ < 1√

κ
−
√

κ, then for sufficiently largem, selection

is more powerful than averaging. Also, given anyπC > π, there existsδ∗(πC , π)

such that if0 < δ < δ∗(πC , π), then for sufficiently largem, averaging is more

powerful than selection.

This is a finding about sub-optimality of two enrichment detection methods. In

using a selection approach, there is limited power to detect enrichment when the

category under test contains lots of genes that are altered by a small amount, re-

flecting the fact that these genes are not selected as the most significantly altered

ones. By contrast, selection is superior to averaging if the category under test is

enriched for a small number of highly altered genes. We note that the interval forδ

in the first claim is nonempty whenκ is sufficiently small (say smaller than0.133).

We also note that averaging is superior both whenδ is very small and whenδ is

very large. Interesting power dynamics emerge in the interior of the state space, as

for instance in Figure 4.

5 Simultaneous inference with multiple categories

An unsolved problem with enrichment calculations concerns the comparison of

many categories that vary in size. On the null hypothesis of no enrichment, each
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Z score is well calibrated by design, with zero mean and unit variance. But many

categories may be enriched, and unlike simpler genomic testing problems, there is

different power associated with these different tests. The distribution ofZ under

the enrichment hypothesis is a function of both the unknown enrichmentπC − π

and the known category sizem. For instance in the location-shift model,Zave has

unit variance and mean
√

m (πC − π) δ. Owing to this size effect, the ranking of

categories byZ alone may not be optimal since large enriched categories will tend

to have much largerZ scores. The phenomenon is illustrated in the host-virus ex-

ample in Figure 5A. The problem is not limited toZave; it occurs too withZsel,

especially when the selected set is relatively large (data not shown). A partial so-

lution, demonstrated in Figure 5B is to rank categories according toZ/
√

m; then

categories are ranked by the estimated enrichmentπC − π. In itself this does not

provide an error-controlled list of enriched categories; nor does it account for the

non-constant variance ofZ/
√

m, but the ranking may be calibrated and remains

useful for prioritizing categories across the GO networks.

A complete solution to simultaneous multiple-category testing will involve the

joint distribution of category statistics, rather than their marginal distributions con-

sidered so far. Without developing calculations fully here, we note that the joint

distribution ofZ scores across categories (conditional on{sg}) is accessible by an

analysis of intersections among the different categories. Proper-subset information,

for example, is provided by the directed graphical structure of GO. Two elements

of the random-set approach simplify the analysis of multiple categories. Firstly, the
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permutation perspective described in Supplementary Table 1 carries over readily

to multiple categories. The only difference is that we have an additional row for

each category. The multiple-category information is equivalent to a (complicated)

cross-classification of genes, and a permutation of the{sg}, with the remaining tab-

ulation fixed, is enough to generate the full joint distribution of category statistics

(Supplementary Table 2). Secondly, valid and readily computed approximations

to the joint distribution of category statistics are available. By restricting to mod-

erate and large categories,Z scores are approximately multivariate normal. The

dependence is carried completely by between-category correlations, which can be

computed following the same approach as in Appendix A (see Newton 2007). We

find that if Z1 andZ2 are standardized category scores for two categories of sizes

m1 andm2 which have an overlap ofm1,2 genes, then

corr(Z1, Z2) =
Gm1,2 −m1m2√

m1m2(G−m1)(G−m2)
. (7)

For largeG this is approximatelym1,2/
√

m1m2. In other words dependence is

induced by the overlap of categories, and increases the larger is this overlap.

A full analysis of the multiple-category testing problem is beyond the scope

of this paper. However, we illustrate the utility of the correlation formula (7) and

the multivariate normal approximation to describe one possible approach. Suppose

there arek categories under study. On the global null of no enrichment for any cate-

gory, the vector(Z1, Z2, . . . , Zk) of enrichment statistics is approximately Gaussian

with mean zero, unit variances, and covariances in equation (7). Ideally we would

simulate the exact distribution by permuting gene scores as in Supplementary Ta-
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ble 2, but the Guassian provides a computational solution that is more convenient,

especially with largek. By a Cholesky factorization of the known covariance matrix

(even when it is less than full rank), we can easily simulate the multivariate normal

vector. Sampled vectors respect the joint distribution of scores, for instance as af-

fected by category overlap, and provide input to various multiple testing schemes.

For the NPC example, we report results of themaxTprocedure (Dudoitet al. 2003)

when the categories are ranked byT = Z/
√

m to accommodate the effects of cat-

egory size on power. For each simulated vector we computed the maximum of the

T statistics across categories. Since we did not getZ ’s by permutation, we did not

need to recompute category statistics; rather we simply converted theZ ’s to T ’s us-

ing the category sizes. In the NPC example, 11 categories had aT value exceeding

the95th percentile of themaxTnull distribution. A global view of the results is in

Figure 5. Supplementary Table 3 summarizes the 11 interesting categories.

6 Discussion

In analyzing functional categories related to nasopharyngeal cancer tissue, Sen-

guptaet al. (2006) used the random-set enrichment method discussed here, with

both binary selections from gene-level scores and averages of gene-level scores.

The Supplementary Material associated with that paper presented the method; here

we have amplified that discussion, derived formulas (1) and (2) for standardization,

evaluated the methodology empirically and theoretically, and provided comparative

analyses. Evidence shows that the proposed category-scoring methods capture pre-
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viously hidden components of the enrichment signal. Results are also provided that

guide simultaneous inference across multiple categories.

The random-set calibration approach is the same one that underlies Fisher’s

exact test for independence between the selected gene list and the category under

study. The simplicity of Fisher’s test makes it compelling, but the test is limited by

its focus on selected gene sets. Transferring random-set calculations to quantitative

gene-level scores is complicated by the fact that the Fisher-test hypergeometric dis-

tribution no longer applies; an intractable distribution takes its place. In deriving

the random-set mean and variance of a category score, we offer an easily computed

approximation and standardized statistics for measuring category enrichment. This

has several practical advantages over other schemes that use quantitative scores.

By conditioning on results of the differential expression analysis, our calculations

can handle a wide variety of output from that analysis and we need not revisit the

raw data. Methods such as in Barryet al. (2005) and Subramanianet al. (2005)

calibrate category scores by recomputing the differential expression results over

random permutations of raw data. Not only can this be limited when the number of

microarrays is small, but also the null hypothesis at work for such a permutation is

the exchangeability of microarray labels, which asserts the absence of any differen-

tial expression. Insofar as enrichment concerns excess differential expression in a

category rather its absence, the random-set approach may be targeting enrichment

more directly. Certainly the calibration is such that different aspects of the enrich-

ment signal are being detected by the random-set approach. Further comparative



21

analysis are warranted.

The issue of among-gene dependence is a subtle one that is relevant in enrich-

ment calculations. The SAFE/GSEA permutation guards against ill-effects of such

dependence by shuffling microarray labels and fixing whole profiles. Random-

set scoring guards against these effects by conditioning on results of the differen-

tial expression analysis; since{sg} are fixed, whatever factors caused them to be

dependent cannot enter the calculation. The flip side is that our interpretation of

random-setZ scores is focused on comparing the category statistic in hand to its

hypothetical value from a random set (as opposed to its value on some hypotheti-

cal rerun of the whole expression study). Indeed the dependence that in sampling

theory terms would inflate the variance of the category score and speak against ran-

dom sets is precisely the dependence that we aim to detect as the enrichment signal.

Random-set calibration gains by its simple interpretation; still one must take care

that significant findings are attributable to biologically relevant enrichment rather

than to something spurious.

In the context of a location-shift model for differential expression we compared

two random-set methods in terms of their power to detect enrichment in a given cat-

egoryC. A clear picture of the sub-optimality of each method is available, pointing

to the benefits of using several methods together to identify different aspects of the

enrichment signal. WhenC contains lots of modestly altered genes, then averaging

evidence from all genes in the category is more powerful than selection; whenC is

enriched just slightly, but the alteration effect is high, then the use of selected genes
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is preferred.

The random-set approach becomes feasible in multi-category inference because

various properties can be explicitly calculated. Ranking categories by theirZ score

normalized by the square root of category size gives a ranking based on estimated

enrichment. This partially addresses the problem that large categories that are en-

riched at all will be detected with high probability, contrary, perhaps, to the aim

to identify the most enriched categories. The joint distribution ofZ scores across

multiple categories is induced by shuffling in a certain contingency table, and it is

approximately multivariate normal under the complete null hypothesis. The depen-

dence between scores is mediated by the extent of category overlap (equation 7).

Multiple testing schemes can take advantage of this known dependence to assure the

identification of significantly enriched categories, though optimal schemes remain

to be worked out. We demonstrated the single-stepmaxTapproach in Section 5 and

produced useful findings for the NPC study. Refinements are surely possible, either

using stepwise approaches to control family-wise error or using one of the methods

for false discovery rate control. It is tempting to convert theZ scores top−values

and adopt one of these standard multiple testing adjustments, but size and depen-

dence issues complicate a simple technology transfer. Further work in this direction

may help to sort out reporting protocols when, for instance, multiple nodes in one

branch of the GO graph exhibit varying degrees of enrichment.



23

Computing notes

An R package,allez, was developed to implement random-set enrichment calcula-

tions, especially for GO categories. The source is available at

http://www.stat.wisc.edu/˜newton/ .

Calculations reported here used R (R Development Core Team 2005) version 2.1

and Bioconductor (Gentlemanet al. 2004) package hgu133plus2 built 200509 by

AnnBuilder using

<URL: http://gopher5/compbio/annotationSourceData/

archive.godatabase.org/latest/go_200509-termdb.rdf-xml.gz>
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Appendix A: Proof of standardization, eqs (1) and (2)

We have fixed gene-level scoress1, s2, . . . , sG and a random categoryC drawn

uniformly from the
(

G
m

)
subsets of sizem from G genes. Call this set of subsets

C and note that eachC ∈ C has probabilityp(C) = 1/
(

G
m

)
. Then withX =∑

g∈C sg = mX̄, and by switching the order of summation,

E(X) =
∑
C∈C

p(C)

(∑
g∈C

sg

)

=
m!(G−m)!

G!

G∑
g=1

sg

∑
C∈C

1[g ∈ C].

Here, the inner sum counts the number of subsetsC of sizem fromG which include

a fixed geneg. This is precisely
(

G−1
m−1

)
, so

E(X) =
m!(G−m)!

G!

(G− 1)!

(m− 1)!(G−m)!

G∑
g=1

sg

from which the result follows for̄X.

For the variance term we proceed similarly. First compute

E(X2) =
∑
C∈C

p(C)

(∑
g∈C

sg

)2

=
m!(G−m)!

G!

∑
C∈C

G∑
g=1

G∑
h=1

sgsh1[g ∈ C] 1[h ∈ C]

=
m!(G−m)!

G!

G∑
g=1

G∑
h=1

sgshkg,h

wherekg,h =
∑

C∈C 1[g ∈ C] 1[h ∈ C]. Wheng = h, kg,h =
(

G−1
m−1

)
as above.

Wheng 6= h, thenkg,h counts the number of subsetsC of sizem from G which

contain two fixed genesg andh; we see this is simply
(

G−2
m−2

)
. Simplifying we
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obtain

E(X2) =

(
G∑

g=1

s2
g

)(
m

G
− m(m− 1)

G(G− 1)

)
+

(
G∑

g=1

sg

)2(
m(m− 1)

G(G− 1)

)
.

The variance is then computed from var(X) = E(X2) − (E(X))2. Note that ran-

dom set sampling is equivalent to sampling without replacement from the popula-

tion.

Appendix B: Selection vs averaging (Theorem 1)

Which category-testing approach is more powerful depends on the sign of∆ =

τsel− τave, the difference between theZ-score critical values corresponding to level

α tests. Averaging is better if∆ > 0; selection is better if∆ < 0. Combining (5)

and (6),

∆ = zα

{
σ(π)

σ(πC)
− 1

}
−
√

m(πC − π)

{
µ1 − µ0

σ(πC)
− δ

}
(8)

whereµ0 = 1 − Φ(k) is the mean of the Bernoulli trial1[sg > k] wheng is not

differentially expressed,µ1 = 1 − Φ(k − δ) is the mean wheng is differentially

expressed,πC − π is the enrichment,δ is the effect of differential expression onsg,

m is the category size,Φ() is the standard normal cumulative distribution function,

andσ2(·) is a variance function. In this treatment gene scoressg are random, and

the tests are marginal rather than conditional.

The threshholdk = k(π, δ, α̃) can be chosen to target a levelα̃ false discovery

rate (FDR) owing to properties of the function

h(x) =
1− Φ(x)

1− Φ(x− δ)
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for each fixedδ > 0. By examining the derivative ofh(x) and invoking Mills’ ratio

(e.g. Gordon, 1941), one can prove:

Lemma: h(x) is monotone decreasing withlim
x→∞

h(x) = 0 and lim
x→−∞

h(x) = 1.

Thush(x) is invertible, and with fixedκ = α̃π/ {(1− α̃)(1− π)} ∈ (0, 1), we can

certainly findk uniquely satisfyingh(k) = κ. Thisk, furthermore, must define the

threshhold for for the level̃α FDR gene-selection procedure, since by Bayes’s rule

α̃ = P (H0|sg > k) =
µ0(1− π)

µ0(1− π) + µ1π
(9)

whereµ0 = 1−Φ(k) andµ1 = 1−Φ(k− δ). Reorganizing (9) we get the defining

relationh(k) = µ0/µ1 = κ. The 1-1 correspondence betweenµ0 (or µ1) andδ

is further revealed throughδ = Φ−1(1 − µ0) − Φ−1(1 − µ0/κ). Both µ0 andµ1

converge to0 asδ → 0. As δ → ∞, µ0 → κ andµ1 → 1. Always µ0 = κµ1.

Supplementary Figure (6) provides another view of these objects.

The behavior of the varianceσ2(πC) = µ0(1−µ0)+πC {µ1(1− µ1)− µ0(1− µ0)}

depends on the sign of the coefficient ofπC . Indeed there is a critical pointµ0 =

κ/(1 + κ) < 1/2, when this coefficient equals 0, andσ2(πC) = κ/(1 + κ)2 for all

πC . For µ0 > κ/(1 + κ), σ2(πC) is decreasing inπC ; for µ0 < κ/(1 + κ), it is

increasing inπC . Noting the 1-1 correspondence ofδ andµ0, we see the critical

point occurs atδ = 2Φ−1
(

1
1+κ

)
.

Consider the first claim on superiority of selection. We seek conditions under

which∆ < 0. Figure 4 suggests looking at the case of largeδ. With δ > 2Φ1
(

1
1+κ

)
,

σ2(πC) is descreasing inπC , and so the first term in (8) is positive but bounded
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above by

zα

(
σ(π)

σ(1)
− 1

)
> 0.

Being positive, this term works against having∆ < 0, but the term is finite and

not dependent on category sizem. Thus the second term in (8) dominates for suffi-

ciently largem, and will drive∆ < 0 as long as

µ1 − µ0

σ(πC)
> δ. (10)

With the effectδ larger than the critical point mentioned above, we have

σ2(πC) < σ2(π) < σ2(0) = µ0(1− µ0) < κ/(1 + κ)2

and so (10) holds if

µ1 − µ0√
κ

(1+κ)2

> δ. (11)

Notingµ1 = µ0/κ, rearranging (11) is equivalent to

δ <

(
κ + 1√

κ

)(
1− κ

κ

)
µ0,

and finally notingµ0 > κ/(1 + κ) in this case, we obtain the upper boundδ <

1/
√

κ −
√

κ. Thus we have sufficient conditions establishing the superiority of

selection over averaging in gene-set enrichment. Numerically we find the interval

in Theorem 1 is non-empty for0 < κ < 0.133.

We prove the second claim similarly, and thus, in contrast to (10), we seek

conditions under which

L =
(µ1 − µ0)

2

σ2(πC)
< δ2. (12)
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The left hand sideL can be simplified, noting first thatµ1 = µ0/κ and also that

σ2(πC) = µ0

{
1 + πC

(
1
κ
− 1
)}

+ O(µ2
0) asµ0 → 0. Immediately we obtain

lim
µ0→0

L/µ0 =

(
1
κ
− 1
)2

1 + πC

(
1
κ
− 1
) < ∞.

On the other hand, if the right hand side of (12) diverges when normalized byµ0,

then the stated inequality must hold for an interval of sufficiently small effects.

Using Mills’ ratio, we find the threshholdk ≈ (− log κ)/δ for smallδ and conse-

quently

µ0 = 1− Φ(k)

≈ δ

(− log κ)
√

2π
exp

{
−1

2

(log κ)2

δ2

}
for small δ. Evaluating further shows thatδ2/µ0 diverges asµ0 → 0, completing

the proof.
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Figure 1: Gene selection. For the host-virus association example, plotted is
a histogram of the54, 675 Spearman correlations between expression of each
Affymetrix probe set and the expression of the viral gene EBNA1. Correlations
are computed using microarray data on31 tumor samples as described in Sengupta
et al. (2006). Highlighted on the left are selected probe sets that have significant
negative correlation with EBNA1 according to aq−value analysis that targets a 5%
FDR gene list (correlation less than−0.55).
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Figure 2: Random-set scoring. Shown are results of two category-scoring meth-
ods applied to 2761 GO categories for whichm ≥ 10 and based on the gene-level
correlations from Figure 1. Both methods aim to detect enrichmet of the category
for genes that are negatively associated with EBNA1 viral expression. Category
GO:0019883, ‘antigen presentation, endogenous antigen’ containsm = 48 probe
sets and scores highly by both methods (large red dot). The large (m = 1494) ‘im-
mune response’ category (GO:0006955) scores extremely highly byZave but not so
highly byZsel (green dot). Shown in red are categories that are subsets of ‘immune
response’. The average correlation of immune response genes with EBNA1 is ex-
tremely significant, but the number of significantly negatively correlated genes is
less significant.
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Figure 3: Comparison with SAFE/GSEA: Panel A is a rank plot of probe set cor-
relation scores for the host-virus example. The positions of them = 48 probe sets
from GO:0019883 are marked, and suggest a preponderence of correlations on the
negative side. The average rank is noted with an arrow (5478). Panel B compares
the empirical distribution functions (edfs) of two different null distributions for the
average rank statistic (red = random sets; blue = SAFE). Associated histograms
are in Panels C and D, but the edfs reveal the scale difference more dramatically;
B = 10, 000 random draws are used in each case. Recall that the random set (red)
distribution is obtained by shuffling the GO:0019883 ranks in Panel A. By contrast,
the SAFE (blue) distribution returns to the original data and shuffles chip labels (as
in Figure 3, Supplementary material). The p-value from SAFE isp = .02 and from
random sets isp < 10−10 (z = −7.1) based on a normal approximation to Panel D.
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Figure 4: Power comparison. Power to detect enrichment is shown for a category
of sizem = 20 in a system withπ = 0.2 differential expression overall (A and
B). Selection and averaging are being compared, with low power in red and power
increasing into the yellows and whites. The lower panels show domains of supe-
riority for each method (by imaging the threshholded difference on a -1, 1 scale).
The enrichment isπC−π, and the effect of differential expresion per gene isδ. The
maximum power differential is 0.46 (C) and 0.74 (D).
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Figure 5: Power imbalance. Large enriched categories may get a strongZ score by
virtue of their sizem more so than by the level of enrichmentπC − π (panel A).
The simple correctionZ/

√
m provides a ranking of interesting categories that is ad-

justed for this size effect (panel B). Eleven categories, including GO:0019883 (red
dot), have enrichment scores exceeding1.10 (dashed line). These are significant
at the5% level by themaxTmultiple testing correction computed from a multi-
variate normal simulation of category enrichment scores. Table 3 [Supplementary
material] lists characteristics of these 11 interesting categories.
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• Supplementary Tables 1-3
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Supplementary Tables

Represent

Gene 1 2 3 · · · G
Selected 0 1 0 · · · 1 1 · · · 1 n
In category 1 1 1 · · · 1 0 · · · 0 m
In both 1 1 x

Selected
yes no

C x m− x m
notC n− x G− n−m + x G−m

n G− n G

Permute

Permuted 1 0 1 · · · 0 0 · · · 0 n
In category 1 1 1 · · · 1 0 · · · 0 m
In both 1 1 X

impliesX ∼ Hypergeometric

Generalize

Gene score s1 s2 s3 · · · sG

In category 0 1 0 · · · 1 0 · · · 0 m
Combined s2 sg x

permuting,X/m ∼ (µ, σ2)

Table 1: [Supplementary Material] Random sets. The standard approach of Fisher’s

exact test involves cross classifyingG genes by their presence in a functional cate-

gory C (sizem) and in a selected list of altered genes (sizen). This is compactly

displayed in a2× 2 table (upper right), though it is derived from a more extensive

binary table (upper left) containing a row for each classifying factor and a column

for each gene. A gene on both lists has 1’s in both rows of its column; a third, sum-

mary row based on products indicates this feature. The hypergeometric distribution

for X, the number of genes on both lists, corresponds to permuting one row and

recomputing the summary row of the big table (middle left), which is equivalent

to sampling a random set ofm columns. Generalizing this concept (lower left),

we can use quantitative gene-level scores in place of the selection indicators. The

induced distribution onX is intractable but has a computable mean and variance.
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Gene score s1 s2 s3 · · · sG

In C1 0 1 0 · · · 1 0 · · · 0 m1

In C2 1 1 1 · · · 0 0 · · · 1 m2

In C3 1 0 0 · · · 1 1 · · · 0 m3

Table 2: [Supplementary material] Multiple categories. A network of categories

may be represented in an extended table, as indicated here, with a row for gene

scores and then additional binary rows indicating membership of genes in each cat-

egory. With all the lower rows fixed (to retain the overlap structure in the network),

one randomizes by permuting the top row of gene scores, as in Table 1.
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ID Term m X̄ Z Z/
√

m

GO:0001772 immunological synapse 59 3.88 8.46 1.10

GO:0008332 low voltage-gated calcium channel activity 11 4.54 4.40 1.33

GO:0008113 protein-methionine-S-oxide reductase activity 10 4.45 4.11 1.30

GO:0004423 iduronate-2-sulfatase activity 12 4.10 4.08 1.18

GO:0019883 antigen presentation, endogenous antigen 48 3.90 7.68 1.11

GO:0000185 activation of MAPKKK activity 15 3.92 4.32 1.12

GO:0005031 tumor necrosis factor receptor activity 18 3.91 4.71 1.11

GO:0019911 structural constituent of myelin sheath 11 3.92 3.70 1.12

GO:0019903 protein phosphatase binding 11 3.88 3.65 1.10

GO:0003840 gamma-glutamyltransferase activity 13 4.18 4.34 1.20

GO:0042101 T cell receptor complex 11 4.55 4.42 1.33

Table 3: [Supplementary material] Continuing with the NPC example, shown are

categories that are significant at the5% level according to themaxTprocedure,

based on the enrichment scoreZ/
√

m and using the average transformed Spearman

correlation as the category statistic.
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Supplementary Figures

Figure 1: [Supplementary Material] Scatterplot of one host gene expression against

the expression of the viral gene EBNA1, NPC example
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Figure 2: [Supplementary Material] Histogram showing all 54,675 host probe set

Spearman correlations with EBNA1. Proportion negative and minimal correlation

are highlighted, and shown to be significant if there is truly no host/virus association

(next Figure). [This is a reproduction of Figure 3C from Senguptaet al. (2006),

included here for easy reference.]
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Figure 3: [Supplementary Material] Permutation analysis (10,000 replications ran-

domly reassigning EBNA1 values to host microarrays, top) shows that the global

association features from previous figure are significant: Minimum correlation p-

value= 0.04; proportion negatively correlated p-value= 6× 10−4.
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Figure 4: [Supplementary Material] On the number of probe sets per gene. Panel
A shows the ratio of probe sets per gene on the Affymetrix hgu133plus2 microar-
ray as this ratio is related to 2761 GO categories containingmp ≥ 10 probe sets.
Various modifiedZ scores are considered; for illustration all are based on trans-
formed Spearman correlations as the gene level scoresg. The naive approach is to
ignore the probe set to gene ratio, givingZ. Ideally, we would work at the level of
the genes themselves, by first collapsing the probe set data to the gene level, and
then applying the enrichment machinery. This is computationally more challenging
(we summarized by median), and givesZideal. A much simpler adjustment uses
Zadjust = Z

√
mg/mp

√
(G−mp)/(G−mg) to accommodate that the number of

genesmg in the category differs from the number of probesmp. Notemp was used
in standardizing the category score in the first place. GO:0019883 is marked in red.
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Figure 5: [Supplementary Material] Comparison with SAFE/GSEA: SAFE was
applied to all 2761 GO categories that containm ≥ 10 probe sets, and resulting
p−values are plotted against thep−values obtained by converting random-setZ
scores into normal probabilities. In both cases the category statistic is the mean
rank of probe-set statistics, so the differences are attributable only to the calibration
used. The lower panel highlights smallp−values from the upper panel, and shows
the results for GO:0019883 in red.
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Figure 6: [Supplementary Material] Theoretical components. Given a gene effect
δ > 0, the functionh(x) = [1− Φ(x− δ)] / [1− Φ(x)] is key in finding the thresh-
hold for an FDR controled selection method. Starting atκ on the vertical axis, we
map back tok whereh(k) = κ. Then we get mean valuesµ0 andµ1 from these
threshholds.
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