
Supporting File S2: Modeling lifespans of mutagenized G1F1 animals

1 Mixture model

Fully n = 1525 G1F1 animals were followed for the lifespan phenotype: Xi, for animal i. Some
fraction π0 of lifespans were unaffected by any mutagenesis-induced modifiers, and their lifespan
density, f0(x), say, is taken to be a log-normal, with parameters µ0 and σ20. Some other fraction
πLL carried a mutant modifier that induced a long-life phenotye, while yet a third fraction πSL
carried a mutant modifier that induced a short-life phenotype. Denoting these component densities
by fLL(x) and fSL(x) respectively, we view the density of Xi in the G1F1 population as a mixture:

fmix(x) = π0f0(x) + πLLfLL(x) + πSLfSL(x).

In preliminary calculations we treated all three components as log-normal, and while this pro-
duced a well-fitting model (fit by the R package mclust), the model was poorly adapted to the
primary inference task concerning expected modifier effects. The fit suggested a large fraction of
modifiers whose effect on the phenotype must be relatively small. Yet it was difficult within the
log-normal mixture formulation to characterize either the marginal distribution of modifier effects
or the conditional distribution of effects given selection of animals with extreme phenotypes.

We gain ground by adapting a useful idea from human survival analysis, specifically the acceler-
ated failure time (AFT) model. Animal i’s lifetime Xi, in case it is experiencing a mutation-modified
phenotype, is assumed to be Xi = X0,iMi, where X0,i ∼ f0 is a counter-factual lifespan the animal
would have had in the absence of the modifier, and Mi is the fold-effect that the modifier has on
animal i’s lifespan. Indeed, for the LL component, Mi > 1 and for the SL component 0 < Mi < 1.
We make progress by further structuring the law of Mi as a constrained log-normal factor:

logMi | LL ∼ Normal
(
0, σ2LL

)
1[Mi > 1]

and

logMi | SL ∼ Normal
(
0, σ2SL

)
1[0 < Mi < 1].

Parameters σLL and σSL characterize the expected magnitude of modifier effects. With these
assumptions, it is possible to integrate the latent Mi and get a closed formula for the compo-
nent densities fLL(x) and fSL(x). For convenience, we report these on the log-scale, for lifetimes
Yi = logXi. With φ and Φ the standard normal density and cumulative distribution functions,
respectively, we derive the following:
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The first factor in each density is the marginal density for Yi in the no-constraint model; the

second factor is the posterior probability that the constraint holds. This interesting relationship
appears in various constructions of mixture components defined by constraints on random effects,
and is the subject of a working manuscript by MAN.



2 Integrating three data sets

We used maximum likelihood estimation to fit the mixture model in Section 1, and to inform the
estimation as much as possible we integrated three data sets:

• n = 1525 G1F1 lifetimes

• n = 42 F1 lifetimes

• n = 31 modifier direction calls (Table 3, Kwong and Dove, 2009)

The n = 1525 G1F1 lifetimes arise from the full mixture; we don’t know which class any one comes
from. Their contribution to the log-likelihood is:∑

i∈G1F1

log fmix(xi).

The n = 42 F1 lifetimes ought to follow the unaffected distribution f0; including these helps to
anchor the mixture. Their contribution to the log-likelihood is∑

i∈F1
log f0(xi).

Further, the rate at which modifiers might enhance or suppress the lifetime phenotype is informed
by extensive data on the directional effects of previously identified Min modifiers. For n = 31
unequivacal cases in Table 3 of Kwong and Dove (2009), we know the directional effect on tumor
multiplicity (one case is equivocal, affecting multiplicity differently in the small intestine and colon,
and we omit that case). Of the remaining n = 31, nSL = 21 increase tumor multiplicity, and
thus would be expected to reduce lifespan, and nLL = 10 decrease multiplicity and thus would
be expected to increase lifespan. These numbers inform the mixing parameters πLL and πSL. We
treat them as Bernoulli trials from the conditional distribution of the class indicators given that
the class is either LL or SL, and thus their log-likelihood contribution is:

nSL log πSL + nLL log πLL − (nSL + nLL) log(πSL + πLL)

We use the R function nlminb to optimize the log-likelihood, which combines all three data sets
and parameters: µ0, σ0, σLL, σSL, π0, πLL, πSL. Maximum likelihood estimates are shown in
Table 1. The model fit is shown in Figure 3 (main paper). Note that by segregation in the G1F1,
the rate at which G1F1 kindred parents carry modifiers is 2πLL (for long-lived effects) and 2πSL
for short-lived effects.

Table 1: MLEs

µ̂0 σ̂0 σ̂LL σ̂SL π̂0 π̂LL π̂SL
5.046 0.168 0.477 0.261 0.691 0.207 0.102

We experimented with elaborations of the model, allowing non-zero means on the unconstrained
distribution of logMi, but BIC statistics lead us to retain this basic model described above.



3 Enhancing modifier effects by selecting extreme phenotypes

The G1F1 population is comprised of multiple kindreds. The mixture above concerns animal-level
data, but we recognize that the kindred is the unit that has inherited (or not) a mutant modifier
of effect M . In kindreds showing multiple animals having an extreme phenotype, there is an
enrichment for the likely modifier effect. This is demonstrated in Figure S3, using two selection
rules (corresponding to kindreds 258 and 201 with multiple long-lived animials). The calculation
rests on the AFT model, and considers:

P (M > f |SEL) (1)

for various fold changes f . For kindred 258, SEL is the event that at least 4 of 8 animals are
long-lived. For kindred 201, SEL is the event that at least 3 of 4 animals are long-lived. The
probability uses the fact that multiple lifetimes within a given kindred share the same multiplier
M , so Xi = X0,iM for all animals i in the kindred. The conditional exceedance probabilties are then
computed using elements of the fitted mixture (see equation 2 below). We see from Figure S3 that
selection based upon multiple long-lived sibs greatly enhances the magnitude of the underlying fold
effect M , whose unselected distribution is shown in blue. The interquartile range (IQR) (thick lines)
brackets unity (no effect) and allows only modest effects, even though the fitted model estimates
that 41% of the modifiers extend lifespan (twice the animal rate). I.e. there are many very small
effects. On the other hand, the enriched population has a greatly shifted distribution, and IQRs
containing 2 fold. Figure S4 shows the comparable plot for short-lived modifiers; here about 20%
of the kindreds carry such a modifier, though the modifier effects are quite small and the selection
examples do not enrich for very large effect magnitudes.

Here we give a formula for the enrichment effect on the long-lived side (1); the opposite side is
comparable. We consider specifically the selection based upon a kindred of n siblings, at least k of
whom have lifespan exceeding c.

P [M > f |SEL(n, k, c)] = 2πLLK(n, k, c)

∫ ∞
log f

ψ(n, k, c, u)
1

σLL
φ

(
u

σLL

)
du (2)

where ψ accounts for the within-kindred selection multiplicities

ψ(n, k, c, u) =
n∑
j=k

(
n

j

)
βj(1− β)n−j

and further, β is the chance that a single animal exceeds the selection threshold, conditional on the
fold exp(u)

β = 1− Φ

[
log(c)− u− µ0

σ0

]
,

and finally K(n, k, c) is a normalizing constant equaling the inverse of the marginal selection prob-
ability, which does not involve the fold f .



Figure S3: P (M > f |SEL) : how selecting on long-lived phenotype enriches for large fold effects.
Thick lines show interquartile range of M values (as for kindreds 201 and 258)
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Figure S4: P (1/M > f |SEL) : how selecting on short–lived phenotype enriches for small fold
effects. Thick lines show interquartile range of M values (as for kindreds 333, 415)
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