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Bootstrapping phylogenies: Large deviations and dispersion
effects
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Department of Statistics, University of Wisconsin-Madison, 1210 West Dayton Street,
Madison, Wisconsin 53706-1685, U.S.A.

SUMMARY

A large deviation result is established for the bootstrap empirical distribution in a finite
sample space, thereby validating both nonparametric and parametric bootstrapping in
certain phylogenetic inference problems. The bias previously observed in the bootstrap
distribution of the estimated tree topology is shown to stem from dispersion effects in the
joint distribution of sample and bootstrap empirical distributions. Both results are exam-
ined for maximum likelihood estimation in a three-taxon model having particularly simple
geometry. They are also applicable to discrete parameter problems outside of phylogenetic
inference.

Some key words: Bias; Bootstrap efficiency; Cladistics; Discrete parameter space; DNA; Entropy; Molecular
evolution; Relative entropy; Systematics; Tree topology.

1. INTRODUCTION

Ever-increasing volumes of molecular data are being used to infer evolutionary relation-
ships among living populations and within families of genes. For example, differences in
the nucleic acid sequences of extant species provide partial information about the phy-
logeny relating these species; that is to say, the nature of divergence from the single
ancestral population to the present. A phylogeny consists of a discrete tree topology
describing the pattern of relationships, and a set of continuous branch lengths indicating
time into the past or the amount of evolution. Figure 1 shows a phylogenetic tree relating
five primate species which was reconstructed using the method of maximum likelihood
applied to mitochondrial restriction site data. In fact a variety of molecular data types
are analysed and different methods are used to infer phylogenies. The reader is referred
to Felsenstein (1983), Nei (1987) and Miyamoto & Cracraft (1990) for comprehensive
reviews.

Felsenstein (1985) has advocated the use of Efron’s (1979) bootstrap to assess the
uncertainty in phylogeny reconstruction, and this method has become standard. While
theory supports the use of bootstrapping in many models, e.g. Hall (1992), existing theory
does not adequately support its use in phylogenetic inference. This is due in part to the
unusual structure of the parameter space created by the discrete tree topologies, and in
part to the type of questions involved. Furthermore, recent studies have suggested a bias
in bootstrap estimates of the probability distribution of the estimated tree topology
(Zharkikh & Li, 1992a, b; Hillis & Bull, 1993). Results presented in this paper give a
theoretical underpinning, beyond first order, to the phylogenetic bootstrap and describe
a source for the observed bias.
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Fig. 1. A tree topology estimated from mitochondrial restric-
tion site data (Felsenstein, 1992) for five primate species.
Branch lengths are not estimated.

The approach is to study the probability of estimating any particular but incorrect tree
topology. This is seen to be the probability that the empirical distribution of the sample
lands in a certain set. Large deviation theory provides an asymptotic approximation to
this sampling probability, and guarantees that the bootstrap analogue is at least as accu-
rate. Insight on bias is gained by analysing the bootstrap empirical distribution and its
relation to the empirical distribution of the sample.

In unpublished work, N. R. Chaganty and R. Karandikar have proved a general large
deviation result for the bootstrap empirical measure from which some of the present results
can be derived; see Barbe & Bertail (1995, p. 73). Their result is for function space valued
random variables. Rather than proceeding from the general theory, we appeal to a theorem
of Ellis (1984) concerning random vectors in %%

After reporting the main theoretical results in the next section, we study their general
implications for phylogenetic inference in § 3. Section 4 considers the particular case of
maximum likelihood estimation in a three-taxon model where the large deviation approxi-
mation can be computed explicitly. Section 5 gives a brief discussion.

2. BOOTSTRAP EMPIRICAL DISTRIBUTION

Consider data X;, X,, ..., X, that are independent and identically distributed random
variables on a finite sample space having d > 1 possible values. The set of possible prob-
ability measures for X; is taken as the compact subset of #¢,

d
yd={v=(v1,v2,...,vd)e,%diijO, z Vj=1},
j=1

with the relative topology. A nonempty subset R = % will be called a continuity set if it
is contained in the closure of its interior. We suppose that a particular P with P;> 0 for
all j governs the X;.

The relative entropy function,

Ip(v) = Y4 v;log(v;/P;) if ve &Y,
! o0 otherwise,
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is a convex nonnegative function, continuous on %¢, with minimum 0 at v = P. By conven-
tion, we take 0log 0 =0.
Let P, e ¥ denote the nonparametric maximum likelihood estimator of P:

P, =(P,(1), P,(2), ..., P,(d)),
where nP,(j) is the number of X; equal to the jth element of the sample space. Then
nP, ~ Multinomial,(n, P). (1)

Of course, P, is the empirical distribution of the data.

A nonparametric bootstrap sample Y, ;, Y, ,,..., Y,, is a set of conditionally indepen-
dent and identically P,-distributed random variables, given the original data (Efron, 1979).
The empirical distribution of the bootstrap sample, Q,, then satisfies

nQ, ~ Multinomial,(n, P,) (2)
given P,. The following result is proved by Sanov (1957).
THEOREM 1. If R = #% is a continuity set, then
1
lim —log pr(P, € R) = —Ip(R),
n—-oo N
where Ip(R) is the minimum of Ip over the closure of R.

If the closure of R contains P, then Ip(R)=0, and thus Theorem 1 recapitulates the
weak law of large numbers. Otherwise, we have an exponential decay to 0 of the probabilit-
ies, and the approximation pr(P, € R)==exp { —nlp(R)}. The first new result, proved in the
Appendix, is that bootstrapping approximates the sampling distribution of the empirical
measure to the degree given in Theorem 1.

THEOREM 2. For the nonparametric bootstrap,

1
lim —log pr(Q, € R|P,) = —Ip(R) (3)
along almost every data sequence X, X,, ... . If P is not contained in the closure of R, then,
marginally,
1
lim —log pr(Q, € R) = —Jp(R)> —I;(R), 4)
where
Jp(S)z infd {IV(S)+IP(V)}, (5)
VESL

and Jp(R) denotes the minimum of Jp over the closure of R. Result (3) continues to hold for
parametric bootstrap samples generated by a strongly consistent estimator of P.

Generally, the conditional probability pr(Q, € R|P,) can be approximated by simulation.
It is the limiting proportion, as the simulation size grows, of bootstrap distributions that
land in R. The first result in Theorem 2 ensures a level of accuracy for the bootstrap
which is not implied by earlier laws of large numbers or central limit theory. Both the
parametric and nonparametric bootstrap accurately approximate exponentially small
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probabilities in the sampling distribution of the empirical measure. Further, the approxi-
mation is automatic in the sense that the relative entropy Ip(R) does not need to be
computed. Result (4) confirms our intuition that the bootstrap distribution is more dis-
persed, marginally, than the true sampling distribution. In (5), the entropy I,(s) is defined
as oo unless s has zeros where v, has zeros.

The essence of bootstrapping is that pr(Q, € R|P,) is a computable surrogate for the
unknown sampling probability pr(P, € R). Indeed the approximation is rather accurate as
Theorem 2 suggests. However, for the nonparametric bootstrap, we prove the following
result in the Appendix.

THEOREM 3. Suppose that R = #* is a continuity set containing P in its interior, and that
the closure of R is not all of #°. There exists N such that, for all n> N,

pr(Q, € R) = E{pr(Q, € R|P,)} <pr(P, € R), (6)
E{pr(Q, € R|P,)|P, € R} <pr(P, € R). (7)

Since R contains P, all of these quantities converge to 1 as n— co. Inequality (6) says
that on average over data sets, the bootstrap probability underestimates the true sampling
probability of a given set. Inequality (7) refines this by restricting the empirical distribution
P, to be close to P.

3. PHYLOGENETIC INFERENCE

The motivation for Theorems 2 and 3 comes from the following problem. Suppose
that data from each of m populations or taxa can be represented as a sequence of length n,
(X1,j» X2,j»- - -» Xp,j), Where 1<j<m indicates the taxon and X;; indicates a discrete
datum observed at site i in the jth taxon. For example, if the data are aligned DNA
sequences, then each X;; takes values in the four-letter alphabet «/ ={4,C, T, G}.
Alternatively, the X; ; may be binary indicators of the presence or absence of a particular
base sequence cut by the ith restriction enzyme. We can express the complete data set as
a sequence of column vectors

Xll X2,1 an

X, Xop ... X
X1, Xo, o X)) = 02 T2 ",

Xim Xom - Xom

one vector for each site. Each site vector X; can take on one of d = {card(«/)}™ possible
values, and is the basic random element in what follows.

Most techniques of phylogenetic inference assume independence of X; from site to site
in the sense that reconstruction is based on their empirical distribution P, and does not
use information on the relative ordering of the sites. With this in mind, a natural regularity
condition is to suppose that the method of estimating the tree topology induces a partition
R, R,,...,Rg of #?formed by the rule

Pn € Rka(Pn) = Tk

where 7, is the kth tree topology, out of K, and ©(P,) is the estimated tree topology based
on the data. See Felsenstein (1978b) on how K grows with m. A further mild condition is
that each set in the partition is a continuity set. Disjointness of the R; implies that a given
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data set provides an unambiguous estimate of the topology. This may not be an important
restriction, since some convention can be incorporated which breaks ties. Maximum
likelihood estimation in an identifiable model satisfies this condition, as we show below.

Our second assumption is that X;, X,, ..., X, is a random sample from some P € #°.
Then P e R, for some k, and so the topology estimator is inconsistent if the true topology
=1, for j+ k. Compare with the inconsistency results of Felsenstein (1978a). Rates of
evolution may vary between sites, as long as these rates are viewed as random so that the
data at different sites are marginally identically distributed. Independence is a crucial
assumption. The entire DNA sequence is often subsampled to make this assumption more
reasonable.

Felsenstein (1985) describes the implementation of Efron’s (1979) bootstrap in phylogen-
etic inference. The sampling distribution of the estimated topology is approximated by
the empirical distribution of bootstrap estimates. Bootstrap samples are created by sam-
pling n sites with replacement from the observed sites. A topology estimator is applied to
each bootstrap sample, inducing a distribution on the finite set of topologies which esti-
mates the true sampling distribution of that topology estimator.

Although central limit theory is applicable to the empirical distributions P, and Q,, it
does not make sense to discuss n~ *-neighbourhoods of a discrete topology. Thus large
deviation theory is appropriate. With the two regularity assumptions stated above, we
have from Theorem 2 that

1
lim —log pr{%(P,) = 7;} = —Ip(R;),

n—oo N

1
r}inl ; log pr {f(Qn) = ’lePn} = _IP(Rj)9

the second limit being with P-probability one. When the true P is contained in the closure
of R;, Ip(R;)=0 and we have the convergence in probability of the estimated topology
to t; mimicked by the bootstrap. The bootstrap distribution concentrates on whatever
topology is ultimately selected by £. Bootstrapping will not diagnose inconsistency of the
estimator. If P is not contained in the closure of R;, as happens if 7; is an incorrect
topology and £ is consistent, then we observe the size of small probabilities and we see
that the bootstrap matches.

Suppose that £ is consistent and that 7 is the correct tree topology. Theorem 3 implies
that for large enough n,

E[pr{#(Q,) = t| P} |12(P,) =] <pr{i(P,) =1}.
That is, the bootstrap probability assigned to topology T underestimates the true sampling

probability, on average, when the topology is correctly estimated. This bias does not
persist, as both probabilities converge to 1 as n — oo, but may be significant for any fixed n.

4. MAXIMUM LIKELIHOOD AND AN EXAMPLE

One approach to phylogenetic inference is to model the evolutionary process so as to
restrict P to a parametric subset of . Felsenstein (1981, 1983, 1992), Barry & Hartigan
(1987), Golding & Felsenstein (1990) and Navidi, Churchill & von Haeseler (1993), among
others, have constructed parametric models and have advocated maximum likelihood
estimation. Such models are based on branching Markov processes describing the evol-
ution of each site from its ancestral state to its present distribution.
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In parametric models, each topology 7; corresponds to a subset of %% that is the set
of multinomial probability vectors obtained by varying the model parameters within the
jth topology. Maximum likelihood creates a partition {R;, R,, ..., Rx} of &% where

d d
R;2 {pey":sup [ vfr>sup [] vf for all k=l=j}.
VET; =1 VET, [=1

Some convention must be established for boundary conditions, as is done in the
example below.

For illustration, we present a simple model for three taxa and a binary alphabet .o =
{0, 1}. There are three possible tree topologies relating the three taxa A, B, C, which we
denote by

T = ((Aa B)a C)a = ((Aa C)a B)9 T3 = ((Ba C)a A)

In topology 7, for example, taxa 4 and C are more closely related than any other pair.
The phylogeny’s longest branch represents one unit of time, and the more recent divergence
occurred at t, € (0, 1) time units before the present. Sites evolve independently and accord-
ing to the same Markov process. The ancestral type at site i is equivalent to a fair coin
flip. Conditionally upon this value, two independent Markov processes record evolution
along the branches. The transition matrix after ¢ time units is

<1—(1—e"“)/2 (1—e )2 >
(l—e ™2 1—(1—e )

depending on a rate parameter A. Along one branch, depending on the topology, the
process splits at t, units before the present, and proceeds, conditionally independently, to
the present.

By straightforward algebra, we obtain the marginal distribution of the present-day
triples X; =(X; ;, X;,, X; 3). Fourier analysis can be used to solve more complex models
(Evans & Speed, 1993). Although there are 2* possible values of X;, symmetry reduces
the sample space to four states in this case. Any state has the same probability as that
obtained by interchanging labels 0 and 1. We may write the four states as

a,=(0,0,0) or (1,1,1), a,=(0,0,1) or (1, 1, 0),
a3=(0,1,0) or (1,0,1), a,=(1,0,0) or (0, 1, 1).

In general, the different topologies assess different probabilities on these states, allowing
us to identify the most likely one given data. Table 1 shows probabilities of each state
under each topology. State g, is not informative since it has the same probability for all

Table 1. Probabilities conferred on each state
by each topology in the model

State
Topology 6, 0, 03 04
((4,B), C) u v w w
(4, C), B) u w v w
(B, C), A) u w w v

u, (14 2e™2 4 ¢ 2M0)/4; v, (1 — 22~ 2* 4 ¢~ 2M0)/4;
w, (1 —e~2M0)/4,
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three topologies. Figure 2 shows this model as a subset of & when t,, 4 and the topology
are allowed to vary.

A topology 7; is the maximum likelihood estimate if P, is closer to it than to either of
the other two in terms of the distance —Y.¢_, P,(I) log v;, where v = (v;, v,, . . ., ;) varies
within topologies. Introducing a convention for tie-breaking, we obtain the partition

Ri={veF*:v,=v5,v,> W},
R2={Vey4 3>V ,V3>V2},
Ry={veF* v =v,,v4>v3}.

Figure 2(b) shows the boundary between these regions.

In this particularly simple model, the relative entropy function is readily minimised to
obtain an explicit expression for the large deviation approximation. Consider the case
where P € R, and we are interested in the probabilities of incorrectly estimating topologies
7, or 73. Observe that Ip(v) is minimised on the boundary connecting R, to either R, or
R;. In the first case, boundary points v can be represented as v =(a, b, b, 1 — a — 2b) with
(a, b) constrained to the triangle {(a, b):a>0,b>0,a+3b>1, a+2b < 1}. One obtains
by routine calculus:

Ip(Rz)= inf Ip(v)= —log{ys +2(2¥s)* + ¥a},

where P = (Y1, Y5, V3, ¥,). The chance of incorrectly estimating topology ((4, C), B)
when the truth is ((4, B), C) is approximately exp{—nlp(R;)}, and the nonparametric
bootstrap provides at least as good an approximation. Similarly, Ip(R3)=
—log{¥ + 220t + ¥}

Table 2 presents a simple comparison of bootstrap and large deviation approximations
to the probability of correctly estimating topology 7, = ((4, B), C) for different values of

@) (b)

0010

0001 0001

Fig. 2. Geometry of the 3-taxon model. (a) shows the model of Table1 as a
subset of &*. The vertex (1,0, 0, 0) is farthest from view. Each point in the prism
is a probability vector in & Each tree topology defines a planar region. For
example, the topology ((4, B), C)) corresponds to the reglon bounded by the line
connectmg (1,0,0,0) to (0, 1, 0,0). The centroid is c=(, 4,3, z) (b) shows how
a maximum likelihood ‘paper alrplane divides &*into three regions. For example,
if the empirical measure P, lands in the lower left region, then ((4, B), C) becomes
the estimated topology. Points in a region are closer to the contained model
subset than to either of the other two model subsets.
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Table 2. Comparison of approximations to the probability of estimating the true top-

ology t, =((4, B), C). For each column, Monte Carlo estimates are based on 5 x 10°

draws from the joint distribution of sample and bootstrap empiricals. Rows correspond
to different probabilities in this joint distribution

n =100 sites n =200 sites
to=3 to=3 to=3 to=3

A=1 A=2 Ai=1 1=2 A=1 A=2 A=1 Ai=2
Accuracy 0997 0932 0739 0488 1:000 0988 0859 0554
Average bootstrap NP 0968 0826 0630 0442 0997 0932 0739 0489
P 0980 0831 0641 0420 0999 0945 0766 0467

Average bootstrap NP 0970 0863 0760 0684 0997 0939 0813 0701
(given correct) P 0983 0879 0811 0655 0999 0954 0867 0688
Matching NP 0969 0845 0720 0655 0997 0935 0783 0665
P 0982 0863 0776 0629 0999 0951 0844 0656

Large deviation 0977 0584 <0 <0 10000 0913 0233 <0

Empirical LD 0852 0425 0056 <O 0983 0721 0240 <O

‘Accuracy’ denotes the probability that the sample topology estimator is correct.

‘Average boostrap’ indicates the marginal probability that the bootstrap estimator is correct, and ‘given
correct’ the conditional probability that the bootstrap estimator is correct given that the sample esti-
mator is also correct.

‘Matching’ shows the probability that the boostrap and sample estimators coincide.

NP, nonparametric bootstrap; P parametric bootstrap.

‘Large deviation’ approximation is 1 — exp { —nlp(R?)} —exp{—nIp(R3)}.

‘Empirical LD’ gives the average value of the sample large deviation approximation; that is the
conditional expectation of 1—exp{—nlp (R?*)} —exp{—nlp (R*)} given correctness of the sample
estimator.

the parameters. Parameters are chosen so that this sampling probability, sometimes called
‘accuracy’, is high, between about 0-5 and 1. Each tabulated probability is computed by
averaging the indicators of an event in a large simulation (5 x 10° draws) from the joint
distribution of (P,, Q,). Both nonparametric and parametric bootstrapping are considered,
the latter being based on maximum likelihood estimates of the topology, 4, and t,. The
arbitrary tie-breaking convention used to define 7(P,) had an insignificant effect on the
reported probabilities.

For all cases in Table 2, on average over data sets, the bootstrap estimate of accuracy,
pr{%7(Q,) = 71| P,}, underestimates the accuracy. This observation is consistent with (6).
In the five cases having highest accuracy, this underestimation property of the nonpara-
metric bootstrap continues conditionally on correct estimation of t,. The conditional
underestimation occurs to a lesser extent for the parametric bootstrap. Further, the average
parametric bootstrap estimate is closer than the nonparametric bootstrap estimate to the
accuracy, at least when the accuracy is high. An alternative bootstrap estimate of accuracy
is pr{%(Q,) =1(P,)| P,}. On average, this also underestimates high accuracies, and tends
to overestimate low accuracies.

As Theorems 1 and 2 suggest, small probabilities are the realm of large deviation
approximations. Such approximations to the probability of incorrectly estimating the
topology, should therefore be good when the accuracy is high. The results in Table 2
support this. In fact, the approximations are very poor for all but the highest accuracies.
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That the bootstrap approximations are superior highlights the limits of large deviation
theory to uncover the detailed structure of the bootstrap distribution.

There is a geometric explanation for bootstrap underestimation. When the probability
of correctly estimating the topology is relatively high, P, will tend to be closer to the other
topologies, i.e. to RS, than P is. The bootstrap proportion tends to be lower than the
target probability because it is easier for the bootstrap sample to escape R;. Figure 3
illustrates this argument by projecting the three-taxon model of Fig. 2 onto the facing
triangle.

Figure 4 shows an estimate of the sampling distribution of the nonparametric bootstrap
proportion for one case, the second column of numbers in Table 2. To compute this, 2000
samples P, are drawn, and, for each one leading to %(P,)=1,, about 93%, 10000
samples Q, are drawn from the bootstrap distribution, and the bootstrap proportion
pr{%(Q,)=1,|P,} is recorded. Note the significant skewness in this distribution. Although
theoretically and from Table 2 there is a bias, in the mean sense, the median bootstrap
proportion is very close to the true accuracy in this example.

5. Is THERE SOMETHING WRONG WITH THE BOOTSTRAP?

The discreteness of the parameter space in phylogenetic analysis, and the need to associ-
ate measures of uncertainty with inferred tree structures, raise statistical questions that
existing theory does not address. Efron’s bootstrap naturally produces an estimate for the
sampling distribution of any topology estimator, but several studies have suggested a bias.
Zharkikh & Li (1992a, b) establish bias analytically for a particular estimator in a four-
taxon model. Hillis & Bull (1993) make similar observations in a simulation study. Put
simply, if the chance of correctly estimating the phylogeny is high, then, on average over
data sets, the bootstrap proportion estimating this probability is smaller. Felsenstein &

0010

0100 0001

Fig. 3. Bootstrap underestimation: the triangle rep-
resents the projection of ¥* of Fig.2 onto the near
face. Solid contours indicate the true sampling distri-
bution of P,, and hence of the topology estimator.
Dashed contours indicate the bootstrap distribution of
Q, conditional on a particular P,, and are drawn to
illustrate that probability in this distribution leaks out
of region R, into regions leading to false topology
estimates. Of course the contours mask the true dis-
creteness of both distributions.
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Fig. 4. Bootstrap bias: the histogram summarises 1855 draws

for the conditional distribution of a bootstrap proportion,

given correct estimation of the topology, in a case of high
accuracy; see Table 2, second column of numbers.

Kishino (1993) reproduce the same behaviour in a simple model and suggest that the
problem is not inherent to bootstrapping. Results presented here show that this bias is a
general phenomenon, occurring for any number of taxa, for a wide range of topology
estimators, and under mild assumptions on the sampling process. In fact, the results extend
beyond phylogenetic analysis to general discrete parameter inference. This bias is a prop-
erty of the joint distribution of sample and bootstrap empirical distributions, and dimin-
ishes with increasing sample size. Notwithstanding the bias, the conditional distribution
of the bootstrap topology estimator accurately approximates the sampling distribution of
the topology estimator.

Large deviation theory establishes these general statements. The large deviation approxi-
mation itself is often hard to calculate, and appears to be worse than the bootstrap
approximation. We do not advocate the use of large deviations to estimate probabilities.
The method is invoked simply to enable a general comparison of bootstrap and sampling
probabilities.

That the bootstrap underestimates high accuracies, on average, has been interpreted as
a conservative feature. One is tempted to conclude, upon observing a high bootstrap
proportion, that the true accuracy is likely to be higher. This conclusion is unfounded,
however, as the example of Fig. 4 demonstrates. The median bias, outside of our theoretical
analysis, is much smaller than the mean bias in this example. When the true accuracy is
high, it may be that about half the bootstrap proportions are smaller and about half are
larger, even though on average in magnitude they are smaller.

When the number of tree topologies is large compared to the number of sites, it may
be that no single tree yields a high bootstrap proportion. Thus the relevance of compu-
tations involving extreme probabilities is questionable. However, the systematist may be
interested instead in the proportion of bootstrap trees in which a particular subgroup of
taxa is monophyletic, that is to say, forms a branch by itself. Being an agglomeration of
different tree topologies, this set may yield a high bootstrap proportion. Furthermore, the
probability that the topology estimator possesses such a branch is simply the probability
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that the empirical distribution lands in a certain set, and thus all the theory developed
here applies.

Theorem 2 guarantees the quality of the parametric bootstrap in cases where the model
is correctly specified, or more weakly, when the model produces a consistent estimator of
P. Simulation results indicate a smaller bias than for the nonparametric bootstrap. Most
users prefer the nonparametric bootstrap because it relies on fewer assumptions. It is
worth noting, however, that parametric bootstrapping provides a more natural framework
for testing hypotheses about models of evolution.

More work is needed to convert bootstrap sampling distributions into inference sum-
maries such as hypothesis tests and confidence tests. Simply removing the bias may not
be wise. For example, having the bootstrap sample size larger than n would counteract
the underestimation of high probabilities, but may not fairly reflect the uncertainty
involved. See Zharkikh & Li (1995) for a different proposal. On another note, since the
bootstrap is trying to mimic a sampling process, it is unwise to resample only informative
sites from the raw data, as is sometimes advocated.
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APPENDIX
Proofs

The proof of Theorem 2 hinges on the following fundamental result. Following Fllis (1984), let
Z4,7Z,,...be #*-valued random variables, Z, being defined on a probability (Q,, %,, P,). Let {a,}
be a divergent sequence of positive integers, and for t € %%, define extended-real-valued functions

n

1 ~
c,(t) = = log fexp(t, Z,>dP,,
where {.,.) is Euclidean inner product. Up to the constants a,, these functions are the cumulant
generating functions of the Z,. Assume that, for all t € %,
c(t)= lim ¢,(t)
exists, taking c(t) = oo if ¢,(t) = oo for all n> N,. As a further regularity condition, suppose that
c(t) is a closed convex function (Rockafellar, 1970, p. 52) and that the effective domain 2(c) =

{t € #*:c(t) < o} has nonempty interior containing ¢t = 0. The Legendre—Fenchel transform of ¢(t),
also called the conjugate of c(t) or the entropy function, is, for s € #¢,

169 = sup, {<t, s> —el(0)}.
te R
Ellis (1984), extending Gértner (1977), established the following large deviation theorem.

THEOREM 4. For any closed Borel set K = %°,

1 ~
lim sup o log P,(Z,/a, € K)< — inf I(s).
n seK

n— oo
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If c is differentiable on the interior of 9(c) and is steep, see below, then, for any open Borel set G = #°,

1 ~
lim inf —log P,(Z,/a, € G) = — inf I(s).
sEG

n—o 0,

Steepness is a property of the gradient of a convex function near its boundary. If 2(c) = #* and
c is differentiable on all of this domain, then it is steep (Rockafellar, 1970, p. 251).

It is well known that Theorem 1 follows as a special case of Theorem 4. See for example Ellis
(1985, pp. 250-3) or Bucklew (1990, pp. 25-8).

LEMMA 1. Let s and t denote distinct points in the interior of S°. Construct by element-wise
multiplication a third point x = (s x t)*?/c where ¢ = {(s'?, t'? is a normalising constant. Then

D:=1I,(s) — I,(x) — I.(s) > 0.
Proof. Straightforward algebra gives
D = <s,log(s/1)) — <s, log(s/x)) — I(x)
= <s, log(x/t)) — 1,(x)
= (s, log{s*/(ct*)}> — I,(x)
=1I,(s) —log c — I,(x).

By Jensen’s inequality, logc> —3I,(s). A second application of Jensen’s inequality gives
I,(x) <log{(x? 1/t) = —2log c. Combining these three facts yields the result. O

Proof of Theorem 2. Identify Z, of Theorem 4 with the bootstrap empirical measure: Z, = nQ,,.
The sequence of probability spaces (Q,, %, P,) corresponds to bootstrap probability and is deter-
mined by (2). We may have a different sequence P, for each infinite realisation of data. Conditionally
upon the data,

1
en(t) = ;’ log Jexp<ta nQ,» dpP,= 10g<et’ P>.

For each t € #°, by the strong law of large numbers,

lim c,(t) = c;(t) =log<e, P) (A1)

along all data sequences X;, X,, ... except those in a null set N depending, perhaps, on t. Then
(A1) holds simultaneously for all ¢t in a countably dense subset of %2¢, except for data sequences in
a null set. Since ¢,;(¢) is convex, it follows from Theorem 10.8 of Rockafellar (1970) that the limit
holds simultaneously for all t € % except for a null set of data sequences. Off this null set, the limit
of ¢,(t) is as in Theorem 1, establishing the limit for the nonparametric bootstrap. The argument
for the parametric case is identical.

To establish (4), P, now corresponds to the marginal distribution of nQ,. The normalised cumul-
ant generating function is, for ¢t € #¢,

1 1 1
(t) = log E{exp<t,nQ, )} = - log EE(exp<t,nQ, )| P,)} = log E{(e\, P,)",

noting (2). Holder’s inequality ensures that all functions in this sequence are convex. Applying the
integration theorem of Varadhan (1966), see also Ellis (1985, p. 51) or Dembo & Zeitouni (1993,
p- 120), we have

lim ¢,(t) = su;)d {log<e', v) — Ip(v)} =:cy(1). (A2)

n— oo

Being the pointwise limit of convex functions, ¢, is also convex. Noting that log{¢, v} is itself the
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conjugate of the relative entropy I,, we have
es(t)= sup. sup {<s, 0> —1,(5) — Ip(} = sup, {<s, £> — Jp(s)},
vESL? seF SES

with Jp as defined in (5). Thus ¢,(t) is the conjugate of the entropy function Jp(s). Strict convexity
of I,(s) translates into strict convexity of Jp(s) for se %% and therefore, by Theorem 26.3 of
Rockafellar (1970), c,(t) is differentiable on 2%“. The conditions of Theorem 4 are thus satisfied,
implying that, in the limit, n~! log pr(Q, € R) exists and equals the infimum over R of the marginal
entropy function (5).

It remains to verify that for any continuity set R, not containing P in its closure,

Jp(R)i= inf Jp(v) < inf Ip(v)=:Ip(R). (A3)

To establish this, note that
Tr(s) = inf {1,(s) + Ip()} < L(9) + Lp(x),
vE
where x = (s x P)¥/c. If s is in the interior of & and s + P, then by Lemma 1 with t = P, Jp(s) < Ip(s).
If s = P, then both entropy functions equal zero. The last case has s on the boundary of ¥, where

at least one entry equals zero. That Jp(s) < Ip(s) can then be established by an argument similar
to the one above, but using a different choice for x. Details are omitted. O

Proof of Theorem 3. Applying Theorems 1 and 2 to the complement of R, given g¢=
Ip(R®) — Jp(R) > 0, there exists an N such that, for all n > N,

|n~tlog pr(P, € R°) + Ip(R)| <¢&/2, |n~logpr(Q, e R%)+ Jp(R°)| <e/2.

For such n, therefore,
1 1
P log pr(Q, € R°) > . log pr(P, € R°)

proving inequality (6).
For (7), it is equivalent to prove that, for sufficiently large n,

1 1
p log E{pr(Q, € R°|P,)| P, e R} > . log pr(P, € R°). (A4)
By Theorem 1, the right-hand side tends to —Ip(R¢). The left-hand side is

1 1
—~log pr(P, € R) + log f Pr(Q, & R°IP,=Y) du, ()
R

where p, is given by (1). The first term above tends to 0 since P is in the interior of R. The second
term is amenable to Varadhan’s (1966) integration theorem. The mode of the integrand dominates,
and we obtain

lim l10g j pr(Qn & R*| P, =v) dpi,(v) = sup { —L,(R) — I (")} = — inf {L,(R") + I (")}-

n-oo N

Thus (A4) and thus (7) follow if we can establish
inf {L,(RY) + [0} < Ip(R) (A5)
or equivalently, if we can identify a point x € R for which
I.(R°) + Ip(x) < Ip(R°). (A6)
Let s in the closure of R denote a point where P projects onto R°, that is, such that
Ip(s)= vierl£° Ip(v).
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If s has no zero elements, define x = (s x P)*/c, where ¢ normalises x to sum to one. It follows, on
representing I,(v) = {Ip(v) + I,(v)}/2 + log ¢, that x also projects onto R° at s. Therefore, I (R¢) =
I,(s) and Ip(R°) = Ip(s). Inequality (A6), and thus the main result (7), follow by applying Lemma 1
with ¢ = P. If s has zero elements, then a more careful choice of x is required, but the same argument
works. O
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