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Abstract

Vector autoregressive models characterize a variety of time series in which linear combinations of current and
past observations can be used to accurately predict future observations. For instance, each element of an observa-
tion vector could correspond to a different node in a network, and the parameters of an autoregressive model would
correspond to the impact of the network structure on the time series evolution. Often these models are used success-
fully in practice to learn the structure of social, epidemiological, financial, or biological neural networks. However,
little is known about statistical guarantees on estimates of such models in non-Gaussian settings. This paper ad-
dresses the inference of the autoregressive parameters and associated network structure within a generalized linear
model framework that includes Poisson and Bernoulli autoregressive processes. At the heart of this analysis is a
sparsity-regularized maximum likelihood estimator. While sparsity-regularization is well-studied in the statistics and
machine learning communities, those analysis methods cannot be applied to autoregressive generalized linear models
because of the correlations and potential heteroscedasticity inherent in the observations. Sample complexity bounds
are derived using a combination of martingale concentration inequalities and modern empirical process techniques
for dependent random variables. These bounds, which are supported by several simulation studies, characterize the
impact of various network parameters on estimator performance.

1 Autoregressive Processes in High Dimensions
Imagine recording the times at which each neuron in a biological neural network fires or “spikes”. Neuron spikes can
trigger or inhibit spikes in neighboring neurons, and understanding excitation and inhibition among neurons provides
key insight into the structure and operation of the underlying neural network [1, 2, 3, 4, 5, 6, 7]. A central question
in the design of this experiment is “for how long must I collect data before I can be confident that my inference of
the network is accurate?” Clearly the answer to this question will depend not only on the number of neurons being
recorded, but also on what we may assume a priori about the network. Unfortunately, existing statistical and machine
learning theory give little insight into this problem.

Neural spike recordings are just one example of a non-Gaussian, high-dimensional autoregressive processes, where
the autoregressive parameters correspond to the structure of the underlying network. This paper examines a broad class
of such processes, in which each observation vector is modeled using an exponential family distribution. In general,
autoregressive models are a widely-used mechanism for studying time series in which each observation depends on
the past sequence of observations. Inferring these dependencies is a key challenge in many settings, including finance,
neuroscience, epidemiology, and sociology. A precise understanding of these dependencies facilitates more accurate
predictions and interpretable models of the forces that determine the distribution of each new observation.
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Much of the autoregressive modeling literature focuses on Gaussian noise and perturbation models, but in many
settings Gaussian noise fails to capture the data at hand. This challenge arises, for instance, when observations corre-
spond to count data – e.g., when we collect data by counting individual events such as neurons spiking. Another exam-
ple arises in epidemiology, where a common model involves infection traveling stochastically from one node in a net-
work to another based on the underlying network structure in a process known as an “epidemic cascade” [8, 9, 10, 11].
These models are used to infer network structure based on the observations of infection time, which is closely related
to the Bernoulli autoregressive model studied in this paper. Further examples arise in a variety of applications, includ-
ing vehicular traffic analysis [12, 13], finance [14, 15, 16, 17], social network analysis [18, 19, 20, 21, 22], biological
neural networks [1, 2, 3, 4, 5, 6, 7], power systems analysis [23], and seismology [24, 25].

Because of their prevalence across application domains, time series count data (cf. [26, 27, 28, 29, 30]) and other
non-Gaussian autoregressive processes (cf. [31, 32, 33]) have been studied for decades. Although a substantial fraction
of the this literature is focused on univariate time series, this paper focuses on multivariate settings, particularly where
the vector observed at each time is high-dimensional relative to the duration of the time series. In the above examples,
the dimension of the each observation vector would be the number of neurons in a neural network, the number of
people in a social network, or the number of interacting financial instruments.

In this paper, we conduct a detailed investigation of a particular family of time series that we call the vector gener-
alized linear autoregressive (GLAR) model. In addition, we examine our results for two members of this family: the
Bernoulli autoregressive and the log-linear Poisson autoregressive (PAR) model. The PAR model has been explicitly
studied in [34, 35, 36] and is closely related to the continuous-time Hawkes point process model [37, 38, 39, 40, 41]
and the discrete-time INGARCH model [42, 43, 44, 45]. However, that literature does not contain the sample com-
plexity results presented here. The INGARCH literature is focused on low-dimensional settings, typically univariate,
whereas we are focused on the high-dimensional setting where the number of nodes or channels is high relative to
the number of observations. Additionally, existing sample complexity bounds for Hawkes processes [40] focus on a
linear (as opposed to log-linear) model with samples collected after reaching the stationary distribution. The log-linear
model is largely used in practice both for numerical reasons and modeling efficacy for real world data. We note that
linear models can predict inadmissible negative event rates, whereas the log-linear model enforces the feasibility of the
predicted model. The log-linear and linear models exhibit very different behaviors in their properties and stationary
distributions, making this work a significant step forward from the analysis of linear models. The extension of these
prior investigations to the high-dimensional, non-stationary setting is non-trivial and requires the development of new
theory and methods.

This paper focuses on estimating the parameters of a vector GLAR model from a time series of observations. We
adopt a regularized likelihood estimation approach that extends and generalizes our previous work on Poisson inverse
problems (cf. [46, 47, 48, 49]). While similar algorithms have been proposed in the above-mentioned literature, little
is known about their sample complexity or how inference accuracy scales with the key parameters such as the size of
the network or number of entities observed, the time spent collecting observations, and the density of edges within the
network or dependencies among entities.

There has been a large body of work providing theoretical results for certain high-dimensional models under low-
dimensional structural constraints (see e.g., [50, 49, 51, 52, 53, 54, 55, 56, 41]). The majority of prior work has focused
on the setting where samples are independent and/or follow a Gaussian distribution. In the GLAR setting, however,
non-Gaussianity and temporal dependence among observations can make such analyses particularly challenging and
beyond the scope of much current research in high-dimensional statistical inference (see [57] for an overview).

Perhaps the most closely related prior work to our setting in the high-dimensional setting is [58]. In [58],
several performance guarantees are provided for different linear Gaussian problems with dependent samples including
the Gaussian autoregressive model. Since [58] deals exclusively with linear Gaussian models, they exploit many
properties of linear systems and Gaussian random variables that cannot be applied to non-Gaussian and non-linear
autoregressive models. In particular, compared to standard autoregressive processes with Gaussian noise, in the GLAR
setting the conditional variance of each observation is dependent on previous data instead of being a constant equal to
the noise variance. Works such as [49, 50, 59] provide results for non-Gaussian models but still rely on independent
observations. Weighted LASSO estimators for Hawkes processes address some of these challenges in a continuous-
time setting [40].

To see why GLAR analysis can be challenging, consider momentarily a LASSO estimator of the autoregressive
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parameters. In the classical LASSO setting, the accuracy of the estimate depends on characteristics of the Gram matrix
associated with the design or sensing matrix. This matrix may be stochastic, but it is usually considered independent of
the observations and performance guarantees for the estimator depend on the assumption that the matrix obeys certain
properties (e.g., the restricted eigenvalue condition [60]). In our setting, however, the “design” matrix is a function of
the observed data, which in turn depends on the true underlying network or autoregressive model parameters. Thus
a key challenge in the analysis of a LASSO-like estimator in the GLAR setting involves showing that the data- and
network-dependent Gram matrix exhibits properties that ensure reliable estimates.

In this paper, we develop performance guarantees for the vector GLAR model that provide sample complexity
guarantees in the high-dimensional setting under low-dimensional structural assumptions such as sparsity of the un-
derlying autoregressive parameters. In particular, our main contributions are the following:

• Formulation of a maximum penalized likelihood estimator for vector GLAR models in high-dimensional settings
with sparse structure.

• Mean-squared-error bounds on the proposed estimator as a function of the problem dimension, sparsity, and the
number of observations in time for general GLAR models.

• Application of our general result to obtain sample complexity bounds for Bernoulli and Poisson GLAR models.

• Analysis techniques that simultaneously leverage martingale concentration inequalities, empirical risk mini-
mization analysis, and covering arguments for high-dimensional linear regression.

This problem is substantially harder than the Gaussian case from a technical perspective because we can not exploit
linearity and spectral properties of linear Gaussian time-series. In our case we have signal-dependent noise, and we
can not exploit the same spectral properties. Additionally, with non-Gaussian noise, we are not guaranteed strong
convexity of the objective function in the entire domain of possible solutions, and so extra care must be taken to define
regions of strong convexity. Thus we have to develop new theoretical techniques, using new concentration bounds
and a more refined analysis. The remainder of the paper is structured as follows: Section 2 introduces the generalized
linear autoregressive model and Section 3 presents the novel risk bounds associated with the RMLE of the process.
We then use our theory to examine two special cases (the Poisson and Bernoulli models) in Sections 3.1 and 3.2,
respectively. The main proofs are provided in Section 4, while supplementary lemmas are deferred to the appendix.
Finally, Section 5 contains a discussion of our results, their implications in different settings, and potential avenues for
future work.

2 Problem Formulation
In this paper we consider the generalized linear autoregressive model:

Xt+1,m|Xt ∼ p(νm + a∗>m Xt), (1)

whereXt+1,m is themth observation ofXt+1, (Xt)
∞
t=0 areM -variate vectors and a∗ ∈ [amin, amax]M is an unknown

parameter vector, ν ∈ [νmin, νmax]M is a known, constant offset parameter, and p is an exponential family probability
distribution. Specifically, X ∼ p(θ) means that the distribution of the scalar X is associated with the density p(x|θ) =
h(x) exp[φ(x)θ − Z(θ)], where Z(θ) is the so-called log partition function, φ(x) is the sufficient statistic of the
data, and h(x) is the base measure of the distribution. Distributions that fit such assumptions include the Poisson,
Bernoulli, binomial, negative binomial and exponential. According to this model, conditioned on the previous data,
the elements of Xt are independent of one another and each have a scalar natural parameter. The input of the function
p in (1) is the natural parameter for the distribution, i.e., ν + a∗>m Xt is the natural parameter of the conditional
distribution at time t + 1 for observation m. A similar, but low-dimensional, model appears in [36], but that work
focuses on maximum likelihood and weighted least squares estimators in univariate settings that are known to perform
poorly in high-dimensional settings (as is our focus). For these distributions it is straightforward to show when they
have strongly convex log-partition functions, which will be crucial to our analysis. Note that this distribution has
E[φ(Xt+1,m)|Xt] = Z ′(ν + a∗>m Xt) and Var(φ(Xt+1,m)|Xt) = Z ′′(ν + a∗>m Xt), the first and second derivatives

3



of the log-partition function, respectively. Compared to standard autoregressive processes with Gaussian noise, the
conditional variance is now dependent on previous data instead of being a constant equal to the noise variance.

We can state the conditional distribution explicitly as:

P(Xt+1|Xt) =

M∏
m=1

h(Xt+1,m) exp
(
φ(Xt+1,m)(νm + a∗>m Xt)− Z(νm + a∗>m Xt)

)
,

where h is the base-measure of the distribution p. Using this equation and observations, we can find an estimate for
the network A∗ which is constructed row-wise by a∗m. (i.e. a∗>m is the mth row of A∗).

In general, we observe T samples (Xt)
T
t=0 and our goal is to infer the matrix A∗. In the setting where M is large,

we need to impose structural assumptions on A∗ in order to have strong performance guarantees. Let

S := {(`,m) ∈ {1, . . . ,M}2 : A∗`,m 6= 0}.

In this paper we assume that the matrix A∗ is s-sparse, meaning that A∗ belongs to the following class:

As =
{
A ∈ [amin, amax]M×M | ‖A‖0 ≤ s

}
.

where ‖A‖0 :=
∑M
`=1

∑M
m=1 1(|A`,m| 6= 0) and 1(·) is the indicator function. That is, we assume |S| = s. Further-

more, we define
ρm , ‖a∗m‖0 and ρ , max

m
ρm,

so ρ is the maximum number of non-zero elements in a row of A∗.
We might like to estimate A∗ via a constrained maximum likelihood estimator by solving the following optimiza-

tion problem:

arg min
A∈As

1

T

T−1∑
t=0

M∑
m=1

(
Z(νm + a>mXt)− a>mXtφ(Xt+1,m)

)
(2)

or its Lagrangian form

arg min
A∈[amin,amax]M×M

1

T

T−1∑
t=0

M∑
m=1

(
Z(νm + a>mXt)− a>mXtφ(Xt+1,m)

)
+ λ‖A‖0. (3)

However, these are difficult optimization problems due to the non-convexity of the `0 norm. Therefore, we instead find
an estimator using the element-wise `1 regularizer, the convex relaxation of the `0 function, along with the negative
log-likelihood to create the following estimator:

Â = arg min
A∈[amin,amax]M×M

1

T

T−1∑
t=0

M∑
m=1

(
Z(νm + a>mXt)− a>mXtφ(Xt+1,m)

)
+ λ‖A‖1,1, (4)

where ‖ · ‖1 is the `1 norm and ‖A‖1,1 =
∑M
m=1 ‖am‖1. The above is the regularized maximum likelihood estimator

(RMLE) for the problem, which attempts to find an estimate of A∗ which both fits the empirical distribution of the
data while also having many zero-valued elements. Notice that we assume the elements of A∗ are bounded and we use
these bounds in the estimator definition. One reason for this is that bounds on the elements of A∗ can enforce stability.
If the elements of A∗ are allowed to be arbitrarily large, the system may become unstable and therefore impossible to
make proper estimates. Knowing loose bounds facilitates our analysis but in practice does not appear to be necessary.
In the experiment section we discuss choosing these bounds in the estimation process.

We note that while we assume that ν is a known constant vector, if we assume there is some unknown constant
offset that we would like to estimate, we can fold it into the estimation of A. For instance, consider appending ν as an
extra column of the matrix A∗, and appending a 1 to the end of each observation Xt. Then for indices 1, . . . ,M the
observation model becomes Xt+1,m|Xt ∼ p(a∗>m Xt) where a∗m and Xt are the appended versions. We can then find
the RMLE of this distribution to find both Â and ν̂, but for clarity of exposition we assume a known ν.
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Estimating the network parameters in the autoregressive setting with Gaussian observations can be formulated as
a sparse inverse problem with connections to the well-known LASSO estimator. Consider the problem of estimating
the a∗m. Define

ym =


X2,m

X3,m

...
XT,m

 and X =


X1,1 X1,2 · · · X1,M

X2,1 X2,2 · · · X2,M

...
...

. . .
...

XT−1,1 XT−1,2 · · · XT−1,M

 ,
where ym is the time series of observed counts associated with the mth node and X is a matrix of the observed counts
associated with all nodes. Then ym = Xa∗m + εm, where εm := ym − Xa∗m is noise, and we could consider the
LASSO estimator for each m:

âm = arg min
a

‖ym −Xa‖22 + λ‖a‖1.

However, there are two key challenges associated with the LASSO estimator in this context: (a) the squared residual
term does not account for the non-Gaussian statistics of the observations and (b) the “design matrix” is data-dependent
and hence a function of the unknown underlying network. In classical LASSO analyses, performance bounds depend
on the design matrix satisfying the restricted eigenvalue condition or restricted isometry property or some related
condition; it is relatively straightforward to ensure such a condition is satisfied when the design matrix is independent
of the data, but much more challenging in the current context. As a result, despite the fact that we face a sparse inverse
problem, the existing LASSO literature does not address the subject of this proposal.

3 Main Results
In this section, we turn our attention to deriving bounds for ‖Â−A∗‖2F , the difference in Frobenius norm between the
regularized maximum likelihood estimator, Â, and the true generating network, A∗, under the assumption that the true
network is sparse. We assume that A∗ ∈ As. Recall ρ , max

m
‖a∗m‖0 is the maximum number of non-zero elements

in a row of A∗. First we state assumptions on the GLAR process which are sufficient conditions to ensure the RMLE
admits small errors.

Asumption 1. We assume that for any realization of the process defined by Equation 1 there exists a subset of
observations {XTt}

|T |
t=1 for T ⊆ {0, 1, . . . , T − 1} that satisfies the conditions:

1. There exists a constant U such that U ≥ maxt∈T ‖Xt‖∞ where U is independent of T .

2. Z(·) is σ-strongly convex on a domain determined by U :

Z(x) ≥ Z(y) + Z ′(y)(x− y) +
σ

2
‖x− y‖22

for all x, y ∈ [−ν̃ − 9ρãU, ν̃ + 9ρãU ] where ν̃ , max(|νmin|, |νmax|), and ã , max(|amin|, |amax|), where σ
is independent of T .

3. The smallest eigenvalue of Γt , E[XTtX
>
Tt |XTt−1 ] is lower bounded by ω > 0, which is independent of T .

We define the constant ξ as a constant such that ξ ≤, |T |/T , which will be determined in part by the constant U , and
can be set such that ξ is very close to 1.

For ξ ≈ 1, Assumption 1 means most of the observed data is bounded independent of T . The assumption allows
us to analyze time series in which the maximum of a series of iid random variables can grow with T , but any percentile
is bounded by a constant. Our analysis will then be conducted on the bounded series {XTt}

|T |
t=1. The assumptions are

proven to be true with high probability for the Bernoulli and Poisson cases in Sections 3.1 and 3.2, respectively, and
the corresponding values of U , σ, ξ, and ω are computed explicitly.
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Theorem 1. Assume λ ≥ max1≤m≤M
2
T

∥∥∥∑T−1
t=0

(
φ(Xt+1,m)− E[φ(Xt+1,m)|Xt]

)
Xt

∥∥∥
∞

, and let Â be the RMLE

for a process which obeys the conditions of Assumption 1. For any row of the estimator and for any δ ∈ (0, 1), with
probability at least 1− δ,

‖âm − a∗m‖22 ≤
144

ξ2σ2ω2
ρmλ

2

for T ≥ cρ2m
ω2

(
ρm log(2M)

ω2 + log(1/δ)
)

where c is independent of M,T, ρ and s. Furthermore,

‖Â−A∗‖2F ≤
144

ξ2σ2ω2
sλ2

with probability greater than 1− δ for T ≥ cρ2

ω2

((
ρ
ω2 + 1

)
log(2M) + log(1/δ)

)
.

To apply Theorem 1 to specific GLAR models, we need to provide bounds on λ, as well as σ, ω,U and ξ for
Assumption 1. We do this in the next section for Bernoulli and Poisson GLAR models.

We can compare the results of Theorem 1 to the related results of [58]. In that work they arrive at rates for the
Gaussian autoregressive process that are equivalent with respect to the sparsity parameter, number of observations and
regularization parameter. However, we incur slightly different dependencies on ξ, σ and ω. These are due mainly to the
fact that our bounds hold for a wide family of distributions and not just the Gaussian case, which has nice properties
related to restricted strong convexity and specialized concentration inequalities. Additionally, the way λ is defined
is very similar, but bounding λ for a non-Gaussian distribution will result in extra log factors. It is an open question
whether this bound is rate optimal in the general setting.

3.1 Example 1: Bernoulli Distribution
For the Bernoulli distribution we have the following autoregressive model:

Xt+1,m|Xt ∼ Bernoulli

(
1

1 + exp(−ν − a∗>m Xt)

)
. (5)

The first observation about this model is that the sufficient statistic φ(x) = x and the log-partition function Z(θ) =
log(1 + exp(θ)), which is strongly convex when the absolute value of θ is bounded. One advantage of this model is
that the observations are inherently bounded due to the nature of the Bernoulli distribution, so T = [0, 1, . . . , T − 1]
and ξ = 1. Using this observation we derive the strong convexity parameter of Z on the bounded range, thus σ =
(3 + exp(ν̃ + 9ρã))−1.

To derive rates from Theorem 1, we must prove that Assumption 1 holds; this is shown with high-probability by
Theorem 2.

Theorem 2. For a sequence Xt generated from the Bernoulli autoregressive process with the matrix A∗ with and the
vector ν, we have the following properties:

1. The smallest eigenvalue of the matrix Γt = E[XtX
>
t |Xt−1] is lower bounded by ω = (3 + exp(ν̃ + ρã))−1.

2. Assuming 1 ≤ t ≤ T and that T ≥ 2 and log(MT ) ≥ 1, then

max
1≤i,j≤M

1

T

∣∣∣∣∣
T−1∑
t=0

Xt−1,i(Xt,j − E[Xt,j |Xt−1])

∣∣∣∣∣ ≤ 3 log(MT )√
T

with probability at least at least 1− 1
MT .

Using these results we get the final sample error bounds for the Bernoulli autoregressive process.
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Corollary 1. The RMLE for the Bernoulli autoregressive process defined by Equation 5, and setting λ = 6 log(MT )√
T

has error bounded by

‖A∗ − Â‖2F ≤ C
(
3 + eν̃+9ρã

)4 s log2(MT )

ξ2T

with probability at least 1−δ for T ≥ max
(

2
δM , cρ

2

ω2

((
1 + ρ

ω2

)
log(2M) + log(2/δ)

))
for constants C, c > 0 which

are independent of M,T, s and ρ.

The lower bound on the number of observations T comes from needing to satisfy the conditions of both parts of
Theorems 1 and 2. In order to get this statement we use a union bound over the high probability statements of Theorem
1 described in (9) and Theorem 2 which holds with probability greater than 1− 1

MT .

3.2 Example 2: Poisson Distribution
In this section, we derive the relevant values to get error bounds for the vector autoregressive Poisson distribution.
Under this model we have

Xt+1,m|Xt ∼ Poiss(exp(ν + a∗>m Xt)).

We assume that amax = 0 for stability purposes, thus we are only modeling inhibitory relationships in the network.
Deriving the sufficient statistic and log-partition function yields φ(x) = x and Z(θ) = exp(θ). The next important
values are the bounds on the magnitude of the observations, which will both ensure the strong convexity of Z and the
stability of the process.

Lemma 1. For the Poisson autoregressive process generated with A∗ ∈ [amin, 0]M×M and constant vector ν ∈
[νmin, νmax]:

1. If logMT ≥ 1, there exists constants C and c which depend on the value νmax, but are independent of T,M, s
and ρ such that 0 ≤ Xt,m ≤ C log(MT ) with probability at least 1 − e−c log(MT ) for all 1 ≤ t ≤ T and
1 ≤ m ≤M .

2. For any α ∈ (0, 1) such that αMT is an integer, there exist constants U and c which depend on the values of
νmax and α, but independent of T,M, s and ρ, such that with probability at least 1 − e−cMT , 0 ≤ Xt,m ≤ U
for at least αMT of the indices. We define T to be these αMT indices.

As a consequence of Lemma 1, we have ‖Xt‖∞ ≤ U for at least ξT values of t ∈ {1, 2, . . . , T} where ξ =
1− (1− α)M . We additionally assume that U is large enough such that α > M−1

M and therefore ξ ∈ (0, 1).
Using this Lemma,we prove that Assumption 1 holds with high-probability, by deriving the strong convexity

parameter of Z and a lower bound on the smallest eigenvalue of Γt. In the Poisson case, Z(·) = exp(·) and therefore
the strong convexity parameter, σ = exp(−ν̃ + 9ρaminU).

Theorem 3. For a sequence Xt generated from the Poisson autoregressive process with the matrix A∗, with all non-
positive elements, and the vector ν, we have the following properties

1. The smallest eigenvalue of the matrix Γt = E[XTtX
>
Tt |XTt−1

], for consecutive indices Tt and Tt−1 in T as
defined in Assumption 1, is lower bounded by 4ξ

5 exp(νmin + ρaminU).

2. Assuming Xt,m ≤ C log(MT ) for all 1 ≤ m ≤M and 1 ≤ t ≤ T and that T ≥ 2 and log(MT ) ≥ 1, then

max
1≤i,j≤M

1

T

∣∣∣∣∣
T−1∑
t=0

Xt−1,i(Xt,j − E[Xt,j |Xt−1])

∣∣∣∣∣ ≤ 4C2eνmax
log3(MT )√

T

with probability at least at least 1− exp(−c log(MT )) for some c > 0 independent of ρ, s,M and T .

Using Theorem 3, we can find the error bounds for the PAR process by using the result of Theorem 1.
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Figure 1: The top row of plots shows the MSE behavior over a range of T values, from 100 to 400 all less than or
equal to M2 = 400 , where (a) is the MSE and (b) is the MSE multiplied by T to show that the MSE is behaving as
1/T . The bottom row shows the MSE behavior over a range of s values, where (c) shows MSE and (d) shows MSE
divided by s to show that the MSE is linear is s. In all plots the median value of 100 trials is shown, with error bars
denoting the middle 50 percentile.

Corollary 2. Using the results of Theorem 1 and using the Poisson autoregressive model withA∗ with all non-positive
values, the RMLE admits the overall error rate of

‖Â−A∗‖2F ≤ C exp(20|amin|Uρ)
s log6(MT )

ξ3T

with probability at least 1 − δ for T ≥ max
((

4
δM

)c
, cρ

2

ω2

((
ρ
ω2 + 1

)
log(2M) + log(4/δ)

))
for constants C, c > 0

which are independent of M,T, s and ρ

Again, the lower bound on the number of observations comes from combining the high probability statements of
each of the constituent parts of the corollary in the same way as was done in the Bernoulli case. In this case all of
Theorem 1, both parts of Lemma 1 and Theorem 3 need to hold.

3.3 Experimental Results
We validate our theoretical results with experimental results performed on synthetically generated data using the
Poisson autoregressive process. We generate many trials of synthetic data with known underlying parameters and
then compare the estimated values. For all trials the constant offset vector ν is set identically at 0, and the 20 × 20
matrices A∗ are set such that s randomly assigned values are in the range [−1, 0] and with constant ρ = 5. Data
is then generated according the process described in Equation 1 with the Poisson distribution. X0 is chosen as a 20
dimensional vector drawn randomly from Poisson(1), then T observations are used to perform the estimation. The
parameters s and T are then varied over a wide range of values. For each (s, T ) pair 100 trials are performed, the

8



(a) Ground Truth A∗ Matrix (b) Estimate for T = 100

(c) Estimate for T = 316 (d) Estimate for T = 1000

Figure 2: These images show the ground truth A∗ matrix (a) and 3 different estimates of the matrix created using
increasing amounts of data. We observe that even for a relatively low amount of data we have picked out most of
the support but with several spurious artifacts. As the amount of data increases, fewer of the erroneous elements are
estimated. All images are scaled from 0 (dark) to -1 (bright).

regularized maximum likelihood estimate Â is calculated with λ = 0.1/
√
T and the MSE is recorded. The MSE

curves are shown in Figure 1. Notice that the true values of A∗ are bounded by -1 and 0, but in our implementation we
do not enforce these bounds (we set amin = −∞ and amax =∞ in Equation 4). While amin = −∞ would cause the
theoretical bounds to be poor, the theory can be applied with the smallest and largest elements of the matrix estimated
from the unconstrained optimization. In other words, the theory depends on having an upper and lower bound on the
rates, but mostly as a theoretical convenience, while the estimator can be computed in an unconstrained way.

We show a series of plots which compare the MSE versus increasing behavior of T and s, as well as comparing
the behavior of MSE·T and of MSE/s. Plotted in each figure is the median of 100 trials for each (s, T ) pair, with
error bars denoting the middle 50 percentile. These plots show that setting λ proportional to T−1 gives us the desired
T−1 error decay rate. Additionally, we see that the error increases approximately linearly in the sparsity level s, as
predicted by the theory. Finally, Figure 2 shows one specific example process and the estimates produced. The first
image is the ground truth matrix, generated to be block diagonal, in order to more easily visualize support structure
whereas in the first experiment the support is chosen at random. One set of data is generated using this matrix, and then
estimates are constructed using the first T = 100, 316 and 1000 data points. The figure shows how with more data,
the estimates become closer to the original, where much of the error comes from including elements off the support of
the true matrix.

One important characteristic of the our results is that it does not depend on any assumptions about the stationarity or
the mixing time of the process. To show that this is truly a property of the system and not just our proof technique, we
repeat the experimental process described above, but for each set of observations of length T , we first generate 10,000
observations to allow the process to mix. In other words, for every matrix A we generate T + 10, 000 observations,
but only use the last T to find the RMLE. The plots in figure 3 show the results of this experiment. The important
observation is that the results both scale the same way, and have approximately the same magnitude as the experiment
when no mixing was done.

9
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Figure 3: Repeat of experimental set up from Figure 1, but now allowing for mixing. The top row of plots shows the
MSE behavior over a widely varying range of T values, from 100 to 400, where (a) is the MSE and (b) is the MSE
multiplied by T to show that the MSE is behaving as 1/T . The bottom row shows the MSE behavior over a range of
s values, where (c) shows MSE and (d) shows MSE divided by s to show that the MSE is linear is s. In all plots the
median value of 100 trials is shown, with error bars denoting the middle 50 percentile. Most importantly, the behavior
and magnitude of errors in this plot matches the results with no mixing.

4 Proofs

4.1 Proof of Theorem 1
Proof. We start the proof by making an important observation about the estimator defined in Equation 4: this loss
function can be completely decoupled by a sum of functions on rows. Therefore we can bound the error of a single
row of the RMLE and add the errors to get the final bound. For each row we use a standard method in empirical risk
minimization and the definition of the minimizer of the regularized likelihood for each row:

1

T

T−1∑
t=0

Z(νm + â>mXt)− â>mXtφ(Xt+1,m) + λ‖âm‖1

≤ 1

T

T−1∑
t=0

Z(νm + a∗>m Xt) + a∗>m Xtφ(Xt+1,m) + λ‖a∗m‖1.

We define εt,m , φ(Xt+1,m) − E[φ(Xt+1,m)|Xt], which is conditionally zero mean random variable. By us-
ing a moment generating function argument, we know that E[φ(Xt+1,m)|Xt] = Z ′(νm + a∗>m Xt), and therefore
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φ(Xt+1,m) = Z ′(νm + a∗>m Xt) + εt,m. Hence

1

T

T−1∑
t=0

Z(νm + â>mXt)− â>mXt(Z
′(νm + a∗>m Xt) + εt,m) + λ‖âm‖1

≤ 1

T

T−1∑
t=0

Z(νm + a∗>m Xt)− a∗>m Xt(Z
′(νm + a∗>m Xt) + εt,m) + λ‖a∗m‖1.

Now we use the definition of a Bregman divergence to lower bound the left hand side. An important property of
Bregman divergences is that if they are induced by a strongly convex function, then the Bregman can be lower bounded
by a scaled `2 difference of its arguments. This is where our squared error term will come.

1

T

T−1∑
t=0

(
Z(νm + â>mXt)− Z(νm + a∗>m Xt)− Z ′(νm + a∗>m Xt)(â

>
mXt − a∗>m Xt)

)
≤

∣∣∣∣∣ 1

T

T−1∑
t=0

εt,m∆>mXt

∣∣∣∣∣+ λ(‖a∗m‖1 − ‖âm‖1),

where ∆m = âm − a∗m. Let BZ(·‖·) denote the Bregman divergence induced by Z. Hence

1

T

T−1∑
t=0

BZ(νm + â>mXt‖νm + a∗>m Xt) ≤

∣∣∣∣∣ 1

T

T−1∑
t=0

εt,m∆>mXt

∣∣∣∣∣+ λ(‖a∗m‖1 − ‖âm‖1).

First we upper bound the right-hand side of the inequality as follows:

1

T

T−1∑
t=0

BZ(νm + â>mXt‖νm + a∗>m Xt) ≤

∣∣∣∣∣ 1

T

T−1∑
t=0

εt,m∆>mXt

∣∣∣∣∣+ λ(‖a∗m‖1 − ‖âm‖1)

=

∣∣∣∣∣ 1

T

T−1∑
t=0

εt,m∆>mXt

∣∣∣∣∣+ λ(‖a∗m,S‖1 − ‖âm,S‖1 − ‖âm,Sc‖1)

≤

∣∣∣∣∣ 1

T

T−1∑
t=0

εt,m∆>mXt

∣∣∣∣∣+ λ‖∆m,S‖1 − λ‖∆m,Sc‖1

≤ ‖∆m‖1

∥∥∥∥∥ 1

T

T−1∑
t=0

Xtεt,m

∥∥∥∥∥
∞

+ λ‖∆m,S‖1 − λ‖∆m,Sc‖1.

In the above, we use the defintion of S as the true support of A∗ and have used the decomposability of ‖ · ‖1. The
decomposability of the norm means that we have the property

‖x‖1 = ‖xS‖1 + ‖xSC‖1.

Note that
∥∥∥ 1
T

∑T−1
t=0 Xtεt,m

∥∥∥
∞

≤ max1≤m≤M

∥∥∥ 1
T

∑T−1
t=0 Xtεt,m

∥∥∥
∞

. Under the assumption that

max1≤m≤M

∥∥∥ 1
T

∑T−1
t=0 Xtεt,m

∥∥∥
∞
≤ λ/2 and by the non-negativity of the Bregman divergence on the left hand

side of the inequality, we have that

0 ≤ λ

2
‖∆m‖1 + λ‖∆m,S‖1 − λ‖∆m,Sc‖1.

Using the decomposability of the `1 norm, this inequality implies that for all rows 1 ≤ m ≤ M , we have that
‖∆m,Sc‖1 ≤ 3‖∆m,S‖1. Since ‖∆m,Sc‖1 ≤ 3‖∆m,S‖1, ‖∆m‖1 ≤ 4‖∆m,S‖1 and consequently

‖∆m‖1 ≤ 4
∑
j∈S
|∆m,j | ≤ 8ρmã
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where the final inequality follows since |∆m,j | ≤ 2ã for all j. Using this inequality and the fact that ‖a∗m‖1 ≤ ρmã
implies that ‖âm‖1 ≤ 9ρmã, and therefore for all t ∈ T the range of both νm + a∗>m Xt and νm + â>mXt are in
[−ν̃ − 9ρã, ν̃ + 9ρã].

Now to lower bound the Bregman divergence in terms of the Frobenius norm, we use the first condition of Assump-
tion 1. Inherently, the RMLE will admit estimates which should converge to the true matrix A∗ under a Bregman di-
vergence induced by the log-partition function, but we are interested in convergence of the Frobenius norm. Therefore,
to convert from one to the other, we require the log-partition function to be strongly convex. This issue is side-stepped
in the Gaussian noise case, due to the fact that the Bregman in question would identically be the Frobenius norm. By
Assumption 1, Z is σ-strongly convex, and therefore on T it is true that BZ(ν + â>mXt‖νm + a∗>m Xt) ≥ σ

2 (∆>mXt)
2

and BZ(νm + â>mXt‖νm + a∗>m Xt) ≥ 0 on the rest of the time indices.
Therefore

1

T

T−1∑
t=0

BZ(νm + â>mXt‖νm + a∗>m Xt) ≤ λ

2
‖∆m‖1 + λ‖∆m,S‖1 − λ‖∆m,Sc‖1,

implies

σ

2T

∑
t∈T

(∆>mXt)
2 ≤ λ

2
‖∆m‖1 + λ‖∆m,S‖1 − λ‖∆m,Sc‖1.

Define ‖∆m‖2T = 1
T

∑
t∈T (∆>mXt)

2 for any ∆ ∈ RM×M , then we have the bound:

σ

2
‖∆m‖2T ≤ λ

2
‖∆m‖1 + λ‖∆m,S‖1 − λ‖∆m,Sc‖1 ≤

3λ

2
‖∆m,S‖1.

Therefore we can define the cone on which the vector ∆m must be defined:

Bm,S := {∆ ∈ [amin − amax, amax − amin]M | ‖∆m,Sc‖1 ≤ 3‖∆m,S‖1},

and restrict ourselves to studying properties of vectors in that set. Since ‖∆m,S‖1 ≤
√
ρm‖∆m‖2 where ρm is the

number of non-zeros of a∗m, we have that

‖∆m‖2T ≤ 3

σ
λ
√
ρm‖∆m‖2 = δm‖∆m‖2, (6)

where δm , 3
σλ
√
ρm. Now we consider three cases: if ‖∆m‖T ≥ ‖∆m‖2, then max(‖∆m‖T , ‖∆m‖2) ≤ δm. On

the other hand if ‖∆m‖T ≤ ‖∆m‖2 and ‖∆m‖2 ≤ δm, then max(‖∆m‖T , ‖∆m‖2) ≤ δm.
Hence the final case we need to consider is ‖∆m‖T ≤ ‖∆m‖2 and ‖∆m‖2 ≥ δm. Now we follow a similar proof

technique to that used in Raskutti et al. [55] adapted to dependent sequences, to understand this final scenario. Let us
define the following set:

Bm(δm) := {∆m ∈ Bm,S | ‖∆m‖2 ≥ δm}. (7)

Further, let us define the alternative set:

B′m(δm) := {∆m ∈ Bm,S | ‖∆m‖2 = δm}. (8)

We wish to show that for ∆m ∈ Bm(δm), we have ‖∆m‖2T ≥ κ‖∆m‖22 for some κ ∈ (0, 1) with high prob-
ability, and therefore Equation 6 would imply that max(‖∆m‖T , ‖∆m‖2) ≤ δm/κ. We claim that it suffices
to show that ‖∆m‖2T ≥ κ‖∆m‖22 is true on B′m(δm) with high probability. In particular, given an arbitrary
non-zero ∆m ∈ Bm(δm), consider the re-scaled vector ∆̃m = δm

‖∆m‖2 ∆m. Since ∆m ∈ Bm(δm), we have

∆̃m ∈ Bm(δm) and ‖∆̃m‖2 = δm by construction. Together, these facts imply ∆̃m ∈ B′m(δm). Furthermore, if
‖∆̃m‖2T ≥ κ‖∆̃m‖22 is true, then ‖∆m‖2T ≥ κ‖∆m‖22 is also true. Alternatively if we define the random variable
ZT (B′m) = sup∆m∈B′m(δm){δ2

m − ‖∆m‖2T }, then it suffices to show that ZT (B′m) ≤ (1− κ)δ2
m.
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For this step we use some recent concentration bounds [61] and empirical process techniques [62] for martingale
random variables. Recall that the empirical norm is ‖∆m‖2T = 1

T

∑
t∈T (∆T

mXt)
2. Further let (ti)

|T |
i=1 denote the

indices in T . Next we define the conditional expectation

YT :=
1

T

|T |∑
i=1

E
[
(∆T

mXti)
2|Xt1 , Xt2 , . . . , Xti−1

]
.

Then we have

ZT (B′m) = sup
∆m∈B′m(δm)

{δ2
m − ‖∆m‖2T } ≤ sup

∆m∈B′m(δm)

{δ2
m − YT }+ sup

∆m∈B′m(δm)

{YT − ‖∆m‖2T }.

To bound the first quantity, sup∆m∈B′m(δm){δ2
m − YT }, we first note that

sup
∆m∈B′m(δm)

{δ2
m − YT } ≤ δ2

m − δ2
mω = (1− ω)δ2

m

by Assumption 1 and the fact that ‖∆m‖22 = δ2
m since ∆m ∈ B′m(δm). Thus

ZT (B′m) ≤ (1− ω)δ2
m + sup

∆m∈B′m(δm)

{YT − ‖∆m‖2T }.

Now we focus on bounding sup∆m∈B′m(δm){YT − ‖∆m‖2T }. First, we use a martingale version of the bounded
difference inequality using Theorem 2.6 in [61] (see Appendix 7.4):

sup
∆m∈B′m(δm)

{YT − ‖∆m‖2T } ≤ E[ sup
∆m∈B′m(δm)

{YT − ‖∆m‖2T }] +
ωδ2

m

4
,

with high probability. Recall that on T , we have 0 ≤ (∆>mXt)
2 ≤ ‖∆m‖21‖Xt‖2∞ ≤ U2‖∆m‖21. Because ∆m ∈

B′m(δT ), it is true that ‖∆m‖1 ≤ 4‖∆m,S‖1. We then use the the relationship between the `1 and `2 norms to say
‖∆m,S‖1 ≤

√
ρm‖∆m,S‖2 ≤

√
ρm‖∆m‖2 where ρm is the number of non-zeros in the mth row of the true matrix

A∗. Putting these together means (∆>mXt)
2 ≤ 16U2ρmδ

2
m. In particular, we apply Theorem 4 in Appendix 7.4

with ZT = sup∆m∈B′m(δm){YT − ‖∆m‖2T }, a =
ωδ2m

4 , Lt = − 16U2ρmδ
2
m

T and Ut =
16U2ρmδ

2
m

T , and therefore

C2
T =

324U4ρ2mδ
4
m

T . Therefore, applying Theorem 4

sup
∆m∈B′m(δm)

{YT − ‖∆m‖2T } ≤ E[ sup
∆m∈B′m(δm)

{YT − ‖∆m‖2T }] +
ωδ2

m

4
,

with probability at least 1−exp(− 2T
324U4ρ2m

). Since T ≥ 324U4ρ2
m log(M), the above statement holds with probability

at least 1− 1
M2 . Hence

ZT (B′m) ≤ (1− ω)δ2
m +

ωδ2
m

4
+ E[ sup

∆m∈B′m(δm)

{YT − ‖∆m‖2T }].

Now we bound E[sup∆m∈B′m(δm){YT − ‖∆m‖2T }]. Here we use a recent symmetrization technique adapted for
martingales in [62]. To do this, we introduce the so-called sequential Rademacher complexity defined in [62]. Let
(εt)

T
t=1 be independent Rademacher random variables, that is P(εt = +1) = P(εt = −1) = 1

2 . For a function class
F , the sequential Rademacher complexityRT (F) is:

RT (F) := sup
X1,X2,...,XT

E
[

sup
f∈F

1

T

T∑
t=1

εtf(Xt(ε1, ε2, . . . , εt−1))

]
.
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Note here that Xt is a function of the previous independent random variables (ε1, ε2, . . . , εt−1). Using Theorem 2 in
[62] (also stated Appendix 7.4) with f(Xt) = (∆T

mXt)
2 and noting that even though we use the index set T , (Xt)t∈T

is still a martingale, it follows that:

E

[
sup

∆m∈B′m(δm)

{YT − ‖∆m‖2T }

]
≤ 2 sup

Xt1 ,Xt2 ,...,X|T |

E
[

sup
∆m∈B′m(δm)

1

T

|T |∑
i=1

εti(∆
T
mXti)

2

]
.

Additionally since |∆>mXt| ≤ 4U
√
ρmδm by the argument above and using the symmetry of Rademacher random

variables

E

[
sup

∆m∈B′m(δm)

{YT − ‖∆m‖2T }

]
≤ 2 sup

X1,X2,...,X|T |

E
[

sup
∆m∈B′m(δm)

1

T

|T |∑
i=1

εti∆
T
mXti |∆T

mXti |
]

≤ 8U
√
ρmδm sup

X1,X2,...,X|T |

E
[

sup
∆m∈B′m(δm)

1

T

|T |∑
i=1

εti∆
T
mXti

]

The final step is to upper bound the sequential Rademacher complexityRT = E[sup∆∈B′m(δm)
1
T

∑|T |
i=1 εt∆

>
mXti ]

where Xti is a function of (ε1, ε2, . . . , εti−1). Clearly:

1

T

|T |∑
i=1

εt∆
>
mXti ≤

∥∥∥∥∥∥ 1

T

|T |∑
i=1

εtXti

∥∥∥∥∥∥
∞

‖∆m‖1.

Because ∆m ∈ B′m(δm) we have ‖∆m‖1 = ‖∆m,S‖1 + ‖∆m,Sc‖1 ≤ 4‖∆m,S‖1 and ‖∆m,S‖1 ≤
√
ρm‖∆m,S‖2 ≤√

ρm‖∆m‖2 =
√
ρmδm.

E

[
sup

∆m∈B′m(δm)

{YT − ‖∆m‖2T }

]
≤ 8U

√
ρmδm sup

X1,X2,...,X|T |

E
[

sup
∆m∈B′m(δm)

1

T

|T |∑
i=1

εti∆
T
mXti

]

≤ 8U
√
ρmδm sup

X1,X2,...,X|T |

∥∥∥∥∥∥ 1

T

|T |∑
i=1

εtiXti(ε1, . . . , εti−1)

∥∥∥∥∥∥
∞

sup
∆m∈B′m(δm)

‖∆m‖1

≤ 32U2ρmδ
2
m sup
X1,X2,...,X|T |

∥∥∥∥∥∥ 1

T

|T |∑
i=1

εtiXti(ε1, . . . , εti−1)

∥∥∥∥∥∥
∞

.

Finally, we use Lemma 6 applied to the index set T :

E

[
sup

∆m∈B′m(δm)

{YT − ‖∆m‖2T }

]
≤ 32U2ρmδ

2
m sup
X1,X2,...,X|T |

∥∥∥∥∥∥ 1

T

|T |∑
i=1

εtiXti(ε1, . . . , εti−1)

∥∥∥∥∥∥
∞

≤ 128U4ρmδ
2
m

log(MT )√
T

,

with probability at least 1− 1
(MT )2 . Now if we set T ≥ 2562U8ρ2m log2(MT )

ω2 ,

E

[
sup

∆m∈B′m(δm)

{YT − ‖∆m‖2T }

]
≤ ωδ2

m

4

with probability 1− (MT )−2.
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Overall this tells us that on the set B′m(δm) we have that ‖∆m‖2T ≥ 3ω
4 ‖∆m‖22 with high probability. Now we

return to the main proof. After considering all three cases that can follow from 6, we have

max(‖∆m‖22, ‖∆m‖2T ) ≤ 144

σ2ω2ξ2
ρmλ

2

with probability at least 1 − exp( c
′ρm
ω2 log(2M) − cω2T

ρ2m
), which bounds the error accrued on any single row, as a

function of the sparsity of the true row. Combining, to get an overall error yields,

‖Â−A∗‖2F ≤
144

σ2ω2ξ2
λ2

M∑
m=1

ρm =
144

σ2ω2ξ2
λ2s

with probability at least

1− exp

(
log(M) +

c′ρ

ω2
log(2M)− cω2T

ρ2

)
(9)

.

4.2 Proof of Theorem 2
4.2.1 Part 1

Proof. The matrix Γt can be expanded as

E[XtX
>
t |Xt−1] = E[Xt|Xt−1]E[Xt|Xt−1]> + Diag(Var(Xt|Xt−1))

Thus Γt has two parts, one is the outer product of a vector with itself, and the second is a diagonal matrix. Therefore,
the smallest eigenvalue will be lower bounded by the smallest element of the diagonal matrix, because the outer
product matrix will always be positive semi-definite with smallest eigenvalue equal to 0. Using properties of the
Bernoulli distribution, the conditional variance is explicitly given as (2+exp(ν+A∗Xt−1)+exp(−ν−A∗Xt−1))−1

and therefore the smallest eigenvalue of Γt is lower bounded by (3 + exp(ν̃ + ρã))−1.

4.2.2 Part 2

Proof. In order to prove this part of the Theorem, we use of Markov’s inequality and Lemma 5 in the case of the
Bernoulli autoregressive process. Define the sequence (Yn, n ∈ N) as

Yn ,
1

T

n−1∑
t=0

Xt,m(Xt+1,` − E[Xt+1,`|Xt]).

Notice the following values:

Yn − Yn−1 =
Xn−1,m

T
(Xn,` − E[Xn,`|Xn−1])

Mk
n =

n∑
i=1

E

[(
Xi−1,m

T
(Xi,` − E[Xi,`|Xi−1])

)k
|X1, . . . , Xi−1

]
.

The first value shows that E[Yn−Yn−1|X1, . . . , Xn−1] = 0 and therefore Yn (and the negative of the sequence, −Yn)
is a martingale. Additionally, we know |Yn − Yn−1| ≤ 1

T , B and

M2
n =

n∑
i=1

E

[(
Xi−1,m

T
(Xi,` − E[Xi,`|Xi−1])

)2

|X1, . . . , Xi−1

]

=
1

T 2

n∑
i=1

X2
i−1,mE[(Xi,` − E[Xi,`|Xi−1])2|Xi−1] ≤ n

4T 2
, M̂2

n

15



where the last step follows because Bernoulli random variables are bounded by one, and the variance is bounded by
1/4. We also need to bound Mk

n as follows:

Mk
n =

n∑
i=1

E

[(
Xi−1,m

T 2
(Xi,` − E[Xi,`|Xi−1])

)k
|X1, . . . , Xi−1

]

=

n∑
i=1

E

[(
Xi−1,m

T 2
(Xi,` − E[Xi,`|Xi−1])

)2(
Xi−1,m

T 2
(Xi,` − E[Xi,`|Xi−1])

)k−2

|Xi−1

]
≤Bk−2M2

n

We use these values to get a bound on the summation term used in Lemma 5.

Dn ,
∑
k≥2

ηk

k!
Mk
n ≤

∑
k≥2

ηkBk−2M2
n

k!
≤ M̂2

n

B2

∑
k≥2

(ηB)k

k!
, D̂n

D̃n ,
∑
k≥2

ηk

k!
(−1)kMk

n ≤ D̂n.

In the above D̃n corresponds to the sum corresponding to the negative sequence −Y0,−Y1, . . . which we also need to
obtain the desired bound. Now we use a variant of Markov’s inequality to get a bound on the desired quantity.

P(|Yn| ≥ y) =P(Yn ≥ y) + P(−Yn ≥ y) ≤ E[eηYn ]e−ηy + E[eη(−Yn)]e−ηy

=E[eηYn−Dn+Dn ]e−ηy + E[eη(−Yn)−D̃n+D̃n ]e−ηy

≤E[eηYn−Dn ]eD̂n−ηy + E[eη(−Yn)−D̃n ]eD̂n−ηy ≤ 2eD̂n−ηy.

The final inequality comes from the use of Lemma 5, which states that the given terms are supermartingales with initial
term equal to 1, so the entire expectation is less than or equal to 1. The final step of the proof is to find the optimal
value of η to minimize this upper bound.

P(|Yn| ≥ y) ≤ 2 exp(D̂n − ηy) = 2 exp

(
M̂2
n

B2

(
eηB − 1− ηB

)
− ηy

)

Setting η = 1
B log

(
yB

M̂2
n

+ 1
)

yields the lowest such bound, giving

P(|Yn| ≥ y) ≤2 exp

(
M̂2
n

B2

(
yB

M̂2
n

− log

(
yB

M̂2
n

+ 1

))
− y

B
log

(
yB

M̂2
n

+ 1

))

=2 exp

(
−M̂

2
n

B2
H

(
yB

M̂2
n

))

where H(x) = (1 + x) log(1 + x)− x. We use the fact that H(x) ≥ 3x2

2(x+3) for x ≥ 0 to further simplify the bound.

P(|Yn| ≥ y) ≤ 2 exp

(
−3y2

2yB + 6M̂2
n

)
= 2 exp

(
− 6y2T 2

4yT + 3n

)
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To complete the proof, we set n = T and take a union bound over all indices because YT considered specific indices
m and `, which gives the bound

P
(

max
1≤i,j≤M

1

T

∣∣∣∣∣
T−1∑
t=0

Xt−1,i(Xt,j − E[Xt,j |Xt−1])

∣∣∣∣∣ ≥ 3
log(MT )√

T

)
≤ exp

(
log(2M2)− 54 log(MT )

12/
√
T + 3

)
≤ 1

MT
.

Here we have additionally assumed that T ≥ 2 and that log(MT ) ≥ 1.

4.3 Proof of Theorem 3
4.3.1 Part 1

Proof. We start with the following observation:

E[XTtX
>
Tt |XTt−1

] = E[XTt |XTt−1
]E[XTt |XTt−1

]> + Diag(Var(XTt |XTt−1
))

Thus Γt has two parts, one is the outer product of a vector with itself, and the second is a diagonal matrix. Therefore,
the smallest eigenvalue will be lower bounded by the smallest element of the diagonal matrix. In order to lower bound
this variance, we must consider the two cases, one where Tt−1 = Tt − 1 where the previous term in the sequence T is
the previous term in the overall sequence, and the other case where Tt−1 < Tt − 1 where the previous term is not in
the sequence T . The variance of XT can be characterized based on these two possible situations:

Var(XTt,i |XTt−1
) = pVar(XTt,i |XTt−1

, Tt−1 = Tt − 1) + (1− p)Var(XTt,i |XTt−1
, Tt−1 < Tt − 1)

where p is the probability that Tt−1 = Tt − 1. Because variances are lower bounded by 0, we can lower bound this
entire term by the first part of the sum, where Tt−1 = Tt − 1. For this term, we know that XTt is drawn from a
Poisson distribution, with the added information that each element is bounded above by U because it is an element
of the sequence XT1 , XT2 , . . .. Thus using Lemma 3 we know that the variance of each value is lower bounded by
4
5 exp(νi + a∗>i XTt−1) which can in turn be lower bounded by exp(νmin + ρaminU). Finally, since there are at
least ξT elements of 1, 2, . . . , T which are in the bounded set of observations, then the worst case distribution of the
observations with elements greater than U is that they are never consecutive. This maximizes the number of times
there is a break in the sequence T1, T2, . . ., which means there would be a total of T − ξT times when there was a
break. Thus the probability that consecutive elements are in the set is at least ξ, meaning that the minimum eigenvalue
of E[XTtX

>
Tt |XTt−1 ] is lower bounded by 4ξ

5 exp(νmin + ρaminU).

4.3.2 Part 2

Proof. To prove this part of the Theorem, we use of Markov’s inequality and Lemma 5 as they pertain specifically to
our problem. Define the sequence (Yn, n ∈ N) as

Yn ,
1

T

n−1∑
t=0

Xt,m(Xt+1,` − E[Xt+1,`|Xt]).

Notice the following values:

Yn − Yn−1 =
Xn−1,m

T
(Xn,` − E[Xn,`|Xn−1])

Mk
n =

n∑
i=1

E

[(
Xi−1,m

T
(Xi,` − E[Xi,`|Xi−1])

)k
|X1, . . . , Xi−1

]
.
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The first value shows that E[Yn−Yn−1|X1, . . . , Xn−1] = 0 and therefore Yn (and the negative of the sequence, −Yn)
is a martingale. Additionally, we have assumed that |Xm,i| ≤ C logMT for 1 ≤ m ≤M and 1 ≤ i ≤ T , so it is true
that |Yn − Yn−1| ≤ C2 log2(MT )

T , B. Additionally:

M2
n =

n∑
i=1

E

[(
Xi−1,m

T
(Xi,` − E[Xi,`|Xi−1])

)2

|X1, . . . , Xi−1

]

=
1

T 2

n∑
i=1

X2
i−1,mE[(Xi,` − E[Xi,`|Xi−1])2|Xi−1]

=
1

T 2

n∑
i=1

X2
i−1,m exp(ν` + a∗>` Xi−1) ≤ nC2 log2(MT )eνmax

T 2
, M̂2

n

where the last step follows because X`,i|Xi−1 ∼ Poisson(exp(ν` + a∗>` Xi−1)) and the mean and variance of a
Poisson random variable are equal. The final line uses the fact that Xt is bounded. We will also need to bound Mk

n as
follows:

Mk
n =

n∑
i=1

E

[(
Xi−1,m

T 2
(Xi,` − E[Xi,`|Xi−1])

)k
|X1, . . . , Xi−1

]

=

n∑
i=1

E

[(
Xi−1,m

T 2
(Xi,` − E[Xi,`|Xi−1])

)2(
Xi−1,m

T 2
(Xi,` − E[Xi,`|Xi−1])

)k−2

|Xi−1

]
≤Bk−2M2

n

We need to use these values to get a bound on the summation term used in Lemma 5.

Dn ,
∑
k≥2

ηk

k!
Mk
n ≤

∑
k≥2

ηkBk−2M2
n

k!
≤ M̂2

n

B2

∑
k≥2

(ηB)k

k!
, D̂n

D̃n ,
∑
k≥2

ηk

k!
(−1)kMk

n ≤ D̂n

In the above D̃n corresponds to the sum corresponding to the negative sequence −Y0,−Y1, . . . which we will also
need to obtain the desired bound. Now we are able to use a variant of Markov’s inequality to get a bound on the
desired quantity.

P(|Yn| ≥ y) =P(Yn ≥ y) + P(−Yn ≥ y) ≤ E[eηYn ]e−ηy + E[eη(−Yn)]e−ηy

=E[eηYn−Dn+Dn ]e−ηy + E[eη(−Yn)−D̃n+D̃n ]e−ηy

≤E[eηYn−Dn ]eD̂n−ηy + E[eη(−Yn)−D̃n ]eD̂n−ηy ≤ 2eD̂n−ηy

The final inequality comes from the use of Lemma 5, which states that the given terms are supermartingales with initial
term equal to 1, so the entire expectation is less than or equal to 1. The final step of the proof is to find the optimal
value of η to minimize this upper bound.

P(|Yn| ≥ y) ≤ 2 exp(D̂n − ηy) = 2 exp

(
M̂2
n

B2

(
eηB − 1− ηB

)
− ηy

)
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Setting η = 1
B log

(
yB

M̂2
n

+ 1
)

yields the lowest such bound, giving

P(|Yn| ≥ y) ≤2 exp

(
M̂2
n

B2

(
yB

M̂2
n

− log

(
yB

M̂2
n

+ 1

))
− y

B
log

(
yB

M̂2
n

+ 1

))

=2 exp

(
−M̂

2
n

B2
H

(
yB

M̂2
n

))

where H(x) = (1 + x) log(1 + x) − x. We can use the fact that H(x) ≥ 3x2

2(x+3) for x ≥ 0 to further simplify the
bound.

P(|Yn| ≥ y) ≤ 2 exp

(
−3y2

2yB + 6M̂2
n

)
= 2 exp

(
− 3y2T 2

2C2(Ty + 3neνmax) log2(MT )

)
To prove the proof, we set n = T and take a union bound over all indices because YT considered specific indices m
and `, which gives the bound

P
(

max
i,j

1

T

∣∣∣∣∣
T−1∑
t=0

Xt−1,i(Xt,j − E[Xt,j |Xt−1])

∣∣∣∣∣ ≥ 4C2eνmax
log3(MT )√

T

)
≤ exp

(
log(2M2)− 48C4 exp2νmax log4(MT )

8C4eνmax log3(MT )/
√
T + 6C2

1e
ν
max

)

≤ exp

(
2 log(MT )− 24C2eνmax log(MT )

4C2/
√
T + 3

)
≤ exp (−c log(MT ))

where c = 24C2eνmax−8C2−6
4C2+3 which is positive for sufficiently large C. Here we have additionally assumed that T ≥ 2

and that log(MT ) ≥ 1.

5 Discussion
Corollaries 1 and 2 provide several important facts about the inference process. Primarily, if ρ is fixed as a constant
for increasing M (suggesting that the maximum degree of a node does not increase with the number of nodes in a
network), then the error scales inversely with T , linearly with the sparsity level s and only logarithmically with the
dimension M in order to estimate M2 parameters. These parameters will dictate how much data needs to be collected
to achieve a desired accuracy level. This rate illustrates the idea that doing inference in sparse settings can greatly
reduce the needed amount of sensing time, especially when s � M2. Another quantity to notice is that we require
T ≥ ω−4ρ3 log(M). If ρ is fixed as a constant for increasingM , this tells us that T needs to be on the order of log(M),
which is significantly less than the totalM2 parameters which are being estimated, and therefore including the sparsity
assumption has lead to a significant gain. One final observation from the risk bound is that it provides guidance in the
setting of the regularization parameter. We see that we would like to set λ generally as small as possible, since the
error scales approximately like λ2, but we also require λ at least as large as Õ(T−1/2) for the bounds to hold. The
balance between setting λ small enough to have low error, while maintaining that it’s large enough is an equivalent
argument to needing to set λ large enough for it to take effect, but not too large to cause over smoothing.

5.1 Dense rows of A∗

The exponential scaling in Corollaries 1 and 2 with the maximum number of non-zeros in a row, ρ, at first seems
unsatisfying. However, we can imagine a worst-case scenario where a large ρ relative to s and M would actually lead
to very poor estimation. Consider the case of a large star-shaped network, where every node in the network influences
and is influenced by a single node, and there are no other edges in the network. This would correspond to a matrix
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with a single, dense row and corresponding column. Therefore, we would have ρ = M and s = 2M − 1. In the
Poisson setting, this network would have M − 1 independently and identically distributed Poisson random variables
at every time with mean ν, but the central node of the network would be constantly inhibited, almost completely. In a
large network, it would be very difficult to know if this inhibition was coming from a few strong connections or from
the cumulative effect of all the inhibitions. Additionally, since the central node would almost never have a positive
count, it would also be difficult to learn about the influence that node has on the rest of the network. Because of
networks like this, it is important that not only is the overall network sparse, but each row also needs to be sparse. This
requirement might seem restrictive, but it has been shown in many real world networks that the degree of a node in the
network follows a power-law which is independent of the overall size of the network [63], and ρ would grow slowly
with growing M .

5.2 Bounded observations and higher-order autoregressive processes
Recall that Assumption 1 ensures that most observations are bounded. Bounded observations are important to our
analysis because we use martingale concentration inequalities [64] which depend on bounded conditional means and
conditional variances, the latter condition being equivalent to Z being strongly convex. Since the conditional means
and variances are data-dependent, bounded data (at least with high probability) is a sufficient condition for bounded
conditional means and conditional variances. In some settings (e.g., Bernoulli), bounded observations are natural and
in Assumption 1 ξ = 1. In other settings (e.g., Poisson) there is no constant U independent of T that is an upper bound
for all observations with high probability. Furthermore, if we allow U to increase with T in violation of Assumption 1,
we derive a bound on ‖Â − A∗‖2F that increases polynomially with T . To avoid this and get the far better bound in
Theorem 1, our proof focuses on characterizing the error on the set T defined in Assumption 1.

Thus far we have focused on the case where Xt+1,m|Xt ∼ p(ν + a∗>m Xt), a first order autoregres-
sive process. However, we could imagine a simple, higher-order version where Xt+1,m|Xt−q+1, . . . , Xt ∼
p(ν + a∗>m

∑q−1
i=0 αiXt−i) for some known sequence αi. This process could be reformulated as a process

Xt+1,m|Xt−q+1, . . . , Xt ∼ p(ν + a∗>m X̃t) where X̃t ,
∑q−1
i=0 αiXt−1, and much of the same proof techniques

would still hold, especially in the case of the Bernoulli autoregressive process, where T is easily defined. However,
in the more general GLAR case finding the right analogy to T in the higher space is not an obvious extension. A true
order-q autoregressive process where X̃t+1,m|Xt−q+1, . . . , Xt ∼ p(ν +

∑q−1
i=0 a

∗>
m,iXt−i) could also be formulated

as an order-1 process by properly stacking vectors and matrices, however, in this case proving the key lemmas and
showing that the process obeys Assumption 1 is also an open question.

5.3 Stationarity
As stated in the problem formulation, we restrict our attention to bounded matrices A∗ ∈ [amin, amax]M×M ; in the
specific context of the log-linear Poisson autoregressive model, we use amax = 0, corresponding to a model that only
accounts for inhibitory interactions. One might ask whether these constraints could be relaxed and whether the Poisson
model could also account for stimulatory interactions.

These boundedness constraints are sufficient to ensure that the observed process has a stationary distribution. The
stationarity of processes is heavily studied; once a process has reached its stationary distribution, then data can be
approximated as independent samples from this distribution and temporal dependencies can be can be ignored. While
stationarity does not play an explicit role in our analysis, we can identify several sufficient conditions to ensure the
vector GLAR processes of interest are stationary. In particular we assume that A∗ = A∗> which ensures reversibility
of the Markov chain described by the process defined by Xt+1,m|Xt ∼ p(νm + a∗>m Xt). We derive the stationary
distribution π(x), and then establish bounds on the mixing time. Note that this is a Markov chain with transition
kernel:

P (x, y) = P(Xt+1 = y|Xt = x) = exp

(
ν>y + y>A∗x−

M∑
i=m

Z(νm + a∗>m X)

)
M∏
m=1

h(ym).

If we further assume that the entries of Xt take on values on a countable domain to ensure a countable Markov chain,
we can derive bounds on the mixing time.
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Lemma 2. Assume A∗ = A∗>, then the Markov chain Xt+1,m ∼ p(νm + a∗>m Xt) is a reversible Markov chain with
stationary distribution:

π(x) = Cν,A∗ exp

(
ν>x+

M∑
m=1

Z(νm + a∗>m x)

)
M∏
m=1

h(xm)

for Cν,A∗ =
∫
x1

∫
x2
. . .
∫
xM

exp
(
ν>x+

∑M
m=1 Z(νm + a∗>m x)

)∏M
m=1 h(xm)dxM . . . dx2dx1. Further, if Xt ∈

ZM+ , amax = 0 and Z(·) is an increasing function, then for any y ∈ ZM+ , if νm ≤ νmax <∞ for all 1 ≤ m ≤M and
amin ≤ 0 we have that

‖P t(y, .)− π(.)‖TV ≤
(

1− h(0)−2Me−2MZ(νmax)
)t
.

Notice that for large M , the chain will mix very slowly, and additionally this bound has no dependence on the
sparsity of the true matrix A∗. Conversely, our results require T to be greater than a value that scales roughly like
ρ3 log(M), which has a much milder dependence onM , and varies based on the sparsity ofA∗. What we can conclude
from these observations is that while the RMLE needs a certain amount of observations to yield good results, we do not
necessarily need enough data to reach the stationary distribution. Additionally, under conditions where mixing time
guarantees are not given (i.e. non-symmetric A∗, uncountable domain), we still have guarantees on the performance
of the RMLE.

6 Conclusions
Instances of the generalized linear autoregressive process has been used successfully in many settings to learn network
structure. However, this model is often used without rigorous non-asymptotic guarantees of accuracy. In this paper
we have shown important properties of the Regularized Maximum Likelihood Estimator of the GLAR process under a
sparsity assumption. We have proven bounds on the error of the estimator as a function of sparsity, maximum degree
of a node, ambient dimension and time, and shown how these bounds look for the specific examples of the Bernoulli
and Poisson autoregressive proceses. In order to prove this risk bound, we have incorporated many recently developed
tools of statistical learning, including concentration bounds for dependent random variables. Our results show that by
incorporating sparsity the amount of data needed is on the order of ρ3 log(M) for bounded degree networks, which is
a significant gain compared to the M2 parameters being estimated.

While this paper has focused on generalized linear models, we believe that the extension of these ideas to other
models is possible. Specifically, for modeling firing rates of neurons in the brain, we are interested in settings in which
we observe

Xt+1,m|Xt ∼ Poisson(g(a∗>m Xt + ν))

and exploring possible functions g beyond the exponential function considered here. Such analysis would allow our
results to apply to stimulatory effects in addition to inhibitory effects, but key challenges include ensuring that the
process is stable and, with high probability, bounded. Another direction would be settings where the counts are drawn
from more complicated higher-order or autoregressive moving average (ARMA) models which would better model
real-world point processes.

7 Appendix

7.1 Supplementary Lemmas
First we present supplementary Lemmas which we use throughout the proofs of the main Theorems.

Lemma 3. Let X be a Poisson random variable, with the following probability density function:

p(X = k|λ) =
λke−k

k!
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and let X ′ be a random variable defined by the following pdf:

q(k|λ) =

{
c
k!λ

ke−λ if k ≤ U
0 otherwise

where c = 1
1−P(X>U) > 1. Roughly speaking, X ′ is generated by taking a Poisson pdf, and removing the tail

probability, and scaling the remaining density so that it is a valid pdf. For this random variable, assuming U ≥
max(6, 1.5eλ, λ+ 5) then

Var(X ′) ≥ 4

5
Var(X) =

4λ

5

Proof. Define the error terms ε1 , E[X]2 − E[X ′]2 and ε2 , E[X2]− E[X ′2]. We know

Var(X ′) = E[X ′2]− E[X ′]2 = (E[X2]− ε2)− (E[X]2 − ε1)

≥ (E[X2]− E[X]2)︸ ︷︷ ︸
Var(X)

−(|ε1|+ |ε2|) = λ− (|ε1|+ |ε2|) (10)

Our strategy will be to show ε1, ε2 are small relative to λ, which will tell us Var(X ′) ≈ Var(X) = λ. Intuitively, the
error terms should be small relative to λ because X ′ differs from X only by cutting off the extreme edge of the pdf,
given the assumptions on the size of U relative to λ.

First, we bound ε1. We have

ε1 = E[X]2 − E[X ′]2 = (E[X] + E[X ′])(E[X]− E[X ′])

Since E[X ′] ≤ E[X], the first term is bounded by 2E[X] = 2λ. To bound the second term, we note that the pdf for
X ′ is given explicitly as

q(k|λ) =

{
c
k!λ

ke−λ if k ≤ U
0 otherwise

where c = 1
1−P(X>U) > 1. And therefore

E[X ′] = c

U∑
k=1

λke−λ

(k − 1)!
≥

U∑
k=1

λke−λ

(k − 1)!

Using this fact to bound E[X]− E[X ′] gives us

E[X]− E[X ′] ≤ E[X]−
U∑
k=1

λke−λ

(k − 1)!
=

∞∑
k=U+1

λke−λ

(k − 1)!
=

λ

eλ

∞∑
k=U

λk

k!

Note
∑∞
k=U

λk

k! is the remainder term of the degree U −1 Taylor Polynomial for eλ. We can bound this using Taylor’s
Remainder theorem:

∞∑
k=U

λk

k!
≤ eλλU

U !

and so

E[X]− E[X ′] ≤ λλ
U

U !
≤ λ

1.5U
(Ue )U

U !

where the second inequality comes from the assumption that U ≥ 1.5eλ. Here, the second fraction is small by
Sterling’s approximation formula. Formally, Sterling tells us

(Ue )U

U !
≤ 1√

2πU
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and therefore
E[X]− E[X ′] ≤ λ

1.5U
√

2πU
.

Combining the two terms tells us

|ε1| ≤ 2λ
λ

1.5U
√

2πU
≤ λ

10

since U ≥ 6.
Next we bound ε2 = E[X2]− E[X ′2]. We have

E[X ′2] = c

U∑
k=1

kλke−λ

(k − 1)!
≥

U∑
k=1

kλke−λ

(k − 1)!

and therefore

ε2 ≤ E[X2]−
U∑
k=1

kλke−λ

(k − 1)!
=

∞∑
k=U+1

kλke−λ

(k − 1)!
≤ (U + 1)λ2

Ueλ

∞∑
k=U−1

λk

k!

where the last inequality is due to the fact that k
k−1 ≤

U+1
U for all k ≥ U + 1. Here

∑∞
k=U−1

λk

k! is the remainder
term for the degree U − 2 Taylor Polynomial approximation to eλ. By the Taylor’s remainder formula, we can bound
this by

eλλU−1

(U − 1)!

and so

|ε1| ≤ λ(U + 1)
λU

U !

and since λ ≤ U
1.5e , it follows from Sterling’s approximation that

|ε1| ≤ λ
U + 1

1.5U
√

2πU
≤ λ

10

since U ≥ 6.
Putting the bounds for ε1 and ε2 back into Equation 10 to get the final form of the Lemma

Var(X ′) ≥ 4

5
Var(X) =

4

5
λ

We next present a one-sided concentration bound for Poisson random variables due to Bobkov and Ledoux [65]:
random variables.

Lemma 4 (Proposition 10 in [65]). If X ∼ Poisson(λ):

P
(
X − λ > t

)
≤ exp(− t

4
log(1 +

t

2λ
)).

Lemma 5 (Lemma 3.3 in [64]). Let (Yn, n ∈ N) be a martingale. For all k ≥ 2, let

Mk
n ,

n∑
i=1

E[(Yi − Yi−1)k|Fi−1].

Then for all integers n ≥ 1 and for all η such that for all i ≤ n, E[exp(|η(Yi − Yi−1)|)] ≤ ∞,

εn , exp

ηYn −∑
k≥2

ηk

k!
Mk
n


is a super-martingale. Additionally, if Y0 = 0, then E[εn] ≤ 1.
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Lemma 6. Let (εt)
T
t=0 be i.i.d. Rademacher random variables (i.e. P(εt = +1) = P(εt = −1) = −1 and {Xt}Tt=0

are a sequence of random variables, where Xt ∈ [0, U ]M , Xt(ε1, ε2, . . . , εt−1) is a function of (ε1, ε2, . . . , εt−1).
Then

sup
X1,...,XT

‖ 1

T

T∑
t=1

Xt(ε1, ε2, . . . , εt−1)εt‖∞ ≤ 2U
log(MT )√

T
,

with probability at least 1− 1
(MT )2 .

Proof. To prove this Lemma, we once again use Markov’s inequality and Lemma 5. For a fixed m ∈ {1, . . . ,M},
define the sequence (Yn, n ∈ N) as

Yn ,
1

T

n∑
t=1

Xt,mεt.

Notice the following values:

Yn − Yn−1 =
1

T
εnXn,m

Mk
n =

n∑
t=1

E

[(
1

T
Xt,mεt

)k
|ε1, . . . , εt−1

]
.

The first value shows that E[Yn − Yn−1|ε1, . . . , εn−1] = 0 and therefore Yn (and the negative of the sequence, −Yn)
is a martingale. Additionally, we have assumed that 0 ≤ Xm,i ≤ U for 1 ≤ m ≤ M and 1 ≤ i ≤ T , so it is true that
|Yn − Yn−1| ≤ 2U

T , B. Additionally:

M2
n =

n∑
t=1

E

[(
1

T
Xt,mεt

)2

|ε1, . . . , εt−1

]

=
1

T 2

n∑
t=1

ε2tE
[
X2
t,m|ε1, . . . , εt−1

]
≤ 4nU2

T 2
, M̂2

n

We will also need to bound Mk
n as follows:

Mk
n =

n∑
t=1

E
[( εt
T 2
Xt,m

)k
|ε1, . . . , εt−1

]

=

n∑
t=1

E
[( εt
T 2
Xt,m

)2 ( εt
T 2
Xt,m

)k−2

|ε1, . . . , εt−1

]
≤Bk−2M2

n

We need to use these values to get a bound on the summation term used in Lemma 5.

Dn ,
∑
k≥2

ηk

k!
Mk
n ≤

∑
k≥2

ηkBk−2M2
n

k!
≤ M̂2

n

B2

∑
k≥2

(ηB)k

k!
, D̂n

D̃n ,
∑
k≥2

ηk

k!
(−1)kMk

n ≤ D̂n

In the above D̃n corresponds to the sum corresponding to the negative sequence −Y0,−Y1, . . . which we will also
need to obtain the desired bound. Now we are able to use a variant of Markov’s inequality to get a bound on the
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desired quantity.

P(|Yn| ≥ y) =P(Yn ≥ y) + P(−Yn ≥ y) ≤ E[eηYn ]e−ηy + E[eη(−Yn)]e−ηy

=E[eηYn−Dn+Dn ]e−ηy + E[eη(−Yn)−D̃n+D̃n ]e−ηy

≤E[eηYn−Dn ]eD̂n−ηy + E[eη(−Yn)−D̃n ]eD̂n−ηy ≤ 2eD̂n−ηy

The final inequality comes from the use of Lemma 5, which states that the given terms are supermartingales with initial
term equal to 1, so the entire expectation is less than or equal to 1. The final step of the proof is to find the optimal
value of η to minimize this upper bound.

P(|Yn| ≥ y) ≤ 2 exp(D̂n − ηy) = 2 exp

(
M̂2
n

B2

(
eηB − 1− ηB

)
− ηy

)

Setting η = 1
B log

(
yB

M̂2
n

+ 1
)

yields the lowest such bound, giving

P(|Yn| ≥ y) ≤2 exp

(
M̂2
n

B2

(
yB

M̂2
n

− log

(
yB

M̂2
n

+ 1

))
− y

B
log

(
yB

M̂2
n

+ 1

))

=2 exp

(
−M̂

2
n

B2
H

(
yB

M̂2
n

))

where H(x) = (1 + x) log(1 + x) − x. We can use the fact that H(x) ≥ 3x2

2(x+3) for x ≥ 0 to further simplify the
bound.

P(|Yn| ≥ y) ≤ 2 exp

(
−3y2

2yB + 6M̂2
n

)
= 2 exp

(
− 3y2T 2

8(Ty + 3n)

)
To complete the proof, we set n = T and take a union bound over all indices because YT considered specific indices
m, which gives the bound

P
(

max
m

1

T

∣∣∣∣∣
T∑
t=1

Xt,mεt

∣∣∣∣∣ ≥ 2U
log(MT )√

T

)
≤ exp

(
log(M)− 12U2T log2(MT )

4U2(
√
T log(MT ) + 3T )

)
≤ exp

(
log(MT )− 3 log(MT )

1/
√
T + 3/ log(MT )

)
≤ exp (−2 log(MT )) .

7.2 Proof of Lemma 1
7.2.1 Part 1

Proof. For all 1 ≤ t ≤ T and 1 ≤ m ≤M , Xt,m|Xt−1 is drawn from a Poisson distribution with mean eνm+a∗>m Xt−1

for some a∗m ∈ [amin, 0]M . Because of the range of values a∗m can take, we know that eνm+a∗>m Xt−1 ≤ eνmax where
νm ≤ νmax for some νmax <∞ for all m. Therefore, we know that

P(Xt,m ≥ η + eνmax |Xt−1) ≤ P(Y ≥ η + eνmax)
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where Y is a Poisson random variable with mean eνmax . To bound this quantity we use the result of Lemma 4,

P(Y > η + eνmax) ≤ exp
(
−η

4
log
(

1 +
η

2eνmax

))
.

Setting η = C logMT − eνmax ,

P(Y > C logMT ) ≤ exp

(
−C logMT − eνmax

4
log

(
1 +

C logMT − eνmax

2eνmax

))
≤ exp

(
−C logMT − eνmax

4

)
.

Here, we have assumed that C ≥ eνmax(2e− 1) and logMT ≥ 1. This upper bound is not dependent on the value of
Xt−1, so this quantity is also an upper bound for the unconditional probability of Xt,m ≥ C logMT . Using this for a
single index t,m of our data X , and taking a union bound over all possible indices 1 ≤ m ≤M, 1 ≤ t ≤ T gives

P
(

max
1≤m≤M,1≤t≤T

Xt,m > C logMT

)
≤ exp

(
logMT − C logMT − eνmax

4

)
≤ exp(−c logMT ) (11)

for c ≤ C−eνmax

4 − 1. Thus if C > max(eνmax(2e− 1), 4 + eνmax), then c > 0, and the bound is valid.

7.2.2 Part 2

Proof. We are interested in bounding the number of observations Xt,m for 1 ≤ m ≤M and 1 ≤ t ≤ T that are above
the value U . Saying at least j , αMT observations are less than a certain value, is equivalent to saying that the jth

smallest observation is less than that value. Therefore,

P(jthsmallest observation Xt,m > U) = P

(
T∑
t=1

M∑
m=1

Yt,m ≤ j − 1

)

=

j−1∑
`=0

P

(
T∑
t=1

M∑
m=1

Yt,m = `

)
≤

j∑
`=0

∑
y∈Y`

P(Y = y).

Here we define Yt,m , 1{Xt,m ≤ U}, and Y` = {y ∈ {0, 1}M×T |
∑T
t=1

∑M
m=1 yt,m = `}. We then condition the

values of Yt on all previous values of Y and then understand this as a marginal of the joint distribution over Yt and
Xt−1. Below we use the notation Y1:t to denote all the time indices of Y from 1 to t, and similarly for y.

P(Y = y) =
T∏
t=1

P(Yt = yt|Y1:t−1 = y1:t−1)

=

T∏
t=1

∑
xt−1

(P(Yt = yt|Y1:t−1 = y1:t−1, Xt−1 = xt−1)P(Xt−1 = xt−1|Y1:t−1 = y1:t−1))

=

T∏
t=1

∑
xt−1

((
M∏
m=1

P(Yt,m = yt,m|Xt−1 = xt−1)

)
P(Xt−1 = xt−1|Y1:t−1 = y1:t−1)

)

In the last line we use the fact that conditioned on Xt−1, Yt is independent across dimensions m, and independent
of previous values Y1:t−1. We now make the observation that P(Xt,m > U |Xt−1 = xt−1) is exactly the probability
that a Poisson random variable with rate exp(νm + a∗>m xt−1) is greater than U , which can be upper-bounded by the
probability that a Poisson random variable with rate exp(νmax) is greater than U because we have assumed all values

of a∗m are non-positive. Call this probability pνmax
. Thus we have P(Y = y) ≤ pMT−

∑T
t=1

∑m
m=1 yt,m

νmax and therefore,
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P

(
T∑
t=1

M∑
m=1

Yt,m ≤ j − 1

)
≤

j∑
`=0

(
MT

`

)
pMT−`
νmax

= (1 + pνmax
)MT −

MT−j−1∑
`=0

(
MT

`

)
p`νmax

≤
(

MT

MT − j

)
(1 + pνmax)jpMT−j

νmax
≤
(

MTe

MT − j

)MT−j

(1 + pνmax)jpMT−j
νmax

.

The second inequality is from the application of Taylor’s Remainder Theorem, and the third is from the fact that(
n
k

)
≤
(
ne
k

)k
. Now use the fact that j = αMT as stated in the Lemma, to give

P

(
T∑
t=1

M∑
m=1

Yt,m ≤ j − 1

)
≤
(
pνmax

e

1− α

)(1−α)MT

(1 + pνmax
)αMT ≤

[(
pνmax

e

1− α

)1−α

2α

]MT

.

By using Lemma 4 in a similar way as was used in the proof of Lemma 1 part 1, pνmax
can be controlled by U in the

following way,

pνmax
=P (X > U) ≤ exp

(
−U − e

νmax

4
log

(
1 +

U − eνmax

2eνmax

))
≤ exp

(
−U − e

νmax

4

)
,

when U ≥ eνmax(2e− 1). Plugging the result back into the bound gives

P

(
T∑
t=1

M∑
m=1

Yt,m ≤ j − 1

)
≤

[(
exp(1− (U − eνmax)/4)

1− α

)1−α

2α

]MT

.

When U > 4 + eνmax + 4α log(2)
1−α − 4 log(1−α) and additionally greater than eνmax(2e− 1) the condition from above,

then the probability of this event is decaying in M and T . Therefore, for c = −
(
1− U−eνmax

4 − log(1− α)
)

(1 −
α)− α log(2), we have the inequality

P(at least αMT observations Xt,m ≤ U) ≥ 1− e−cMT

7.3 Proof of Lemma 2
Proof. To prove the form of the stationary distribution we show that

π(y) =

∫
x

π(x)P (x, y),

where

P (x, y) = exp

(
ν>y + y>A∗x−

M∑
m=1

Z(νm + a>mx)

)
M∏
m=1

h(ym).
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Plugging in π(x) as specified,∫
x

π(x)P (x, y) =Cν,A∗

∫
x

exp

(
ν>x+

M∑
m=1

Z(νm + a∗>m x) + ν>y + y>A∗x−
M∑
m=1

Z(νm + a∗>m x)

)
M∏
m=1

h(xm)h(ym)

=Cν,A∗ exp(ν>y)

M∏
m=1

(h(ym))

∫
x

exp
(
ν>x+ y>A∗x

) M∏
m=1

h(xm)

=Cν,A∗ exp(ν>y)

M∏
m=1

(h(ym))

∫
x

exp
(
ν>x+ x>A∗y

) M∏
m=1

h(xm)

=Cν,A∗ exp(ν>y)

M∏
m=1

(
h(ym)

∫
xm

exp
(
νmxm + xma

∗>
m y

)
h(xm)

)

=Cν,A∗ exp

(
ν>y +

M∑
m=1

Z(νm + a∗>m y)

)
M∏
m=1

h(ym) = π(y)

The second to last equality uses the definition of Z as the log partition function, and the third uses the assumption that
A∗ = A∗>.

To prove the upper bound on total variation distance for Markov chains on countable domains, we define two
chains, one chain Yt begins at the stationary distribution and the other independent chain starts at Xt begins at some
arbitrary random state x, both with transition kernel P . These two chains are said to be coupled if they are run
independently until the first time where the states are equal, then are equal for the rest of the trial. The notation
P t(x, y) denotes the probability of transitioning from state y to state x in exactly t steps. Theorem 5.2 of [66] asserts
that:

‖P t(x, ·)− π(·)‖TV ≤ Px(τcouple > t),

where τcouple :=

{
min
t>0

: Xt = Yt

}
. Note first that P(τcouple > t) ≤

t∏
τ=0

(1 − P(Xτ = Yτ = 0)). Since the chains

are independent until τcouple, P(Xτ = Yτ = 0) = P(Xτ = 0)P(Yτ = 0). Note also that:

P(Xτ = 0|Xτ−1 = x) =h(0)M exp

(
−

M∑
m=1

Z(νm + a∗>m x)

)

≥h(0)M exp

(
−

M∑
m=1

Z(νm)

)
≥ h(0)M exp(−MZ(νmax)),

where the first inequality is due to the fact that Z is an increasing function, and from the assumption that Ai,j ≥ 0.
Hence P(τcouple > t) ≤

∏t
τ=0(1− h(0)−2M exp(−2MZ(νmax))) = (1− h(0)−2M exp(−2MZ(νmax)))t.

7.4 Empirical processes for martingale sequences
To concretely define the martingale, let (Xt)t≥1 be a sequence of random variables adapted to the filtration (At)t≥1.
First we present a bounded difference inequality for martingales developed by van de Geer [61].

Theorem 4 (Theorem 2.6 in [61]). Fix T ≥ 1 and let ZT be anAT -measurable random variable, satisfying for each
t = 1, 2, . . . , t,

Lt ≤ E[ZT |At] ≤ Ut,

almost surely where Lt < Ut are constants. Define C2
T =

∑T
t=1(Ut − Lt)2. Then for all a > 0,

P(ZT − E[ZT ] ≥ a) ≤ exp(−2a2

C2
T

).
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The second important result we need is a notion of sequential Rademacher complexity for martingales that allows
us to do symmetrization, an important step in empirical process theory (see e.g. [67]). To do this we use machinery
developed in [62]. Recall that (Xt)t≥1 is a martingale and let χ be the range of each Xt. Let F be a function class
where for all f ∈ F , f : χ→ R.

To define the notion of sequential Rademacher complexity, we first let (εt)
T
t=1 be a sequence of independent

Rademacher random variables (i.e. P(εt = +1) = P(εt = −1) = 1
2 ). Next we define a tree process as a function of

these independent Rademacher random variables.
A χ-valued tree x of depth T is a rooted complete binary tree with nodes labelled by elements of χ. We identify

the tree x with the sequence (x1, x2, . . . , xT ) of labeling functions xt : {±1}t−1 → χ which provide the labels for
each node. Here x1 ∈ χ is the label for the root of the tree, while xt for t > 1 is the label of the node obtained by
following the path of length t − 1 from the root, with +1 indicating “right” and −1 indicating “left.” Based on this
tree, xt is a function of (ε1, ε2, . . . , εt−1).

Based on this, we define the sequential Rademacher complexity of a function class F .

Definition 1 (Definition 3 in [62]). The sequential Rademacher complexity of a function class F on a χ-valued tree
x is defined as

RT (F) , sup
x

E
[

sup
f∈F

εtf(xt(ε1, ε2, . . . , εt−1))

]
where the outer supremum is taken over all χ-valued trees. Importantly note that

(
εtf(xt(ε1, ε2, . . . , εt−1)

)
t≥1

is
a martingale. Now we are in a position to state the main result which allows us to do symmetrization for functions of
martingales.

Theorem 5 (Theorem 2 in [62]).

E
[

sup
f∈F

1

T

T∑
t=1

E[f(Xt)|At−1]− f(Xt)

]
≤ 2RT (F).

For further details refer to [62].
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