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Abstract

Information geometry applies concepts in differential geometry to probability and statistics and is
especially useful for parameter estimation in exponentialfamilies where parameters are known to lie on
a Riemannian manifold. Connections between the geometric properties of the induced manifold and sta-
tistical properties of the estimation problem are well-established through the Cramér-Rao lower bound.
However developing first-order methods that scale to largerproblems has been less of a focus in the
information geometry community. The best known algorithm that incorporates manifold structure is
the natural gradient descent algorithm introduced by Amari, which is a second-order method. On the
other hand, stochastic approximation methods have led to the development of first-order methods for
optimizing noisy objective functions. The classical Robbins-Monro and Keifer-Wolfowitz algorithms
are the basis for many stochastic approaximation algorithms. A recent generalization of the Robbins-
Monro algorithm known as mirror descent, developed by Nemirovski and Yudin is a first order method
that induces non-Euclidean geometries. However current analysis of mirror descent does not precisely
characterize the induced non-Euclidean geometry nor does it consider performance in terms of statis-
tical relative efficiency. In this paper, we prove that mirror descent induced by Bregman divergences
is equivalent to thenatural gradient descent algorithm on thedual Riemannian manifold. Using this
equivalence between natural gradient descent and mirror descent, it follows that (1) mirror descent is the
steepest descent direction along the Riemannian manifold of the exponential family; (2) mirror descent
with log-likelihood loss applied to parameter estimation in exponential families asymptotically achieves
the classical Cramér-Rao lower bound and (3) natural gradient descent for manifolds corresponding to
exponential families can be implemented as a first-order method through mirror descent.

1 Introduction

Information geometry, which marries concepts from differential geometry with statistical decision theory
was born out of the pioneering work of Rao [18]. Along with Cramér, Rao proved the classical Cramér-Rao
bound [12, 18] and showed that the Fisher information matrix for parametric families induces a Riemannian
manifold. Detailed characterizations of the differentialgeometric properties for various statistical mani-
folds are provided in [5]. Work by Amari and other authors in recent years has provided further signifcant
contributions to information geometry by making links to information theory and incorporating ideas from
optimization and online learning (see e.g. [2, 3, 4]).

In particular Amari proposednatural gradient descent [2] as an online learning algorithm that incor-
porates manifold structure. The algoirthm generalizes online gradient descent by multiplying the gradient
update by the inverse of the Riemannian metric. For regular parametric families, the Riemannian metric
corresponds to the inverse of the Fisher information matrix. Importantly, Amari proves that using the nat-
ural gradient descent step asymptotically satisfies the Cramér-Rao lower bound for parameter estimation
in exponential families. However, the natural gradient descent algorithm is a second-order method since it
requires inversion of the Hessian or Fisher-information matrix correpsonding to the Riemannian manifold.
When the number of parameters is large, second-order methods are often a significant computational burden.
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On the other hand, there has recently been a strong focus on developing first-order methods to estimate
noisy objective functions in the machine learning community. The idea of stochastic updates or stochastic
optimization procedures has a long history in optimizing statistical objectives going back to Robbins and
Monro [20] and Kiefer and Wolfowitz [16]. The widely used online gradient descent algorithm is simply
a special case of the Robbins-Monro algorithm. More recently, Nemirovski and Yudin developed a gener-
alization of online or stochastic gradient descent known asmirror descent [17]. The mirror descent algo-
rithm allows non-Euclidean geometries to be induced via thechoice of a proximity function (see e.g. [23]).
Importantly mirror descent is a first-order method and has subseqently received significant attention (see
e.g. [1, 8, 13, 23]). However, to the best of our knowledge, the mirror descentliterature has generally not
addressed two important issues: (i) developing a precise characterization of the non-Euclidean geometry
induced by mirror descent and (ii) statistical analysis with respect to a model that considers variance and
efficiency properties of the mirror descent update.

In this paper we consider mirror descent updates where the proximity function is aBregman divergence
[10] or equivalently, the Kullback-Leibler divergence for an exponential family. Bregman divergences are
differentiable functions onRp × R

p indexed by strictly convex differentiable functionsG. Bregman di-
vergences induce Riemannian manifolds and for each Bregmandivergence, there exists adual Bregman
divergence inducing a dual Riemannain manifold (see Amari and Cichocki [3] for details). Using this con-
nection, we prove that mirror descent with Bregman divergences is equivalent to natural gradient descent [2]
along thedual Riemannian manifold. An immediate consequence of this equivalence between mirror de-
scent with Bregman divergences and natural gradient descent allows us to make three novel statements about
mirror descent. Firstly, the mirror descent step is the direction of steepest descent in the dual Riemannian
manifold corresponding to the Bregman diveregence. Secondly, using the one-to-one correspondence be-
tween Bregman divergences and exponential families (see e.g. [6, 7]), mirror descent applied to parameter
estimation in the exponential family corresponding to the Bregman divergence asymptotically achieves the
Cramér-Rao lower bound [12, 18]. Hence we address both of the stated issues for mirror descent when
the proximity function is a Bregman divergence. Thirdly, the equivalence proves that mirror descent with
Bregman divergences is a first-order implementation of natural gradient descent along the dual Riemannian
manifold.

We also discuss connections between mirror descent, natural gradient descent and other online algo-
rithms that directly impose a Riemannian structure. The standard gradient descent step on a Riemannian
manifold requires applying the exponential map to the gradient update (see e.g. [9]). Since computation of
the exponential map is challenging in general, approximations to the exponential map are used. We prove
that natural gradient descent (and consequently mirror descent) is equivalent to standard Riemannian gradi-
ent descent with the exponential map approximated by its first-order Taylor approximation. Hence mirror
descent and natural gradient descent can be motivated as first-order approximations to the computationally
intensive Riemannian gradient descent step.

The remainder of the paper is organized as follows: In Section 2 we introduce the basic concepts in-
cluding mirror descent, Bregman divergences, convex duality, Riemannian manifolds and natural gradient
descent. Section3 presents the main result on the equivalence between mirror descent and natural gradient
descent as well as consequences for statistical estimationand connections to other online algorithms for
Riemannian manifolds. The discussion and conclusion is presented in Section4.
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2 Background and preliminaries

We begin by introducing the notation and problem setup for online convex optimization as defined in Shalev-
Shwartz [22]. Let {ft}∞t=1 denote a sequence of convex differentiable cost functionsft : Θ → R where
Θ ⊂ R

p is a convex set. The online learning problem is to predict a sequence of vectors{θt}∞t=1 and incur
a lossft(θt) at each iteratet. The sum of losses

∑T
t=1

ft(θt) is referred to as theregret at T and the goal
is to construct a sequence with the smallest possible regret. There is a large body of work on providing
bounds on regret for various online algorithms (see e.g. [1, 13, 23]), however the main focus of this paper is
understanding the geometry of the mirror descent algorithmin the context of a generative statistical model
by proving an equivalence to natural gradient descent.

2.1 Mirror descent with Bregman divergences and convex duality

The most common approach to construct a sequence{θt}
∞
t=1 is based on online or stochastic gradient de-

scent. The online gradient descent update is:

θt+1 = θt − αt∇ft(θt), (1)

where(αt)
∞
t=0 denotes a sequence of step-sizes. Note that the online gradient descent step can alternatively

be expressed as:

θt+1 = argmin
θ∈Θ

{
〈θ,∇ft(θt)〉+

1

2αt

‖θ − θt‖
2
2

}
.

By re-expressing the stochastic gradient step in this way, Nemirovski and Yudin [17] introduced a general-
ization of gradient descent as follows: Denote theproximity functionΨ : Rp×R

p → R
+, strictly convex in

the first argument, then define themirror descent step as:

θt+1 = argmin
θ∈Θ

{〈θ,∇ft(θt)〉+Ψ(θ, θt)} . (2)

SettingΨ(θ, θ′) = 1
2
‖θ − θ′‖22 yields the standard gradient descent update, hence (2) is a generalization of

online gradient descent.
A standard choice for the proximity functionΨ is the so-calledBregman divergencesince they corre-

spond to the Kullback-Leibler divergence for an exponential family. In particular, letG : Θ → R denote a
strictly convex twice-differentiable function, the divergence introduced by Bregman [10] BG : Θ×Θ → R

+

is:
BG(θ, θ

′) = G(θ)−G(θ′)− 〈∇G(θ′), θ − θ′〉.

Bregman divergences are widely used in statistical inference, optimization, machine learning, and informa-
tion geometry (see e.g. [3, 7]). LettingΨ(·, ·) = BG(·, ·), the mirror descent step defined is:

θt+1 = argmin
θ

{
〈θ,∇ft(θt)〉+

1

αt
BG(θ, θt)

}
. (3)

Examples ofG and the induced Bregman divergences are listed in Table 1. For a more extensive list, see
e.g. [7]. There is a one-to-one correspondence between Bregman divergences and exponential families [7]
which we exploit later when we discuss estimation in exponential families.

The concept of convex conjugate functions is central to the main result in the paper. The convex conju-
gate function ofG is defined to be:

H(η) := sup
θ∈Θ

{〈θ, η〉 −G(θ)} .
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G(θ) BG(θ, θ
′)

1
2
‖θ‖22

1
2
‖θ − θ′‖22

exp(θ) exp(θ)− exp(θ′)− 〈exp(θ′), θ − θ′〉

log(1 + exp(θ)) log

(
1+eθ

1+eθ
′

)
− 〈 eθ

′

1+eθ
′ , θ − θ′〉

Table 1: Bregman divergence examples

G(θ) H(η) BH(η, η′)
1
2
‖θ‖22

1
2
‖η‖22

1
2
‖η − η′‖22

exp(θ) 〈η, log η〉 − η η log η
η′

log(1 + exp(θ)) η log η + (1− η) log(1− η) (1− η) log

(
1−η
1−η′

)
+ η log η

η′

Table 2: Dual Bregman divergence examples

If G is lower semi-continuous,G is the convex conjugate ofH, implying a dual relationship betweenG
andH. Further, sinceG is strictly convex and twice differentiable, so isH. Note also that ifg = ∇G

andh = ∇H, g = h−1. For additional properties and motivation for the convex conjugate function, see
Rockafeller [21].

Let η = g(θ) ∈ Φ be the point at which the supremum for the dual function is attained represent the
dual co-ordinate system toθ. The dual Bregman divergenceBH : Φ× Φ → R

+ is:

BH(η, η′) = H(η)−H(η′)− 〈∇H(η′), η − η′〉.

Using the dual co-ordinate relationship, it is straightforward to show thatBH(η, η′) = BG(h(η
′), h(η))

andBG(θ, θ
′) = BH(g(θ′), g(θ)). Dual functions and Bregman divergences for examples in Table 1 are

presented in Table 2. For more examples see Banerjee et al. [7].

2.2 Riemannian manifolds and natural gradient descent

Let (M,H) be ap-dimensional Riemannian manifold with metric tensorH = (hjk) andM ⊂ R
p. For a

thorough introduction to Riemannian manifolds, see doCarmo [11].
Now, define a sequence of functions{f̃t}∞t=0 on the Riemannian manifold̃ft : M → R. Thenatural

gradient descent step introduced in Amari [2] is:

ηt+1 = ηt − αtH
−1(ηt)∇f̃t(θt), (4)

whereH−1 is the inverse of the Riemannian mentricH = (hjk). Theorem 1 in [2] proves that the natural
gradient algorithm steps in the direction of steepest descent along the Riemannian manifold(M,H). Hence
the name natural gradient descent. The choice of notationη both to parameterize elements of the Riemannian
manifoldM and the dual co-ordinatesη = g(θ) is intended to pre-empt the link between natural gradient
descent and mirror descent.
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2.3 Bregman divergences and Riemannian manifolds

Now we explain how every Bregman divergence and its dual induces a pair of Riemannian manifolds as
described in Amari and Cichocki [3]. For the Bregman divergenceBG : Θ × Θ → R

+ induced by the
convex functionG, define the Riemannian metric onΘ, G = ∇2G (i.e. the Hessian matrix). SinceG is
a strictly convex twice differentiable function,∇2G(θ) is a positive definite matrix for allθ ∈ Θ. Hence
BG(·, ·) induces the Riemannian manifold(Θ,∇2G). Now letΦ be the image ofΘ under the continuous
mapg = ∇G. BH : Φ×Φ → R

+ induces a Riemannian manifold(Φ,H), whereH = ∇2H. Let (Θ,∇2G)
denote theprimal Riemannian manifold and(Φ,∇2H) denote thedual Riemannian manifold.

3 Equivalence of algorithms

In this section we present our main result, the equivalence of mirror descent and natural gradient descent.
We also discuss consequences and implications.

Theorem 1. The mirror descent step(3) with Bregman divergence defined byG applied to the sequence of
functions(ft)∞t=0 in the spaceΘ is equivalent to the natural gradient step(4) along the dual Riemannian
manifold(Φ,∇2H).

The proof follows by stating mirror descent in the dual Riemannian manifold and simple applications of
the chain rule.

Proof. Recall that the mirror descent update is:

θt+1 = argmin
θ

{
〈θ,∇ft(θt)〉+

1

αt

BG(θ, θt)

}
.

Finding the minimum by differentiation yields the step:

g(θt+1) = g(θt)− αt∇θft(θt),

whereg = ∇G. In terms of the dual variableη = g(θ) and noting thatθ = h(η) = ∇H(η),

ηt+1 = ηt − αt∇θft(h(ηt)).

Applying the chain rule to∇ηft(h(η)) = ∇ηh(η)∇θft(h(η)) implies that

∇θft(h(ηt)) = [∇ηh(ηt)]
−1∇ηft(h(ηt)).

Therefore
ηt+1 = ηt − αt[∇

2H(ηt)]
−1∇ηft(h(ηt)),

which corresponds to the natural gadient descent step. Thiscompletes the proof.

In the subsequent sections, we discuss how this connection directly yields optimal efficiency results for
mirror descent and discuss connections to other online algorithm on Riemannian manifolds.
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G(θ) BG(θ, θ
′) Family

1
2
‖θ‖22

1
2
‖θ − θ′‖22 Gaussian

exp(θ) exp(θ)− exp(θ′)− 〈exp(θ′), θ − θ′〉 Poisson

log(1 + exp(θ)) log

(
1+eθ

1+eθ
′

)
− 〈 eθ

′

1+eθ
′ , θ − θ′〉 Bernoulli

Table 3: Exponential famililes and Bregman divergences

3.1 Efficient parameter estimation in exponential families

In this section we exploit the connection between mirror descent and natural gradient descent to study the ef-
ficiency of mirror descent from a statistical perspective. Prior work on the statistical theory of mirror descent
has largely focussed on regret analysis and we are not aware of analysis on statistical efficiency. We will see
that Fisher efficiency [14, 15, 19] which is an optimality criterian on the covariance of a parameter estimate
is an immediate consequence of the equivalence between mirror descent and natural gradient descent.

The statistical problem we consider is parameter estimation in exponential families. Consider anatural
parameterexponential family with density:

p(y | θ) = h(y) exp(〈θ, y〉 −G(θ)),

whereθ ∈ R
p andG : Rp → R is a strictly convex differentiable function. The probability density function

can be re-expressed in terms of the Bregman divergenceBG(·, ·) as follows:

p(y | θ) = h̃(y) exp(−BG(θ, h(y))),

where recall thath = ∇H andH is the conjugate dual function ofG. The distribution can be expressed in
terms of themean parameterη = g(θ) and the dual Bregman divergenceBH(·, ·):

p(y | η) = h̃(y) exp(−BH(y, η)).

There is a one-to-one correspondence between exponential families and Bregman divergence [6, 7]. Table
3 displays the exponential families corresponding to the Breman divergences in Table 2.

Consider the mirror descent update for the natural parameter θ with proximty functionBG(·, ·) when
the function to be minimized is the standard log loss:

ft(θ; yt) = − log p(yt | θ) = BG(θ, h(yt)).

Then the mirror descent step is:

θt+1 = argmin
θ

{
〈θ,∇θBG(θ, h(yt))|θ=θt〉+

1

αt
BG(θ, θt)〉

}
. (5)

Now if we consider the natural gradient descent step for the mean parameterη, the function to be minimized
is again the standard log-loss in theη co-ordinates:

f̃t(η; yt) = − log p(yt | η) = BH(yt, η).

Using Theorem1 (or by showing it directly), the natrual gradient step is:

ηt+1 = ηt − αt[∇
2H]−1∇BH(yt, ηt). (6)
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A parallel argument holds if the mirror descent step was expressed in terms of the mean parameter and the
natural gradient step in terms of the natural parameter.

Now we use Theorem 2 in Amari [2] to prove that mirror descent yields an asymptotically Fisher effi-
cient forη. The Cramér-Rao theorem states that any unbiased estimator based onT independent samples
y1, y2, ..., yT of η, which we denote bŷηT satisfies the following lower bound:

E[(η̂T − η)(η̂T − η)T ] �
1

T
∇2H,

where� refers to the standard matrix inequality. A sequence of estimators(η̂t)∞t=1 is asymptotically Fisher
efficient if:

lim
T→∞

TE[(η̂T − η)(η̂T − η)T ] → ∇2H.

Now by using a result from Amari [2] for natural gradient descent, we prove that mirror descentis Fisher
efficient, thus achieving the same asymptotic efficiency as any batch-mode method. The following corollary
is a direct consequence of Theorem 2 in Amari [2].

Corollary 1. The mirror descent step applied to the log loss(5) with step-sizesαt = 1
t

asymptotically
achieves the Craḿer-Rao lower bound.

For a more detailed discussion on the statistical properties of natural gradient see Amari [2]. Here we
have illustrated how the equivalence between mirror descent with Bregman divergences and natural gradient
descent gives second-order optimality properties of mirror descent.

3.2 Connection to other online methods on Riemannian manifolds

In this section, we discuss connections between natural gradient descent, mirror descent and online algo-
rithms developed in Bonnabel [9] that directly use Riemannian manifold structures. To define the online
gradient descent step for general Riemannian manifolds used in Bonnabel [9], we need to define the expo-
nential map and differentiation in curved spaces.

Theexponential mapat a pointη ∈ M is a mapexpη : TηM → M whereTηM is the tangent space
at each pointη ∈ M (see e.g. [11]). Consider the geodesic curveγ : [0, 1] → M, with γ(0) = η and
γ̇(0) = v, wherev ∈ TηM thenexpη(v) = γ(1).

Now we define differentiation. Letf : M → R be a differentiable function onM. The gradient vector
field ▽Mf takes the form▽Mf(η) = ▽v(f(expη(v)))|v=0 noting thatf(expη(v)) is a smooth function
onTηM.

For the sequence of functions{ft}∞t=0 whereft : M → R the online gradient descent step analyzed in
Bonnabel [9] is:

ηt+1 = expηt(−αt∇Mft(ηt)). (7)

The key reason why the update (7) is the standard gradient descent step instead of the natural gradient
descent step introduced by Amari is thatηt+1 is always guaranteed to lie on the manifoldM for (7), but not
for the natural gradient descent step. Unfortunately, the exponential map is extremely difficult to evaluate in
general since it is the solution of a system of second-order differential equations [11].

Consequently a standard strategy is to use a computableretractionRη : TηM → R
p of the exponential

map which yields the approximate gradient descent step:

ηt+1 = Rηt(−αt∇Mft(ηt)). (8)
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The retractionRη(v) = η + v corresponds to the first-order Taylor approximation of the exponential map
and yields the natural gradient descent step in Amari [2]. Therefore as pointed out in Bonnabel [9], natural
gradient descent can be cast as an approximation to gradientdescent for Riemannian manifolds. Conse-
quently mirror descent can be viewed as an easily computablefirst-order approximation to gradient descent
for any Riemannian manifold induced by a Bregman divergence.

4 Discussion

In this paper we prove that mirror descent with proximity function Ψ equal to a Bregman divergence is
equivalent to the natural gradint descent algorithm along the dual Riemannian manifold. Based on this
equivalence, we use results developed by Amari [2] to conclude that mirror descent is the direction of
steepest in the corresponding Riemannian space and for parameter estimation in exponential families with
the associated Bregman divergence, mirror descent achieves the Cramér-Rao lower bound. Furthermore,
this connection proves that the natural gradient step can beimplemented as a first-order method using mirror
descent which has computational gains for larger datasets.

Following on from this connection, there are a number of interesting and open directions. Firstly, one
of the important issues for any online learning algorithm ischoice of step-size. Using the connection be-
tween mirror descent and natural gradient, it would be interesting to determine whether adaptive choices of
step-sizes proposed in Amari [2] that exploit the Riemannian structure can improve performance of mirror
descent. It would also be useful to determine a precise characterization of the geometry of mirror descent for
other proximity functions such asℓp-norms and explore links online algorithms such as projected gradient
descent.
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