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Abstract

High-dimensional auto-regressive models provide a natural way to model influence be-

tween M actors given multi-variate time series data for T time intervals. While there has

been considerable work on network estimation, there is limited work in the context of infer-

ence and hypothesis testing. In particular, prior work on hypothesis testing in time series

has been restricted to linear Gaussian auto-regressive models. From a practical perspec-

tive, it is important to determine suitable statistical tests for connections between actors

that go beyond the Gaussian assumption. In the context of high-dimensional time series

models, confidence intervals present additional estimators since most estimators such as

the Lasso and Dantzig selectors are biased which has led to de-biased estimators. In this

paper we address these challenges and provide convergence in distribution results and confi-

dence intervals for the multi-variate AR(p) model with sub-Gaussian noise, a generalization

of Gaussian noise that broadens applicability and presents numerous technical challenges.

The main technical challenge lies in the fact that unlike Gaussian random vectors, for sub-

Gaussian vectors zero correlation does not imply independence. The proof relies on using

an intricate truncation argument to develop novel concentration bounds for quadratic forms

of dependent sub-Gaussian random variables. Our convergence in distribution results hold

provided T = Ω((s ∨ ρ)2 log2M), where s and ρ refer to sparsity parameters which matches

existed results for hypothesis testing with i.i.d. samples. We validate our theoretical results

with simulation results for both block-structured and chain-structured networks.

1 Introduction

Vector autoregressive models arise in a number of applications including macroeconomics (see

e.g.Ang and Piazzesi [2003],Hansen [2003],Shan [2005]), computational neuroscience (see e.g.Goebel

et al. [2003],Seth et al. [2015],Harrison et al. [2003], Bressler et al. [2007]), and many others (see

e.g.Michailidis and dAlché Buc [2013],Fujita et al. [2007]). Recent years has seen substantial
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development in the theory and methodology of high-dimensional auto-regressive models with

respect to parameter estimation (see e.g. Song and Bickel [2011],Basu et al. [2015],Davis et al.

[2016],Medeiros and Mendes [2016], Mark B. and R. [2018]). In particular if there are M depen-

dent time series (e.g. voxels in the brain, actors in a social network, measurements at different

spatial locations), time series network models allow us to model temporal dependence between

actors/nodes in a network.

More precisely, consider the following time series auto-regressive network model with lag p,

Xt+1 =

p∑
j=1

A∗(j)Xt+1−j + εt, (1)

where {Xt}Tt=0 ∈ RM is the time series data we have access to, {A∗(j) ∈ RM×M , j = 1, . . . , p}
are the network parameters of interest and εt ∈ RM is zero-mean noise. We are considering the

high-dimensional setting where the number of nodes M in the network is much larger than the

sample size T . Prior work in Basu et al. [2015] has addressed the question of how to estimate the

network parameter A∗ with Gaussian noise εt under sparsity assumptions and various structural

constraints. In this paper, we focus on inference and hypothesis testing for the parameter A∗

given the data (Xt)
T
t=0.

In high-dimensional statistics, there has recently been a growing body of work on confidence

intervals and hypothesis testing under structural assumptions such as sparsity. Since the widely

used Lasso estimator for sparse linear regression is asymptotically biased, one-step estimators

based on bias-correction have been studied in works such as Zhang and Zhang [2014], Van de Geer

et al. [2014] and Javanmard and Montanari [2014] which are referred to as LDPE, de-sparsifying

and de-biasing estimator respectively. Low-dimensional components of these estimators have

asymptotic normality and thus can be used for constructing hypothesis testing and confidence

intervals.

In this paper, we adopt the framework of Ning and Liu (Ning et al. [2017]) who propose a

high dimensional test statistic based on score function, called the decorrelated score function

which we briefly describe here. Formally, consider a statistical model P = {Pβ : β ∈ Ω} with

high-dimensional parameter vector β = (θ,γ>)> ∈ Rd. Suppose we are interested in the scalar

parameter θ and γ ∈ Rd−1 is the nuisance parameter. Suppose data {U i, i = 1, . . . , n} are i.i.d.

data following distribution Pβ, then the negative log-likelihood function is defined as

`(θ,γ) = − 1

n

n∑
i=1

log f(U i; θ,γ).

It is known that the score function
√
n∇θ`(0,γ∗) is asymptotically normal if the true parameter

β∗ = (0,γ∗). If γ∗ is substituted by some estimator γ̂, the estimation induced error can be

approximated as the following:

√
n∇θ`(0, γ̂)−

√
n∇θ`(0,γ∗) ≈

√
n∇2

θγ`(0,γ
∗)(γ̂ − γ∗),
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when γ̂ − γ∗ is small enough. Although γ̂ − γ∗ converge to 0 with properly chosen γ̂, e.g.

Lasso estimator,
√
n∇2

θγ`(0,γ
∗)(γ̂ − γ∗) would not vanish if Eβ

(
∇2
θγ`(0,γ

∗)
)
6= 0. This fact

motivates the decorrelated score function:

S(θ,γ) = ∇θ`(θ,γ)− IθγI
−1
γγ∇γ`(θ,γ),

with Fisher information matrix I = Eβ

(
∇2`(β)

)
. One can check that

E (∇γS(θ,γ)) = 0.

Both γ and IθγI
−1
γγ are substituted by some estimator, and it is shown in Ning et al. [2017] that

the decorrelated score function is asymptotically normal.

In the linear regression case, the test statistic generated by the decorrelated score function in

Ning et al. [2017] is equivalent to that constructed by de-biased estimator in Van de Geer et al.

[2014]. However, Ning et al. [2017] allow a more general form, and thus is easier to adapt to

the time series case. In fact Neykov et al.Neykov et al. [2018] consider amongst other examples,

high-dimensional time series with Gaussian error innovations. While Gaussian error innovations

are widely used, many time series models include data that has bounded range or discrete data,

for which the Gaussian distribution is not a natural fit. In this paper, we address the more

general and technically challenging setting in which the noise εt is sub-Gaussian.

One of the important technical challenges in going from the Gaussian to the sub-Gaussian

case is that dependent Gaussian vectors can be rotated to be independent, while such a result

does not hold for sub-Gaussian vectors. Prior work in Wong et al. [2016] addresses this challenges

by imposing stationarity and β-mixing conditions. In order to avoid these conditions, we develop

novel concentration bounds for sub-Gaussian random vectors.

In this paper, we investigate the hypothesis testing and confidence region with respect to a

low-dimensional component of parameter matrices {A∗(j), j = 1, . . . , p} for sub-Gaussian data,

using the testing framework in Ning et al. [2017]. Our major contributions are as follows:

• Extending theoretical results in Ning et al. [2017] for high-dimensional hypothesis testing

from Gaussian to sub-Gaussian temporal dependent data (VAR model), both under null

and alternative hypothesis. We also show that our techniques lead to similar results to

Neykov et al.Neykov et al. [2018] in the Gaussian case but under less restrictive conditions;

• A novel concentration bound for quadratic forms of sub-Gaussian time series data. Note

that unlike Gaussian vectors which can be rotated to be independent, sub-Gaussian vectors

can not which present additional technical challenges. Our analysis also leads to estima-

tors for covariance and regression parameters for time series data under sub-Gaussian

assumptions which are of independent interest.
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• We also construct semi-parametric efficient confidence region for multivariate parameters

with fixed dimension;

• Finally we support our theoretical guarantees with a simulation study on bounded noise,

which is sub-Gaussian but not Gaussian.

1.1 Related Work

In the literature on inference for high-dimensional VAR models, most work focuses on the

estimation problem. Song and Bickel (Song and Bickel [2011]) investigate penalized least squares

algorithms for different penalties, with some externally imposed assumptions on the temporal

dependence. Theoretical guarantees on Dantzig type and Lasso type estimators are studied

in Han et al. [2015] and Basu et al. [2015], but with Gaussian noise. Barigozzi and Brownlees

(Barigozzi and Brownlees [2018]) consider the inference for stationary dependence structure built

among variables, other than the parameters in the VAR model. In our work, we control the

error bounds of Lasso and Dantzig type estimators for parameter matrices, with sub-Gaussian

noise. Then we establish asymptotic distribution of test statistic based on this.

In the high-dimensional hypothesis testing literature, there is some work regarding to test-

ing for high-dimensional mean vector (Srivastava [2009]), covariance matrices (Chen et al.

[2010],Zhang et al. [2013]) and independence among variables (Schott [2005]). While for testing

on regression parameters, most work assumes i.i.d samples. Lockhart et al. [2014], Taylor et al.

[2014] and Lee et al. [2016] proposes methods to test whether a covariate should be selected

conditioning on the selection of some other covariates. A penalized score test depending on the

tuning parameter λ is considered in Voorman et al. [2014]. Our work follows the a line of work

by Zhang and Zhang [2014], Van de Geer et al. [2014], Javanmard and Montanari [2014] and

Ning et al. [2017], the de-sparsifying or decorrelated literature. We construct a VAR version

of decorrelated score test proposed by Ning et al. [2017]. Chen and Wu (Chen and Wu [2018])

tackles the hypothesis testing problem for time series data as well, but they are testing the trend

in a time series, instead of the autoregressive parameter which encodes the influence structure

among variables.

As mentioned earlier, our work is most closely related to the prior work of Neykov et

al.Neykov et al. [2018], which provides a hypothesis testing framework with high-dimensional

Gaussian time series as a special case. In our work, we consider the more general and techni-

cally challenging case of sub-Gaussian vector auto-regressive models. Throughout this paper,

we provide a comparison to results derived in this work for the Gaussian case.
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1.2 Organization of the Paper

Section 2 explains the problem set up and proposes our test statistic. Theoretical guarantee is

shown in section 3. Specifically, section 3.1 and 3.2 present the weak convergence rate of test

statistic under the null and alternative hypothesis H0 and HA. Section 3.3 propose some feasible

estimators, which satisfy the assumptions required and can be plugged into the test statistic.

Section 3.4 considers the case when the variance of noise are unknown, and we construct a

confidence region for multivariate parameter vectors in Section 3.5. We consider the special case

of the AR(1) model with Gaussian noise, a detailed comparison with Neykov et al. [2018] is

provided in section 3.6. Section 4 provides simulation results and section 5 includes the proofs

for the two main theorems. Much of the proof is deferred to Appendices.

1.3 Notation

We define the following norms for vectors and matrices: For a vector u = (u1, . . . , ud)
> ∈ Rd, we

define the p-norm where p ≥ 1,‖u‖p =
(∑d

i=1 u
p
i

) 1
p
. For a matrix U ∈ Rm×n, the `p norm and

Frobenius norm of U is defined as ‖U‖p = supv
‖Uv‖p
‖v‖p , ‖U‖F =

(∑m
i=1

∑n
j=1 U

2
ij

) 1
2
. We also

use notation ‖U‖1,1 to denote the `1 penalty on U , which is
∑m

i=1

∑n
j=1 |Ui,j |. Furthermore, if

U is symmetric the trace norm of U is ‖U‖tr = tr(
√
U2).

Throughout the paper, we assume that the entries of noise vectors {εti, 1 ≤ i ≤M}∞t=−∞ are

independent sub-Gaussian variables with constant scale factor. A univariate centered random

variable X has a sub-Gaussian distribution with scale factor τ if

MX(t) , E [exp(tX)] ≤ exp(τ2t2/2).

2 Problem Setup

We consider a general vector auto-regressive time series with lag p, where p is known and finite

and independent of T or other dimensions:

Xt+1 =

p∑
j=1

A(j)Xt−j+1 + εt, (2)

where Xt ∈ RM , εt ∈ RM is zero-mean entry-wise independent sub-Gaussian noise with identity

covariance matrix, and A(j) ∈ RM×M , j = 1, · · · , p are parameters of interest. Define the matrix

A∗ = (A(1), · · · , A(p)) ∈ RM×pM and Xt = (X>t , · · · , X>t−p+1)> ∈ RpM , then we can also write

(2) as

Xt+1 = A∗Xt + εt. (3)
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For notational convenience, we assume that time series data Xt has time range 1− p ≤ t ≤ T .

Based on data (Xt)
T
t=1−p, we test the hypothesis of whether a subset of entries in A∗ are 0.

Let A∗i be the ith row vector of A∗. Without loss of generality, suppose the entries we test are

in rows 1, · · · , k. Define Dm ⊂ {1, · · · , pM} as the columns we test in mth row with dm = |Dm|,
and D = {(i, j) : 1 ≤ i ≤ k, j ∈ Di}, with d = |D| =

∑k
m=1 dm. We test the null hypothesis:

H0 : ÃD = 0 (4)

where ÃD = ((A∗1)>D1
, · · · , (A∗k)>Dk)> ∈ Rd. We also assume that d is finite and not increasing

with T . In the work of of Neykov et al.Neykov et al. [2018], d is assumed to be 1.

2.1 Stationary distribution

Since we are developing a hypothesis testing framework based on the decorrelated score test,

it is important to specify a stationary distribution for Xt Using standard notation from auto-

regressive time series models, define the polynomial A(z) = IM −
∑p

j=1A(j)zj , where IM is an

M ×M identity matrix, and z is a complex number. To guarantee the existence of a stationary

solution to (3), we assume

det(A(z)) 6= 0, |z| ≤ 1.

Then we can write

(A(z))−1 =
∞∑
j=0

Ψjz
j ,

where Ψj , j ≥ 0 are all real valued matrices which are polynomial functions of A(i), 1 ≤ i ≤ p.

Note that in the special case where p = 1, Ψj = (A∗)j .

It can be shown that the unique stationary solution to (2) is

Xt =

∞∑
j=0

Ψjεt−j−1,

and the covariance matrix Σ of Xt satisfies

Σ = Cov(Xt) =

∞∑
j=0

ΨjΨ
>
j . (5)

2.2 Decorrelated Score Function

Using the frameworks developed in Ning et al. [2017] for independent design, we consider the

decorrelated score test. First we define the score function S(A∗) ∈ RM×M , with each entry

defined as follows:

[S(A∗)]jk = − 1

T

T−1∑
t=0

(Xt+1,j − a∗>j Xt)Xtk = − 1

T

T−1∑
t=0

εt,jXtk.
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As pointed out in Ning et al. [2017], the standard score function is infeasible and we need to

consider the decorrelated score function

S = (S>1 , S
>
2 , · · · , S>k )> ∈ Rd,

with each Sm ∈ Rdm corresponding to the tested row (m,Dm):

Sm = − 1

T

T−1∑
t=0

εt,m(Xt,Dm − w∗>m Xt,Dcm),

where Xt,Dm ∈ Rdm is composed of the entries of Xt whose indices are within set Dm. Xt,Dcm ∈
RpM−dm is also defined similarly and w∗m ∈ R(pM−dm)×dm is chosen to satisfy

Cov(Xt,Dm − w∗>m Xt,Dcm ,Xt,Dcm) = 0. (6)

Specifically, w∗m is defined as a function of Υ = Cov(Xt) ∈ RpM×pM :

w∗m = (ΥDcm,D
c
m

)−1ΥDcm,Dm . (7)

2.3 Test Statistic

Based on the decorrelated score function Sm, we first define the statistic VT,m ∈ Rdm :

VT,m ,
√
T (Υ(m))−

1
2Sm,

with Υ(m) ∈ Rdm×dm being defined as:

Υ(m) , Cov(Xt,Dm − w∗>m Xt,Dcm)

= Cov(Xt,Dm |Xt,Dcm)

= ΥDm,Dm −ΥDm,Dcm(ΥDcm,D
c
m

)−1ΥDcm,Dm .

(8)

Let VT be the d-dimensional vector concatenated by VT,m’s:

VT = (V >T,1, · · · , V >T,k)>.

One of the main results of the paper is to show that VT is asymptotically Gaussian. Define

UT = ‖VT ‖22, then UT is asymptotically χ2
d. Since we do not know εt, w

∗
m, and Υ(m), we later

define estimators for these quantities. Formally, we define our test statistic ÛT as

ÛT = T
k∑

m=1

Ŝ>m

(
Υ̂(m)

)−1
Ŝm, (9)

where Υ̂(m) ∈ Rdm×dm is an estimator for Υ(m) and Ŝm ∈ Rdm is defined as

Ŝm = − 1

T

T−1∑
t=0

(
Xt+1,m − (Âm)>DcmXt,Dcm

)
(Xt,Dm − ŵ>mXt,Dcm),
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with Âm ∈ RpM and ŵm ∈ R(pM−dm)×dm estimating A∗m and w∗m. Here we are not worried about

the invertible issue of Υ̂(m), since Υ(m) is a low dimensional covariance matrix. To guarantee a

good estimation of the high-dimensional parameter A∗m and w∗m, we impose sparsity conditions

upon them. Specifically, for each 1 ≤ m ≤M , 1 ≤ i ≤ k define

ρm , ‖A∗m‖0, si , ‖w∗i ‖0, (10)

and note that they both depend on A∗.

The sparsity of w∗m can be implied by the sparsity of Υ−1, which is a common condition in

high-dimensional hypothesis testing literature (e.g. see Van de Geer et al. [2014]). Specifically,

the following Lemma shows that when lag p = 1 and A∗ is symmetric, the sparsity of w∗m is

implied by the sparsity of A∗:

Lemma 2.1. If p = 1, A∗ ∈ RM×M is symmetric, then sm defined in (10) satisfies

sm ≤ d2
m max

1≤i≤M
ρi, for 1 ≤ m ≤ k.

The proof for Lemma 2.1 is included in Appendix E.

3 Theoretical guarantee

In this section, we present uniform convergence results for test statistic ÛT under H0 and HA,

with A∗ and estimators satisfying conditions. We also provide feasible estimators, and prove

that they satisfy corresponding conditions in Section 3.3. Unknown variance and confidence

region construction is discussed in Section 3.4 and 3.5. In Section 3.6 we provide consequences

of our theory under AR(1) model with Gaussian noise and compare our results with Neykov et

al.Neykov et al. [2018].

Recall that the null hypothesis is

H0 : ÃD = 0, (11)

with ÃD ∈ Rd being concatenated by (A∗1)D1 , . . . , (A
∗
k)Dk . While for the alternative hypothesis,

like in Ning et al. [2017], we consider

HA : ÃD = T−φ∆, (12)

with some constant φ > 0 and constant vector ∆ ∈ Rd. Write

∆ = (∆>1 , · · · .∆>k )>,
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where each ∆m ∈ Rdm . The reason why T−φ∆ instead of ∆ is considered in (12) is that we

expect the test to be more sensitive as sample size increases. We will see how the value of φ

influences the convergence of ÛT in Theorem 3.2.

We still assume εti’s are i.i.d. sub-Gaussian random variables, and also consider a special

case, where εt ∼ N (0, I). We compare our result in the Gaussian case to results in Neykov et

al.Neykov et al. [2018].

First we define the sets Ω0 and Ω1 of feasible parameter matrices A∗ under H0 and HA
respectively. To control the stability of {Xt} in model (3), we impose the condition:

∞∑
i=0

 ∞∑
j=0

‖Ψi+j‖22

 1
2

≤ β, (13)

for some constant β > 0. In the case p = 1, condition (13) reduces to

∞∑
i=0

 ∞∑
j=0

∥∥(A∗)i+j
∥∥2

2

 1
2

≤ β, (14)

which is implied by ‖A∗‖2 ≤ 1 − ε for some 0 < ε < 1, a typical condition assumed (see

e.g. Neykov et al. [2018]). Then define sets Ω0 and Ω1 for any β, ρ, s,M, T, φ > 0, set D of size

d and vector ∆ = (∆>1 , · · · ,∆>k )> ∈ Rd:

Ω0 = {A∗ ∈ RM×pM : ÃD = 0,

∞∑
i=0

 ∞∑
j=0

‖Ψi+j‖22

 1
2

≤ β,

max
m

ρm(A∗) ≤ ρ,max
m

sm(A∗) ≤ s},

(15)

Ω1 = {A∗ ∈ RM×pM : ÃD = T−φ∆,

∞∑
i=0

 ∞∑
j=0

‖Ψi+j‖22

 1
2

≤ β,

max
m

ρm(A∗) ≤ ρ,max
m

sm(A∗) ≤ s}.

(16)

Note here ρm(A∗) and sm(A∗) are still functions of A∗, since Υ is determined by A∗. Clearly

we need reliable estimators for Âm, ŵm and Σ̂(m) with 1 ≤ m ≤ k, to guarantee the weak

convergence of ÛT . We present the following assumptions for these estimators, which we will

verify in section 3.3. Note that constants C may depend on p, d, β and τ , but do not depend on

either M or T .

Assumption 3.1 (Estimation Error for A∗m). For each A∗ ∈ Ω0 ∪ Ω1,∥∥∥Âm −A∗m∥∥∥
1
≤ Cρm

√
logM

T
,
∥∥∥Âm −A∗m∥∥∥

2
≤ C

√
ρm logM

T
,

(Âm −A∗m)>

(
1

T

T−1∑
t=0

XtX>t

)
(Âm −A∗m) ≤ Cρm logM

T
,

(17)
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hold for 1 ≤ m ≤ k, with probability at least 1− c1 exp{−c2 logM}.

These are standard error bounds for Lasso estimator and Dantzig Selector with independent

design. In this paper we verify Assumption 3.1 in section 3.3 and the remaining two assumptions

when we have dependent sub-Gaussian random variables, as we do for our vector auto-regressive

model setting.

Assumption 3.2 (Estimation Error for w∗m). For each A∗ ∈ Ω0 ∪ Ω1:

‖ŵm − w∗m‖1 ≤ Csm

√
logM

T
,

tr

[
(ŵm − w∗m)>

(
1

T

T−1∑
t=0

Xt,DcmX
>
t,Dcm

)
(ŵm − w∗m)

]
≤ C sm logM

T
,

(18)

hold for 1 ≤ m ≤ k, with probability at least 1− c1 exp{−c2 logM}.

Similar to Assumption 3.1, we will show that both Lasso estimator and Dantzig selector

under model (3) satisfy Assumption 3.2.

Assumption 3.3 (Estimation Error for Υ(m)). For each A∗ ∈ Ω0 ∪ Ω1,∥∥∥∥Υ(m) 1
2

(
Υ̂(m)

)−1
Υ(m) 1

2 − I
∥∥∥∥
∞
≤ C (s ∨ ρ) logM√

T
, (19)

hold for 1 ≤ m ≤ k, with probability at least 1− c1 exp{−c2 logM}.

Note that Υ(m) ∈ Rdm×dm is a low-dimensional matrix, and thus it is computationally feasible

to use the sample covariance matrix of Xt,Dm − ŵ>mXt,Dcm as an estimator for Υ̂(m). We show in

section 3.3 that, as long as ŵm is a reliable estimator for w∗m, Υ̂(m) would satisfy a tighter bound

than (19). This looser bound in Assumption 3.3 actually allows more choices for estimators for

(Υ(m))−1, as shown in section 3.5.

3.1 Uniform convergence under null hypothesis

Based on these assumptions, we have the following main theorem.

Theorem 3.1. Consider the model (3) with i.i.d. sub-Gaussian noise εti with sub-Gaussian

parameter τ . If Assumptions 3.1-3.3 are satisfied, and (ρ ∨ s) logM = o(
√
T ), then ÛT defined

in (9) satisfies

sup
x∈R,A∗∈Ω0

∣∣∣P(ÛT ≤ x)− Fd(x)
∣∣∣

≤C1

T
1
8

+ C2

(
(s ∨ ρ) logM√

T

) 1
2

+
C3

MC4
,

(20)

when T > C for some constant C. Here the constants Ci’s depend on p, d, β, τ .
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Theorem 3.1 proves weak convergence of ÛT to χ2
d. The uniform convergence rate can be

understood as follows: the first term is due to the rate obtained by martingale CLT, where

we require T−
1
8 rather than T−

1
2 due to the dependence; the remaining two terms arise from

estimation error, with the second one being the error bounds, and third being the probability

that the error bounds do not hold. If we assume Gaussianity, we can improve the first term in

the rate of convergence from T−
1
8 to T−

1
4

+α for any α > 0. To the best of our knowledge, ours

is the first work that formally attempts to characterize the rates of convergence.

Remark 3.1. Compared to the theoretical result for independent design in Ning et al. [2017],

the only additional condition we add is
∑∞

i=0

(∑∞
j=0 ‖Ψi+j‖22

) 1
2 ≤ β, which is used to control the

strength of dependence uniformly. Also, we consider multivariate testing which is more general,

and derive the explicit convergence rate.

Remark 3.2. The test statistic proposed in Van de Geer et al. [2014] and Javanmard and

Montanari [2014] for the independent design share similar ideas with our test statistic. Instead

of imposing a sparsity assumption upon w∗m, Van de Geer et al. [2014] assumes Υ−1 to be row

wise sparse. This is actually equivalent to the sparsity assumption on w∗m in the univariate case.

Javanmard and Montanari [2014] does not require the sparsity condition on Υ−1, but it is hard

to extend their theory to the time series setting, due to a difficulty in applying the martingale

CLT.

Remark 3.3. The theoretical guarantee we obtained here, is more general and stronger than the

result achieved in Neykov et al. [2018]. A more detailed comparison is presented in section 3.6.

3.2 Uniform convergence under alternative hypothesis

Recall the definition of ΩA in (16). The following theorem establishes the asymptotic behavior

of ÛT for A∗ ∈ ΩA, with different values of φ. First define

∆̃ = (∆̃>1 , · · · , ∆̃>k )>, ∆̃m = (Υ(m))
1
2 ∆m, (21)

where Υ(m) is defined in (8).

Theorem 3.2. Consider the model (3) with i.i.d. sub-Gaussian noise εti and sub-Gaussian

parameter τ . If Assumptions 3.1-3.3 are satisfied, and (ρ∨s) logM = o(
√
T ), then when T > C

for some constant C,

(1) φ = 1
2

sup
x∈R,A∗∈Ω1

∣∣∣P(ÛT ≤ x)− F
d,‖∆̃‖22

(x)
∣∣∣

≤C1

T
1
8

+ C2

(
(s ∨ ρ) logM√

T

) 1
2

+
C3

MC4
.

(22)
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(2) 0 < φ < 1
2

sup
A∗∈Ω1

|P(ÛT ≤ x)|

≤C1

T
1
8

+
C2

MC3
+ C4 exp{−C5T

1
2
−φ + C6

√
x}.

(23)

(3) φ > 1
2

sup
x∈R,A∗∈Ω1

∣∣∣P(ÛT ≤ x)− Fd(x)
∣∣∣

≤C1

T
1
8

+ C2

(
(s ∨ ρ) logM√

T

) 1
2

+
C3

MC4
+ C3T

1−2φ
3 .

(24)

Here Ci’s are constants depending on p, d, β,∆, τ .

Theorem 3.2 shows the threshold value of φ for HA to be detectable. When φ > 1
2 , we cannot

distinguish H0 and HA since under both cases ÛT converges to χ2
d; When φ < 1

2 , ÛT diverges

to +∞ in probability, thus it would be very easy to detect HA; When φ = 1
2 , ÛT converges to a

non-central χ2
d with noncentrality parameter determined by constant vector ∆ and Υ = Cov(Xt),

which implies the power of the test. Note here, (23) holds also for the trivial case φ < 0, since

we do not use the fact φ > 0 in the proof.

Remark 3.4. Theorem 3.2 is also consistent with the threshold value of φ given by Ning et al.

[2017] for linear regression with i.i.d samples. However, Ning et al. [2017] assumes additional

conditions on the scaling of sample size, number of covariates and sparsity of w∗m for proving

asymptotic power. Our conditions are exactly the same as the ones for H0, due to a more specific

model and careful analysis.

3.3 Feasible Estimators

Both the estimation of w∗m and A∗ can be viewed as high-dimensional sparse regression problems,

thus we can use the Lasso or Dantzig selector. Formally, define

Â(L) = arg min
A∈RM×pM

1

T

T−1∑
t=0

‖Xt+1 −AXt‖22 + λA‖A‖1,1, (25)

as the Lasso estimator for A∗, and

Â(D) = arg min
A∈RM×pM

‖A‖1,1, s.t.

∥∥∥∥∥ 1

T

T−1∑
t=0

(Xt+1 −AXt)X>t

∥∥∥∥∥
∞

≤ λA, (26)

as the Dantzig selector estimator for A∗. Similarly, for 1 ≤ m ≤ k, define

ŵ(L)
m = arg min

w∈R(pM−dm)×dm

1

T

T−1∑
t=0

‖Xt,Dm − w>Xt,Dcm‖
2
2 + λw‖w‖1,1, (27)
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and

ŵ(D)
m = arg min

w∈R(pM−dm)×dm
‖w‖1,1, s.t.

∥∥∥∥∥ 1

T

T−1∑
t=0

(Xt,Dm − w>Xt,Dcm)X>t,Dcm

∥∥∥∥∥
∞

≤ λw. (28)

While for estimating Υ(m), since this is a low dimensional covariance matrix for Xt,Dm −
w∗>m Xt,Dcm , we can directly use sample covariance of Xt,Dm − ŵ>mXt,Dcm as Υ̂(m):

Υ̂(m) =
1

T

T−1∑
t=0

(Xt,Dm − ŵ>mXt,Dcm)(Xt,Dm − ŵ>mXt,Dcm)>, (29)

for 1 ≤ m ≤ k. Here ŵm in the definition of (29) is either ŵ
(L)
m or ŵ

(D)
m .

As shown in the following, estimators (25) to (29) all satisfy Assumptions 3.1 to 3.3, under

the model setting stated in (3):

Lemma 3.1. If Â = Â(L), or Â = Â(D), which are defined as in (25) and (26) with λA �
√

logM
T ,

then Â satisfies Assumption 3.1 when T > Cρ logM .

Lemma 3.2. If ŵm = ŵ
(L)
m or ŵm = ŵ

(D)
m , which are defined as in (27) and (28) with λw �√

logM
T , then ŵm’s satisfy Assumption 3.2 when T > Cs logM .

Lemma 3.3. If Υ̂(m)’s are defined as in (29), where ŵm satisfies (18) with probability at least

1− c1 exp{−c2 logM}, then∥∥∥∥Υ(m) 1
2

(
Υ̂(m)

)−1
Υ(m) 1

2 − I
∥∥∥∥
∞
≤ C

√
logM

T
,

with probability at least 1− c1 exp{−c2 logM}, when T > Cs2 logM .

Note here Lemma 3.3 is stronger than Assumption 3.3. The proof of these Lemmas are

deferred to Appendix A. By these lemmas and Theorem 3.1, 3.2, we arrive at following Corollary.

Corollary 3.1. Under model (3) with i.i.d sub-Gaussian noise εti with parameter τ , if Â = Â(L)

or Â(D), ŵm = ŵ
(L)
m or ŵ

(D)
m , and Υ̂(m)’s are defined as in (29) for 1 ≤ m ≤ k with λA � λw �√

logM
T , then if (ρ∨s) logM = o(

√
T ) and T > C for some constant C > 0, bounds (20) to (24)

from Theorems 3.1 and 3.2 hold.

3.4 Variance Estimation

In this section, we consider the case where σ∗2 = Var(εti) is unknown under model (3). Actually,

if σ∗ 6= 1 is known, it is straightforward to extend Theorem 3.1 to Theorem 3.2 for ÛT defined

as follows:

ÛT = T
k∑

m=1

Ŝ>m(Υ̂(m))−1Ŝm/σ
∗2. (30)
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This follows since if we consider Yt = Xt/σ
∗, time series data Yt would satisfy the same model

but with unit variance noise.

When σ∗2 is unknown, we apply the estimator

σ̂2 =
1

MT

T−1∑
t=0

‖Xt+1 − ÂXt‖22, (31)

and define the test statistic

ŨT = T
k∑

m=1

Ŝ>m(Υ̂(m))−1Ŝm/σ̂
2. (32)

We show that ŨT has the same convergence results we derive for the unit variance noise case.

Theorem 3.3. Consider the model (3) with i.i.d. sub-Gaussian noise εti of variance σ∗2 =

Var(εti) ≥ σ2
0 > 0 and scale factor τσ∗. Then Theorem 3.1 and 3.2 hold for ŨT under each

corresponding condition, and constants Ci’s also depend on σ0.

Theorem 3.3 shows that when we have to estimate the unknown σ∗2, test statistic ŨT main-

tains the same asymptotic behavior as ÛT under the known variance case, given that all the

assumptions for estimation errors are satisfied and σ∗ is lower bounded by some constant.

Remark 3.5. With sub-Gaussian noise εti, if we still assume the scale factor τσ∗ of εti to be

bounded by constant, then Lemma 3.1 to 3.3 would still hold. Thus the assumptions imposed on

estimation errors of Â, ŵm and Υ̂(m) are all satisfied. However, if we don’t assume σ∗ to be

bounded, then the tuning parameters λA and λw have to scale with σ∗.

Remark 3.6. Neykov et al. [2018] proposes another estimator for the variance of εti, based on

the fact that Σ = AΣA>+Cov(εt). Both these estimators are consistent and lead to convergence

in distribution results.

3.5 Semi-parametric Optimal Confidence Region

In this section, we construct a confidence region for ÃD, under model (3) with unknown noise

variance σ∗2. Similar to Ning et al. [2017], we consider the one-step estimator â(m) for each

(A∗m)Dm , based on the decorrelated score function:

â(m) = (Âm)Dm −
(

Υ̃(m)
)−1

S̃m, (33)

where Âm is any estimator satisfying the Assumptions 3.1 on error bounds for Âm − A∗m, and

both the Lasso or Dantzig Estimator for A∗m are suitable. Υ̃(m) takes the form:

Υ̃(m) =
1

T

T−1∑
t=0

(
Xt,Dm − ŵ>mXt,Dcm

)
X>t,Dm , (34)
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which is another estimator for Υ(m), and

S̃m = − 1

T

T−1∑
t=0

(
Xt+1,m − Â>mXt

)(
Xt,Dm − ŵ>mXt,Dcm

)
.

We will show that â(m)− (A∗m)Dm is asymptotically Gaussian with covariance matrix (Υ(m))−1.

Thus we construct the following confidence region for ÃD, with asymptotic confidence coefficient

1− α:

CR(α) =

{
θ = (θ>1 , . . . , θ

>
k )> : θm ∈ Rdm ,

T

σ̂2

k∑
m=1

(â(m)− θm)>Υ̂(m)(â(m)− θm) ≤ χ2
d(1− α)

}
.

(35)

This is a d dimensional elliptical ball with center vector (â(1)>, . . . â(k)>)>. The following

theorem shows the weak convergence result of

R̂T ,
T

σ̂2

k∑
m=1

(â(m)− (A∗m)Dm)>Υ̂(m)(â(m)− (A∗m)Dm). (36)

Theorem 3.4. Under model (3) with i.i.d. sub-Gaussian noise εti with variance σ∗2 = Var(εti) ≥
σ2

0 > 0 and sub-Gaussian parameter τσ∗, then Theorem 3.1 and 3.2 hold for R̂T under each cor-

responding condition, and the constants Ci’s also depend on σ0.

Remark 3.7. In the definition of one-step estimator â(m), we use Υ̃(m) instead of Υ̂(m) for

theoretical convenience. Theorem 3.4 would still hold true if â(m) is defined as (Âm)Dm −(
Υ̂(m)

)−1
S̃m.

Remark 3.8. We have exactly the same theoretical result for ŨT and R̂T , and this is due to

the close relationship between these two quantities. In particular,

R̂T = T

k∑
m=1

Ŝ>m

(
Υ̃(m)

>)−1

Υ̂(m)
(

Υ̃(m)
)−1

Ŝm/σ̂
2,

compared to ŨT = T
∑k

m=1 Ŝ
>
m(Υ̂(m))−1Ŝm/σ̂

2. We show in the proof of Theorem 3.4 that(
Υ̃(m)

>)−1

Υ̂(m)
(

Υ̃(m)
)−1

also satisfies Assumption 3.3 as an estimator for
(
Υ(m)

)−1
.

Remark 3.9. The one-step estimator â(m) is asymptotically unbiased, and shares a similar

form to the de-biased estimator proposed by Zhang and Zhang [2014], Van de Geer et al. [2014].

The de-biased estimator in Van de Geer et al. [2014] would take the following form under our

setting:

b̂m = (Âm)Dm + Θ̂Dm,·
1

T

T−1∑
t=0

Xt
(
Xt+1,m −X>t Âm

)
,
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where Θ̂ is computed by node-wise regression, as an estimator for Υ−1. When dm = |Dm| =

1, this is essentially the same as our estimator â(m), but would be slightly different in the

multivariate case. Note that the asymptotic covariance matrix for â(m) equals to the partial

information matrix I∗(Am,Dm |Am,Dcm), and thus is semi-parametric efficient, while b̂m is only

efficient when it is a scalar.

Remark 3.10. R̂T is also very similar to the test statistic proposed by Neykov et al. [2018]

for VAR model with lag 1. The only difference lies in the estimation of Var(εti), and they only

consider Dantzig selector for estimating A∗ and w∗m. We will provide a detailed comparison

between their theoretical result with ours in section 3.6.

3.6 Special case: AR(1) with Gaussian noise

Our theoretical guarantee covers VAR models with lag p and sub-Gaussian noise, of which AR(1)

model and Gaussian noise are special cases. Here we explain the consequences of our result under

this special case and provide comparison with Neykov et al. [2018].

When we consider lag p = 1, the constraint for A∗ becomes

∞∑
i=0

 ∞∑
j=0

∥∥(A∗)i+j
∥∥2

2

 1
2

≤ β,max
m

ρm(A∗) ≤ ρ,max
m

sm(A∗) ≤ s,

with (ρ ∨ s) logM = o(
√
T ). The two sparsity conditions and sample size requirement are

included in the conditions Neykov et al. [2018] proposes. In addition, they assume the following:

‖A∗‖1 ≤ C, ‖A∗‖2 ≤ 1− ε,
∥∥Σ−1

∥∥
1
≤ C.

for some 0 < ε < 1. Note that we don’t require these conditions, among which the first

and third are quite strong, and the second one ‖A∗‖2 ≤ 1 − ε is sufficient for our condition∑∞
i=0

(∑∞
j=0

∥∥(A∗)i+j
∥∥2

2

) 1
2 ≤ β. This follows since if ‖A∗‖2 ≤ 1− ε,

∞∑
i=0

 ∞∑
j=0

∥∥(A∗)i+j
∥∥2

2

 1
2

≤
∞∑
i=0

 ∞∑
j=0

‖A∗‖2(i+j)
2

 1
2

≤
∑∞

i=0(1− ε)i√
1− (1− ε)2

≤
(
2ε− ε2

)− 1
2 .

Until now the discussion focuses on the case where εti are i.i.d. sub-Gaussian noise of scale

factor Cσ∗, with (σ∗)2 being the variance of εti and lower bounded by some constant. Thus our

setting covers the case where εt ∼ N (0, (σ∗)2I) with σ∗ ≥ c. If εt ∼ N (0,Ψ) with Ψii ≥ c as

assumed in Neykov et al. [2018], we can still prove the same theoretical guarantee, under even

weaker condition based on spectral density, due to established concentration bounds in Basu

et al. [2015].
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4 Numerical Experiments

In this section, we provide a simulation study to validate our theoretical results. For simplicity,

our simulation is based on the AR(1) model:

Xt+1 = A∗Xt + εt, t = 0, . . . , T, (37)

where A∗ ∈ RM×M is set to be row-wise sparse. Symmetricity is not required in our theory,

but in order to ensure the sparsity of w∗m, we focus on symmetric matrices under H0, and

slightly asymmetric ones under HA. The eigenvalues of A∗ all fall in the unit circle of the

complex plane, which ensures the existence of stationary solution to this model. White noise εti

is simulated as independent Uniform(−1, 1) in order to satisfy the sub-Gaussianity condition.

Other distributions were also used but not reported since the results were very similar.

To consider multi-variate test sets, throughout the simulation we test the index set D with

d = |D| = 6, which involves three different rows and two columns in each row:

D = {(1, 3), (1, 5), (3, 3), (3, 4), (5, 4), (5, 8)}.

The null hypothesis takes the form H0 : ÃD = µ with some d-dimensional vector µ. Correspond-

ingly, we consider alternative hypothesis HA : ÃD = µ+ T−φ∆, with ∆ randomly selected from

d-dimensional Gaussian distribution, and φ ranges from 0.25 to 1.2.

Under H0, we generate A∗ with different row-wise sparsity levels and structures, and for

each A∗, vector µ may differ depending on the corresponding ÃD. Under HA, A∗ are still the

same matrices as under H0, but only adding the tested indices ÃD by T−φ∆. The experiments

are repeated under different settings of A∗, ∆, M,T and φ.

We use Lasso estimators defined in (25), (27) for the estimation of A∗ and w∗m, 1 ≤ m ≤ k,

and tuning parameters λA, λw are selected using cross validation. In cross validation, the training

sets are composed of consecutive time series data, with the remaining 10% of the original data

set being testing sets. Under H0, 1000 simulations are carried out under each parameter setting,

while under HA, we have 100 simulations. In the following sections, we look into false positive

rates (FPR) and true positive rates (TPR) of test statistics ŨT and R̂T as defined in (32) and

(36), when we set the level of test as α = 0.05.

4.1 Under the Null Hypothesis

(1) Varying sparsity

Here we summarize the experiments with randomly generated A∗, that are symmetric and

row-wise sparse, with different sparsity levels ρ defined in (10). Figure 1 shows how FPR

of ŨT and R̂T averaged over 1000 experiments vary with
√
T . We can see that when T
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Figure 1: False positive rate (FPR) of ŨT and R̂T v.s.
√
T , with various dimension M and

sparsity level ρ. The red line is the significance level α = 0.05.

increases to about 500, the FPR becomes stable and close to α = 0.05 regardless of ρ,M ,

choice between ŨT and R̂T .

When the sample size T is small, the test tends to be conservative, which is the consequence

of estimating variance σ∗2 and covariances Υ(m)’s. In the simulation we use naive estimators

for these two quantities, as defined in (31) and (29) which tend to be smaller than the true

parameters. This is because we usually fit noise in the regression, as noticed by Fan et al.

[2012]. As shown in these two figures, R̂T is less conservative than ŨT when T is small,

since the magnitude of Υ̃(m) is larger than Υ̂(m), which makes
(

Υ̃(m)>
)−1

Υ̂(m)
(

Υ̃(m)
)−1

probably a better estimator for Υ(m). We also summarize the FPR when the variance σ∗2 of

εti is known in Figure 2. We can see from these figures that ÛT is still a little conservative

when T is small, while R̂T with σ̂2 substituted by σ∗2 is not conservative.

(2) Different Graph Structures

If we consider the M actors in the time series as nodes in a network, and a nonzero A∗ij
represents an directed edge from j to i, then each matrix A∗ corresponds to a M -dimensional

directed graph. We experiment with different structures of A∗, which also correspond to

different graph structure, including block graph or chain graph. Specifically, we consider
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Figure 2: FPR of ŨT and R̂T when residual variance is known.

matrices with `2 norm equal to 0.75:

A(1) =



1/4 1/2 0 0 · · · 0 0

1/2 1/4 0 0 · · · 0 0

0 0 1/4 1/2 · · ·
...

...

0 0 1/2 1/4 · · ·
...

...
...

...
. . .

. . .
. . .

...
...

0 0 · · · · · · · · · 1/4 1/2

0 0 · · · · · · · · · 1/2 1/4


,

which is a block graph;

A(2) =



c c 0 · · · · · · 0

c 0 c · · · · · · 0

0 c 0 c · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · · · · c 0 c

0 · · · · · · · · · c 0


,

with constant c chosen to ensure
∥∥A(2)

∥∥
2

= 0.75, which is a chain graph; and A(3) being

randomly generated symmetric matrix of sparsity level ρ = 2, and largest eigenvalue equal

to 0.75. Figure 3 shows the difference among these three different structures. We can see
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Figure 3: FPR under different graph structure. Block refers to A(1), chain refers to A(2) and

random refers to A(3).

that block graph is less accurate than the other two, which is due to a larger variance for

each Xt,Dm − w∗>m Xt,Dcm . Investigating the question of how graph structure theoretically

influences testing performance remains an open and interesting direction.

4.2 Alternative Hypothesis

First we look into how the true positive rate (TPR) varies with ‖T−φ∆‖2, since we set HA as

ÃD = µ+T−φ∆ and ‖T−φ∆‖2 may be viewed as a measure of distance from the null hypothesis.

Fig. 4 only presents the simulation results when A∗ = A(1) and M = 300, while the other choices

of A∗ and M generate very similar results. We can see from these two figures that as ‖T−φ∆‖2
increases, TPR approaches 1. The slope increases when sample size T gets larger, or when the

test statistic changes from R̂T to ŨT . This aligns with intuition, since when T increases, we are

supposed to distinguish between H0 and HA better, and ŨT is more conservative than R̂T as we

show in subsection 4.1.

We also check the influence of φ. Figure 5 reveals how TPR changes when T increases, if

we set
∥∥∥∆̃
∥∥∥

2
and φ fixed. If φ < 0.5, TPR converges to 1 very quickly, while if φ > 0.5, TPR

converges to 0.05, but the convergence is slower when φ or
∥∥∥∆̃
∥∥∥

2
increases. When φ = 0.5,

Theorem 3.3 and 3.4 states that ŨT and R̂T would converge to χ
d,‖∆̃‖2

2

, thus the TPR should

converge to some value between 0.05 and 1, depending on d and
∥∥∥∆̃
∥∥∥2

2
. The black lines in figure

5 indicate this convergence value, but since the test tends to be conservative when T is not large

enough, TPR when φ = 0.5 is usually above the black line. The conservative issue is more severe

under HA since the deviation ∆̃ is also multiplied by the estimated variances, which exaggerates
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Figure 4: True positive rate of ŨT and R̂T , when A∗ = A(1) and M = 300

the conservative tendency. However, this may not be a big concern under HA, since we always

want the TPR to be large.

5 Proof Overview

One of the main contributions of this work is the proof technique, which addresses a number

of technical challenges and develops novel concentration bounds for dependent sub-Gaussian

random vectors. In this section, we present and discuss key lemmas for the proof and provide

the main steps for proving Theorems 3.1 and 3.2, deferring the more technically intensive steps

to the supplement.

5.1 Key Lemmas

The major technical challenge lies in proving the following two concentration bounds for depen-

dent sub-Gaussian random vectors.

Lemma 5.1 (Deviation Bound for A∗). Under model (3), when εti are sub-Gaussian noise with

scale factor τ , and A∗ ∈ Ω0 ∪ Ω1,

P

(∥∥∥∥∥ 1

T

T−1∑
t=0

εtX>t

∥∥∥∥∥
∞

> C

√
logM

T

)
≤ c1 exp{−c2 logM},

When T ≥ C logM .

Lemma 5.1 is a standard deviation bound for proving estimation error bound of Lasso type

or Dantzig selector type estimators. We apply this lemma both in the proof of Theorem 3.1, 3.2

and Lemma 3.1.
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Figure 5: TPR of ŨT and R̂T when
∥∥∥∆̃
∥∥∥

2
= 1, A∗ = A(1). Results for different graph size M

from 30 to 300 are combined together and average TPR is taken. Red line is significance level

α, the value that TPR should converge to when φ < 0.5; while the black line is the convergence

point specified in Theorem 3.2 when φ = 0.5.

Lemma 5.2. Under model (3), when εti are sub-Gaussian noise with constant scale factor τ ,

and A∗ ∈ Ω0 ∪ Ω1, if B ∈ RpM×pM is a symmetric matrix, we have

P

(∣∣∣∣∣ 1

T

T−1∑
t=0

X>t BXt − tr(BΥ)

∣∣∣∣∣ > δ

)
≤ c1 exp

{
−c2T min

{
δ

‖B‖2
,

δ2

‖B‖tr‖B‖2

}}
.

Lemma 5.2 provides concentration bound for the sample average of general quadratic form

X>t BXt, and is very helpful in proving martingale CLT under our setting, REC, Lemma 3.3,

etc.

In the Gaussian case, both these lemmas follow from prior work in Basu et al. [2015] which

relies on the fact that dependent Gaussian vectors can be rotated to be independent. Since

dependent sub-Gaussian random variables cannot be rotated to be independent (only uncorre-

lated), we exploit the independence of εt by representing each Xt by linear function of the infinite

series {εi}i=ti=−∞ and then use a careful truncation argument. We analyze sufficiently many terms

in the summation, and control the infinite residues.

5.2 Proof of Theorem 3.1

Proof. Suppose A∗ ∈ Ω0. We will use Ci, ci to refer to constants that only depend on p, d, β, τ

(not M or T ), and different constants might share the same notation.

The proof can be divided into two major parts: showing the convergence of UT to χ2
d, and
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bounding the estimation error
∣∣∣ÛT − UT ∣∣∣. Formally, for any ε > 0,

P(ÛT ≤ x)− Fd(x)

≤P(UT ≤ x+ ε) + P(
∣∣∣ÛT − UT ∣∣∣ > ε)− Fd(x)

≤ |P(UT ≤ x+ ε)− Fd(x+ ε)|+ Fd(x+ ε)− Fd(x) + P
(∣∣∣ÛT − UT ∣∣∣ > ε

)
,

and

Fd(x)− P(ÛT ≤ x)

=P(ÛT > x)− (1− Fd(x))

≤P(UT > x− ε) + P(
∣∣∣ÛT − UT ∣∣∣ > ε)− 1 + Fd(x)

≤ |Fd(x− ε)− P (UT ≤ x− ε)|+ Fd(x)− Fd(x− ε) + P
(∣∣∣ÛT − UT ∣∣∣ > ε

)
,

which implies∣∣∣P(ÛT ≤ x)− Fd(x)
∣∣∣

≤ sup
y∈R
|P(UT ≤ y)− Fd(y)|+ Fd(x+ ε)− Fd(x− ε) + P

(∣∣∣ÛT − UT ∣∣∣ > ε
)
.

(38)

In the following, we provide bounds on each of the three terms. The following lemma

shows the uniform weak convergence rate of ‖VT + µ‖22 to χ2
d,‖µ‖22

, of which the convergence of

UT = ‖VT ‖22 to χ2
d is a special case.

Lemma 5.3 (Convergence Rate of ‖VT + µ‖22). Under model (3) with εti being sub-Gaussian

noise of scale factor τ , then for any A∗ ∈ Ω0, ∀µ ∈ Rd,

sup
x∈R

∣∣∣P(‖VT + µ‖22 ≤ x)− Fd,‖µ‖22(x)
∣∣∣ ≤ C(‖µ‖2)T−

1
8 , (39)

when T > C for some absolute constant C, where C(‖µ‖2) is a constant depending on and is

non-decreasing with respect to ‖µ‖2.

This Lemma is proved in section C, by applying a uniform martingale central limit theorem

result. Thus, by Lemma 5.3, if T > C for some constant C,

sup
y∈R
|P(UT ≤ y)− Fd(y)| ≤ CT−

1
8 .

Meanwhile,

Fd(x+ ε)− Fd(x− ε) ≤ C2ε

since χ2
d has bounded density.
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Now we only need to choose a proper ε and bound P
(∣∣∣ÛT − UT ∣∣∣ > ε

)
.

∣∣∣ÛT − UT ∣∣∣ ≤ k∑
m=1

∣∣∣T Ŝ>m(Υ̂(m))−1Ŝm − ‖VT,m‖22
∣∣∣

≤
k∑

m=1

∣∣∣∣∣T Ŝ>m ((Υ̂(m))−1 − (Υ(m))−1
)
Ŝm +

∥∥∥√T (Υ(m))−
1
2 Ŝm

∥∥∥2

2
− ‖VT,m‖22

∣∣∣∣∣
≤

k∑
m=1

∥∥∥∥Υ(m) 1
2

(
Υ̂(m)

)−1
Υ(m) 1

2 − I
∥∥∥∥
∞

∥∥∥√T (Υ(m))−
1
2 Ŝm

∥∥∥2

1

+
∥∥∥√T (Υ(m))−

1
2 (Ŝm − Sm)

∥∥∥2

2
+ 2 ‖VT,m‖2

∥∥∥√T (Υ(m))−
1
2 (Ŝm − Sm)

∥∥∥
2
.

(40)

Define Em =
√
T (Υ(m))−

1
2

(
Ŝm − Sm

)
, then (40) turns into

∣∣∣ÛT − UT ∣∣∣ ≤ k∑
m=1

‖Em‖22 + 2 ‖VT,m‖2 ‖Em‖2

+

∥∥∥∥Υ(m) 1
2

(
Υ̂(m)

)−1
Υ(m) 1

2 − I
∥∥∥∥
∞

(
‖VT,m‖2 + ‖Em‖2

)2
.

(41)

We can bound ‖VT,m‖2 using Lemma 5.3 and

∥∥∥∥Υ(m) 1
2

(
Υ̂(m)

)−1
Υ(m) 1

2 − I
∥∥∥∥
∞

using Lemma

19, while for bounding the estimation induced error ‖Em‖2, we first apply the following lemma

to bound the eigenvalues of Υ(m).

Lemma 5.4. Consider the model (2) with independent noise εti of unit variance, A∗ satisfies

(13), then the eigenvalues of Υ can be bounded as follows:

0 < C1(β) ≤ Λmin (Υ) ≤ Λmax (Υ) ≤ C2(β).

Lemma 5.4 is proved based on established results in Basu et al. [2015]. Note that we assumed

unit variance in Theorem 3.1 and 3.2, so we can apply Lemma 5.4 here. Since
(
Υ(m)

)−1
=(

Υ−1
)
Dm,Dm

, applying Lemma 5.4 would lead us to the following:

Λmin

(
(Υ(m))−1

)
≥ Λmin(Υ−1) = Λmax(Υ)−1 ≥ C,

Λmax

(
(Υ(m))−1

)
≤ Λmax(Υ−1) = Λmin(Υ)−1 ≤ C.

(42)

Thus we have

‖Em‖2 ≤ C
√
T
∥∥∥Ŝm − Sm∥∥∥

2
,
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with

Ŝm − Sm =(ŵm − w∗m)>
1

T

T−1∑
t=0

Xt,Dcmεt,m

+
1

T

T−1∑
t=0

(Xt,Dm − w∗>m Xt,Dcm)X>t,Dcm
(

(Âm)Dcm − (A∗m)Dcm

)
− (ŵm − w∗m)>

(
1

T

T−1∑
t=0

Xt,DcmX
>
t,Dcm

)(
(Âm)Dcm − (A∗m)Dcm

)
.

(43)

The following two lemmas provide bounds for
∥∥∥ 1
T

∑T−1
t=0 Xt,Dcmεt,m

∥∥∥
∞

, and

∥∥∥∥∥ 1

T

T−1∑
t=0

(Xt,Dm − w∗>m Xt,Dcm)X>t,Dcm

∥∥∥∥∥
∞

.

Lemma 5.5. When T ≥ C logM ,

P

(∥∥∥∥∥ 1

T

T−1∑
t=0

εtX>t

∥∥∥∥∥
∞

> C

√
logM

T

)
≤ c1 exp{−c2 logM}.

Lemma 5.1 is a common condition in high-dimensional regression problems, and is usually

referred to as deviation bound. We will prove it in Section C.

Lemma 5.6 (Deviation Bound for w∗m). With probability at least 1− c1 exp{−c2 logM}, for all

1 ≤ m ≤ k, ∥∥∥∥∥ 1

T

T−1∑
t=0

(Xt,Dm − w∗>m Xt,Dcm)X>t,Dcm

∥∥∥∥∥
∞

≤ C
√

logM

T
.

Lemma 5.6 can also be viewed as a deviation bound, if we consider a regression problem

with Xt,Dm as response and Xt,Dcm as covariates. This is also proved in Section C. Applying

Assumptions 3.1 and 3.2, with probability at least 1− c1 exp{−c2 logM},

‖Em‖2 ≤ C
(sm ∨ ρm) logM√

T
+
√
TQ

1
2
1Q

1
2
2 ≤ C

(sm ∨ ρm) logM√
T

,

where

Q1 =

((
Âm

)
Dcm
− (A∗m)Dcm

)>( 1

T

T−1∑
t=0

Xt,DcmX
>
t,Dcm

)((
Âm

)
Dcm
− (A∗m)Dcm

)

Q2 =tr

[
(ŵm − w∗m)>

(
1

T

T−1∑
t=0

Xt,DcmX
>
t,Dcm

)
(ŵm − w∗m)

]
,
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and Assumption 3.1 and 3.2 implies Q1 ≤ C ρm logM
T and Q2 ≤ C sm logM

T . The former is not

straightforward: to see why it holds true, let ĥm = Âm −A∗m and H = 1
T

∑T−1
t=0 XtX>t , then we

have

Q1 =
1

T

T−1∑
t=0

[
X>t,Dcm

(
ĥm

)
Dcm

]2

=
1

T

T−1∑
t=0

[
X>t ĥm −X>t,Dm

(
ĥm

)
Dm

]2

≤ 2

T

T−1∑
t=0

[(
X>t ĥm

)2
+

(
X>t,Dm

(
ĥm

)
Dm

)2
]

=2ĥ>mHĥm + 2
(
ĥm

)>
Dm

HDm,Dm

(
ĥm

)
Dm

≤Cρm logM

T
.

(44)

Here we apply Assumption 3.1, and the fact that(
ĥm

)>
Dm

HDm,Dm

(
ĥm

)
Dm

≤dm‖H‖∞‖ĥm‖22

≤dm (‖H −Υ‖∞ + Λmax(Υ))
ρm logM

T

≤Cρm logM

T
.

The last inequality is due to Lemma 5.4 and the following lemma:

Lemma 5.7. With probability at least 1− c1 exp{−c2 logM},∥∥∥∥∥ 1

T

T−1∑
t=0

XtX>t −Υ

∥∥∥∥∥
∞

≤ C
√

logM

T
.

Therefore, by taking a union bound, we show that

‖Em‖2 ≤ C
(sm ∨ ρm) logM√

T
,

for any 1 ≤ m ≤ k, with probability at least 1− c1 exp{−c2 logM}.

Meanwhile, by applying Lemma 5.3, one can show that for y >
√

5d,

P
(
‖VT,m‖2 > y

)
≤CT−

1
8 + 1− Fd(y2)

≤CT−
1
8 + exp{−(y2 − d)/4}

≤CT−
1
8 + Cy−2,

(45)
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where the second inequality is due to a χ2
d tail bound established in Laurent and Massart [2000]

(see Lemma 1 in Laurent and Massart [2000]), and the third inequality comes from the fact

that, ∀ constant C1 > 0, ∃ constant C2 such that

sup
y≥0

y2e−C1y2 ≤ C2.

Let y =
(

(s∨ρ) logM√
T

)− 1
4

and plug it into (41), then with Assumption 3.3, we can show that with

probability at least

1− c1 exp{−c2 logM} − c3T
− 1

8 − c4

(
(s ∨ ρ) logM√

T

) 1
2

,

the following holds:∣∣∣ÛT − UT ∣∣∣ ≤C1
(s ∨ ρ) logM√

T

(
(s ∨ ρ) logM√

T

)− 1
2

+ C2

(
(s ∨ ρ) logM√

T

) 3
4

≤C
(

(s ∨ ρ) logM√
T

) 1
2

,

if (s ∨ ρ) logM = o(
√
T ) and T > C for some constant C. Therefore, applying (38) with

ε = C
(

(s∨ρ) logM√
T

) 1
2
,

∣∣∣P(ÛT ≤ x)− Fd(x)
∣∣∣ ≤ C1T

− 1
8 + C2

(
(s ∨ ρ) logM√

T

) 1
2

+ C3 exp{−c logM}.

Since constants Ci only depend on d, β and τ , this bound also holds for supremum over A∗ ∈ Ω0

and x ∈ R. Note that for a clear presentation, we are not showing the sharpest bound, which

can be obtained by choosing a different y.

5.3 Proof of Theorem 3.2

proof of Theorem 3.2. We prove this case by case. We will use Ci, ci to refer to constants that

only depend on d, β,∆, φ, and different constants might share the same notation.

Similar from the proof of Theorem 3.1, the major part of the proof is devoted to bounding∣∣∣ÛT − ‖VT + µ‖22
∣∣∣ with high probability for some vector µ ∈ Rd.

(1) φ = 1
2

Suppose A∗ ∈ Ω1. Using similar deduction as in the proof of Theorem 3.1, for any ε > 0,∣∣∣P(ÛT ≤ x)− F
d,‖∆̃‖22

(x)
∣∣∣

≤ sup
y∈R

∣∣∣P(‖VT − ∆̃‖22 ≤ y
)
− F

d,‖∆̃‖22
(y)
∣∣∣

+ F
d,‖∆̃‖22

(x+ ε)− F
d,‖∆̃‖22

(x− ε) + P
(∣∣∣∣ÛT − ∥∥∥VT − ∆̃

∥∥∥2

2

∣∣∣∣ > ε

)
.

(46)
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(a) Bounding the first two terms

The first term is the convergence rate of ‖VT − ∆̃‖22 to χ2
d,‖∆̃‖22

. By Lemma 5.3,

sup
y∈R

∣∣∣P(‖VT − ∆̃‖22 ≤ y
)
− F

d,‖∆̃‖22
(y)
∣∣∣ ≤ C(‖∆̃‖2)T−

1
8 ≤ C‖∆‖2T−

1
8 .

The last inequality is due to

‖∆̃‖22 =
k∑

m=1

‖∆̃m‖22 ≤
k∑

m=1

Λmax

(
Υ(m)

)
‖∆‖22,

and an upper bound for Λmax

(
Υ(m)

)
in (42).

Bounding the second term in (46) is not straightforward as bounding Fd(x+ε)−Fd(x−ε)
in the proof of Theorem 3.1, since ∆̃ is not a constant vector when A∗ takes different

values in Ω∗1. We only have a uniform bound of
∥∥∥∆̃
∥∥∥

2
as shown above. One can show that

F
d,‖∆̃‖22

(x+ ε)− F
d,‖∆̃‖22

(x− ε) = P
(∥∥∥Z + ∆̃

∥∥∥2

2
∈ (x− ε, x+ ε]

)

≤

C(d)
(

(x+ ε)
d
2 − (x− ε)

d
2

)
e−(
√
x−ε−‖∆̃‖2)2/2,

√
x− ε ≥ 2‖∆̃‖2

C(d)
(

(x+ ε)
d
2 − (x− ε)

d
2

)
,

√
x− ε < 2‖∆̃‖2

,

where Z is a d-dimensional standard Gaussian random vector with density φ(z) = C(d) exp{−‖z‖22/2}.
The last inequality holds because that, for any set C ⊂ Rd,

P (Z ∈ C) ≤ sup
z∈C

φ(z)

∫
z∈C

dz.

Suppose 0 < ε ≤ 1, then if
√
x− ε ≥ 2‖∆̃‖2,(

(x+ ε)
d
2 − (x− ε)

d
2

)
exp

{
−(
√
x− ε− ‖∆̃‖2)2/2

}
≤dε(x+ ε)

d
2
−1 exp{−(x− ε)/8}

≤dεe
ε
4 sup
y≥0

y
d
2
−1 exp{−y/8} ≤ C(d)ε,

otherwise, (
(x+ ε)

d
2 − (x− ε)

d
2

)
≤ dε(x+ ε)

d
2
−1 ≤ C(d)ε.

Thus,

F
d,‖∆̃‖22

(x+ ε)− F
d,‖∆̃‖22

(x− ε) ≤ C(d)ε.

(b) Bounding

∣∣∣∣ÛT − ∥∥∥VT − ∆̃
∥∥∥2

2

∣∣∣∣
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Similar from (41) in the proof of Theorem 3.1, it is straightforward to show that∣∣∣∣ÛT − ∥∥∥VT − ∆̃
∥∥∥2

2

∣∣∣∣
≤

k∑
m=1

‖Em‖22 + 2
∥∥∥VT,m − ∆̃m

∥∥∥
2
‖Em‖2

+

∥∥∥∥Υ(m) 1
2

(
Υ̂(m)

)−1
Υ(m) 1

2 − I
∥∥∥∥
∞

(
‖VT,m − ∆̃m‖2 + ‖Em‖2

)2
,

(47)

where Em =
√
T (Υ(m))−

1
2 Ŝm − VT,m + ∆̃m. To bound ‖Em‖2, note that

VT,m − ∆̃m =
√
T (Υ(m))−

1
2Sm − ∆̃m =

√
T (Υ(m))−

1
2 (Sm −Υ(m)(A∗m)Dm),

and

Sm −Υ(m)(A∗m)Dm =

[
1

T

∑
t

(Xt,Dm − w∗>m Xt,Dcm)X>t,Dm −Υ(m)

]
(A∗m)Dm

− 1

T

T−1∑
t=0

(
Xt+1,m − (A∗m)>DcmXt,Dcm

)(
Xt,Dm − w∗>m Xt,Dcm

)
=S̃m +W ∗m

(
1

T

∑
t

XtX>t,Dm −Υ·,Dm

)
(A∗m)Dm ,

with S̃m ∈ Rdm and W ∗m ∈ Rdm×M defined as follows:

S̃m =− 1

T

T−1∑
t=0

(Xt+1,m − (A∗m)>DcmXt,Dcm)(Xt,Dm − w∗>m Xt,Dcm),

(W ∗m)·,Dm = Idm×dm , (W ∗m)·,Dcm = w∗>m . (48)

Therefore,

‖Em‖2 ≤
∥∥∥√T (Υ(m))−

1
2 (Ŝm − S̃m)

∥∥∥
2

+

∥∥∥∥∥(Υ(m))−
1
2W ∗m

(
1

T

∑
t

XtX>t,Dm −Υ·,Dm

)
∆m

∥∥∥∥∥
2

≤C
√
T
∥∥∥Ŝm − S̃m∥∥∥

2
+ C

√
dm max

i
‖(W ∗m)i·‖1

∥∥∥∥∥ 1

T

∑
t

XtX>t −Υ

∥∥∥∥∥
∞

.

The last inequality applies (42). Meanwhile,

max
i
‖(W ∗m)i·‖1 =1 + max

i
‖(w∗m)·i‖1

≤1 + max
i

√
sm ‖(w∗m)·i‖2

≤1 +
√
smΛmin(ΥDcm,D

c
m

)−1 max
i
‖Υ·i‖2

≤1 + C
√
sm max

i

√
(Υ2)ii

≤1 + C
√
smΛmax(Υ) ≤ C

√
sm.

(49)
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The first equality and second inequality come from the definition of W ∗m and w∗m; the third

inequality is because that ‖Υ·i‖22 =
(
Υ2
)
ii

; the fourth inequality is due to that
(
Υ2
)
ii

=

e>i Υ2ei ≤ Λmax(Υ)2; and the last inequality is obtained from Lemma 5.4. Applying Lemma

5.7 leads us to

‖Em‖2 ≤ C
√
sm logM

T
+ C
√
T‖Ŝm − S̃m‖2.

We can write Ŝm − S̃m as

Ŝm − S̃m =(ŵm − w∗m)>
1

T

T−1∑
t=0

Xt,Dcm
(
εt,m + T−

1
2 ∆>mXt,Dm

)
+

((
Âm

)
Dcm
− (A∗m)Dcm

)> 1

T

T−1∑
t=0

Xt,Dcm
(
Xt,Dm − w∗>m Xt,Dcm

)>
−
((

Âm

)
Dcm
− (A∗m)Dcm

)> 1

T

T−1∑
t=0

Xt,DcmX
>
t,Dcm

(ŵm − w∗>m ).

Note that ∥∥∥∥∥ 1

T

T−1∑
t=0

Xt,DcmX
>
t,Dm

∥∥∥∥∥
∞

≤

∥∥∥∥∥ 1

T

∑
t

XtX>t −Υ

∥∥∥∥∥
∞

+ ‖Υ‖∞

≤C
√

logM

T
+ ‖Υ‖2 ≤ C,

(50)

due to Lemma 5.4 and 5.7, which further implies∥∥∥∥∥(ŵm − w∗m)>
1

T

T−1∑
t=0

Xt,DcmX
>
t,Dm∆m

∥∥∥∥∥
2

≤ C‖ŵm − w∗m‖1.

Applying Assumption 3.1 to 3.3, Lemma 5.1, 5.6, one can show that with probability at

least 1− c1 exp{−c2 logM},

‖Em‖2 ≤ C
(sm ∨ ρm) logM√

T
, (51)

with the same arguments as bounding ‖Ŝm − Sm‖2 under H0.

While for
∥∥∥VT,m − (Υ(m))

1
2 ∆m

∥∥∥
2
, applying Lemma 5.3 leads us to

P
(∥∥∥VT,m − (Υ(m))

1
2 ∆m

∥∥∥
2
> y
)

≤C1T
− 1

8 + 1− F
d,‖∆̃‖22

(y2)

=C1T
− 1

8 + P
(
‖Z + ∆̃‖22 > y2

)
≤C1T

− 1
8 + P

(
‖Z‖22 > (y − C‖∆‖2)2

)
,
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for any y ≥ 0, where Z ∼ N (0, Id). We apply the tail bound for χ2
d (Lemma 1 in Laurent

and Massart [2000]) as in (45), and obtain

P
(
‖Z‖22 > (y − C‖∆‖2)2

)
≤ C (y − C‖∆‖2)−2 ≤ Cy−2,

when y > C for some constant C. Let y =
(

(s∨ρ) logM√
T

)− 1
4
, and plug

∥∥∥VT,m − (Υ(m))
1
2 ∆m

∥∥∥
2
≤

y, (51) and (19) into (47), one can show that∣∣∣∣ÛT − ∥∥∥VT − ∆̃
∥∥∥2

2

∣∣∣∣
≤C1

(
(s ∨ ρ) logM√

T

) 3
4

+ C2
(s ∨ ρ) logM√

T

(
(s ∨ ρ) logM√

T

)− 1
2

≤C
(

(s ∨ ρ) logM√
T

) 1
2

,

with probability at least

1− c1 exp{−c2 logM} − c3T
− 1

8 − c4

(
(s ∨ ρ) logM√

T

) 1
2

,

if (s ∨ ρ) logM = o(T ) and T > C.

Therefore, applying (46) with ε = C
(

(s∨ρ) logM√
T

) 1
2

leads to∣∣∣P(ÛT ≤ x)− Fd(x)
∣∣∣

≤C1T
− 1

8 + C2

(
(s ∨ ρ) logM√

T

) 1
2

+ C3 exp{−C4 logM}.

Since constants Ci only depend on d, β,∆, τ , this bound also holds for supremum over

A∗ ∈ Ω1 and x ∈ R.

(2) 0 < φ < 1
2

First we provide a lower bound for ÛT with high probability. Since bounds in Assumption

3.1 to 3.3, Lemma 5.1 to 5.7 hold with probability at least 1−c1 exp{−c2 logM}, we apply

these bounds directly in following deduction. Meanwhile, we always assume (ρ∨s) logM =
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o(
√
T ) and T > C for desired constant C. With these conditions, one can show that

ÛT =
k∑

m=1

T Ŝ>m(Υ̂(m))−1Ŝm

≥
k∑

m=1

T‖Υ(m)− 1
2 Ŝm‖22

(
1− dm

∥∥∥Υ(m) 1
2 (Υ̂(m))−1Υ(m) 1

2 − I
∥∥∥
∞

)
≥CT

k∑
m=1

∥∥∥(Υ(m))−
1
2 Ŝm

∥∥∥2

2

≥C

(T k∑
m=1

∥∥∥(Υ(m))−
1
2 (Ŝm − Sm)

∥∥∥2

2

) 1
2

− ‖VT ‖2

2

.

(52)

The third line is due to Assumption 3.3, which implies
∥∥∥Υ(m) 1

2 (Υ̂(m))−1Υ(m) 1
2 − I

∥∥∥
∞

con-

verges to 0 under our scaling (ρ ∨ s) logM = o(
√
T ).

We provide a lower bound for
∥∥∥(Υ(m))−

1
2 (Ŝm − Sm)

∥∥∥2

2
in the following. First write Ŝm−Sm

as

Ŝm − Sm =(ŵm − w∗m)>

(
1

T

T−1∑
t=0

εt,mXt,Dcm

)

− 1

T

T−1∑
t=0

(Xt,Dm − ŵ>mXt,Dcm)X>t,Dm(A∗m)Dm

+
1

T

T−1∑
t=0

(Xt,Dm − ŵ>mXt,Dcm)X>t,Dcm((Âm)Dcm − (A∗m)Dcm)

,E(1)
m + E(2)

m + E(3)
m ,

we find the upper bounds for
∥∥∥E(1)

m

∥∥∥
2
,
∥∥∥E(3)

m

∥∥∥
2

and lower bound for
∥∥∥E(2)

m

∥∥∥
2

in the follow-

ing. Applying Assumption 3.2 and Lemma 5.1 provides an upper bound for
∥∥∥E(1)

m

∥∥∥
2
:

‖E(1)
m ‖2 ≤ ‖ŵm − w∗m‖1

∥∥∥∥∥ 1

T

T−1∑
t=0

Xtε>t

∥∥∥∥∥
∞

≤ sm logM

T
.

Since∥∥∥E(3)
m

∥∥∥
2
≤

∥∥∥∥∥(ŵm − w∗m)>
1

T

T−1∑
t=0

Xt,DcmX
>
t,Dcm

((Âm)Dcm − (A∗m)Dcm)

∥∥∥∥∥
2

+
√
dm

∥∥∥∥∥ 1

T

T−1∑
t=0

(Xt,Dm − w∗>m Xt,Dcm)X>t,Dcm

∥∥∥∥∥
∞

∥∥∥(Âm)Dcm − (A∗m)Dcm)
∥∥∥

1
,

then using the same argument as bounding ‖Ŝm − Sm‖2 when proving Theorem 3.1, we

have ∥∥∥E(3)
m

∥∥∥
2
≤ C (sm ∨ ρm) logM

T
.
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To lower bound ‖E(2)
m ‖2, first note that∥∥∥∥∥ 1

T

T−1∑
t=0

(
Xt,Dm − ŵ>mXt,Dm

)
X>t,Dcm −Υ(m)

∥∥∥∥∥
∞

≤max
i
‖(W ∗m)i·‖1

∥∥∥∥∥ 1

T

T−1∑
t=0

XtX>t −Υ

∥∥∥∥∥
∞

+ ‖ŵm − w∗m‖1

∥∥∥∥∥ 1

T

T−1∑
t=0

XtX>t

∥∥∥∥∥
∞

≤Csm

√
logM

T
,

(53)

where we apply (49), Lemma 5.7, Assumption 3.2, and bound
∥∥∥ 1
T

∑T−1
t=0 XtX>t

∥∥∥
∞

using

the same argument as in (50). Thus,

‖E(2)
m ‖2 ≥ T−φ

∥∥∥Υ(m)∆m

∥∥∥
2
− Csm

√
logM

T
T−φ ≥ CT−φ,

since ∆m is a constant vector, and Λmin(Υ(m) is lower bounded by constant as in (42).

Applying these bounds for ‖E(i)
m ‖2, 1 ≤ i ≤ 3, one can show that,

T
k∑

m=1

∥∥∥(Υ(m))−
1
2 (Ŝm − Sm)

∥∥∥2

2
≥

k∑
m=1

(
C1T

1
2
−φ − C2

(s ∨ ρ) logM√
T

)2

≥ CT 1−2φ.

Plug this into (52) and apply Lemma 5.3, we have

P(ÛT ≤ x) ≤ C exp{−c logM}+ P
(
‖VT ‖2 ≥ C1T

1
2
−φ − C2

√
x
)

≤C1 exp{−c logM}+ C2T
− 1

8 + 1− Fd((C3T
1
2
−φ − C4

√
x)2)

≤C1 exp{−c logM}+ C2T
− 1

8 + C3 exp{−(C3T
1
2
−φ − C4

√
x)2},

where in the last line we apply the χ2
d tail bound as in (45). Since the constants here only

depend on d, β,∆, τ , this bound holds when taking supremum over A∗ ∈ Ω1 and x ∈ R.

(3) φ > 1
2

The proof of this case is similar to that of Theorem 3.1. The only thing different lies in

the choice of ε and bounding P
(∣∣∣ÛT − UT ∣∣∣ > ε

)
. The bound (41) for

∣∣∣ÛT − UT ∣∣∣ still holds

here, with Em =
√
T (Υ(m))−

1
2 (Ŝm − Sm). We directly apply the bounds in Assumptions
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3.1 to 3.3, and Lemma 5.1 to Lemma 5.7 in the following. First we write

Ŝm − Sm =(ŵm − w∗m)>
1

T

T−1∑
t=0

Xt,Dcmεt,m

+
1

T

T−1∑
t=0

(
Xt,Dm − w∗>m Xt,Dcm

)
X>t,Dcm

(
(Âm)Dcm − (A∗m)Dcm

)
− (ŵm − w∗m)>

(
1

T

T−1∑
t=0

Xt,DcmX
>
t,Dcm

)(
(Âm)Dcm − (A∗m)Dcm

)
− T−(1+φ)

T−1∑
t=0

(Xt,Dm − ŵ>mXt,Dcm)X>t,Dm∆m.

Note here that the first three terms are exactly the same as in (43), and thus can be

bounded as in the proof of Theorem 3.1. We only have to tackle the last term. By (53),

one can show that,∥∥∥∥∥ 1

T

T−1∑
t=0

(Xt,Dm − ŵ>mXt,Dcm)X>t,Dm∆m

∥∥∥∥∥
2

≤
∥∥∥Υ(m)∆m

∥∥∥
2

+ Csm

√
logM

T
≤ C,

Thus, going through the same arguments as bounding
∥∥∥Ŝm − Sm∥∥∥

2
under H0, we have

‖Em‖2 ≤ C1
(s ∨ ρ) logM√

T
+ C2T

1
2
−φ,

with probability at least 1− C exp{−c logM}. Recall that in (45), when y > C for some

constant C,

P(‖VT,m‖2 ≥ y) ≤ C1T
− 1

8 + C2y
−2.

Let y =
(

(s∨ρ) logM√
T

)− 1
4 ∧ T

2φ−1
6 , then by (41) one can show that∣∣∣ÛT − UT ∣∣∣

≤C1
(s ∨ ρ) logM√

T

(
(s ∨ ρ) logM√

T

)− 1
2

+ C2

(
(s ∨ ρ) logM√

T

) 3
4

+ C3T
1−2φ

3

≤C1

(
(s ∨ ρ) logM√

T

) 1
2

+ C2T
1−2φ

3 ,

with probability at least

1− c1 exp{−c2 logM} − c3T
− 1

8 − c4

(
(s ∨ ρ) logM√

T

) 1
2

− c5T
1−2φ

3 ,

if (s ∨ ρ) logM = o(
√
T ) and T > C for some constant C. Therefore, applying (38) with

ε = C1

(
(s∨ρ) logM√

T

) 1
2

+ C2T
1−2φ

3 ,∣∣∣P(ÛT ≤ x)− Fd(x)
∣∣∣
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≤C1T
− 1

8 + C2

(
(s ∨ ρ) logM√

T

) 1
2

+ C3T
1−2φ

3 + C4 exp{−C5 logM}.

Since constants Ci only depend on d, β, τ,∆, this bound also holds for supremum over

A∗ ∈ Ω1 and x ∈ R.

6 Conclusion

In this paper, we have provided theoretical guarantees for hypothesis tests for sparse high-

dimensional auto-regressive models with sub-Gaussian innovations. Specific upper bounds for

the convergence rates of test statistics are given. Importantly, our results go beyond the Gaussian

assumption and do not rely on mixing assumptions. As a consequence of our theory, we also

develop novel concentration bounds for quadratic forms of dependent sub-Gaussian random

variables using a careful truncation argument.

It would be of interest to consider other variance estimation method, e.g., scaled Lasso Sun

and Zhang [2012], or cross-validation based method Fan et al. [2012], and establish corresponding

theoretical guarantee. There also remain a number of open questions/challenges including exten-

sions to generalized linear models, heavy-tailed innovations and incorporating hidden variables

under time series setting.

Acknowledgements

We would like to thank both Sumanta Basu and Yiming Sun for useful discussions and comments.

LZ and GR were supported by ARO W911NF-17-1-0357 and NGA HM0476-17-1-2003. GR was

also supported by NSF DMS-1811767.

References

A. Ang and M. Piazzesi. A no-arbitrage vector autoregression of term structure dynamics with

macroeconomic and latent variables. Journal of Monetary economics, 50(4):745–787, 2003.

M. Barigozzi and C. T. Brownlees. Nets: Network estimation for time series. 2018.

S. Basu, G. Michailidis, et al. Regularized estimation in sparse high-dimensional time series

models. The Annals of Statistics, 43(4):1535–1567, 2015.

35



S. L. Bressler, C. G. Richter, Y. Chen, and M. Ding. Cortical functional network organization

from autoregressive modeling of local field potential oscillations. Statistics in medicine, 26

(21):3875–3885, 2007.

L. Chen and W. B. Wu. Testing for trends in high-dimensional time series. Journal of the

American Statistical Association, (just-accepted):1–37, 2018.

S. X. Chen, L.-X. Zhang, and P.-S. Zhong. Tests for high-dimensional covariance matrices.

Journal of the American Statistical Association, 105(490):810–819, 2010.

R. A. Davis, P. Zang, and T. Zheng. Sparse vector autoregressive modeling. Journal of Com-

putational and Graphical Statistics, 25(4):1077–1096, 2016.

J. Fan, S. Guo, and N. Hao. Variance estimation using refitted cross-validation in ultrahigh

dimensional regression. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), 74(1):37–65, 2012.

A. Fujita, J. R. Sato, H. M. Garay-Malpartida, R. Yamaguchi, S. Miyano, M. C. Sogayar,

and C. E. Ferreira. Modeling gene expression regulatory networks with the sparse vector

autoregressive model. BMC systems biology, 1(1):39, 2007.

R. Goebel, A. Roebroeck, D.-S. Kim, and E. Formisano. Investigating directed cortical interac-

tions in time-resolved fmri data using vector autoregressive modeling and granger causality

mapping. Magnetic resonance imaging, 21(10):1251–1261, 2003.

I. Grama and E. Haeusler. An asymptotic expansion for probabilities of moderate deviations

for multivariate martingales. Journal of Theoretical Probability, 19(1):1–44, 2006.

R. M. Gray et al. Toeplitz and circulant matrices: A review. Foundations and Trends R© in

Communications and Information Theory, 2(3):155–239, 2006.

F. Han, H. Lu, and H. Liu. A direct estimation of high dimensional stationary vector autore-

gressions. The Journal of Machine Learning Research, 16(1):3115–3150, 2015.

P. R. Hansen. Structural changes in the cointegrated vector autoregressive model. Journal of

Econometrics, 114(2):261–295, 2003.

M. Hardy. Combinatorics of partial derivatives. the electronic journal of combinatorics, 13(1):

1, 2006.

L. Harrison, W. D. Penny, and K. Friston. Multivariate autoregressive modeling of fmri time

series. Neuroimage, 19(4):1477–1491, 2003.

A. Javanmard and A. Montanari. Confidence intervals and hypothesis testing for high-

dimensional regression. The Journal of Machine Learning Research, 15(1):2869–2909, 2014.

36



B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection.

Annals of Statistics, pages 1302–1338, 2000.

J. D. Lee, D. L. Sun, Y. Sun, J. E. Taylor, et al. Exact post-selection inference, with application

to the lasso. The Annals of Statistics, 44(3):907–927, 2016.

R. Lockhart, J. Taylor, R. J. Tibshirani, and R. Tibshirani. A significance test for the lasso.

Annals of statistics, 42(2):413, 2014.

R. G. Mark B. and W. R. Network estimation from point process data. IEEE Trans. of Info.

Theory, 2018. To appear.

M. C. Medeiros and E. F. Mendes. 1-regularization of high-dimensional time-series models with

non-gaussian and heteroskedastic errors. Journal of Econometrics, 191(1):255–271, 2016.
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A Proof of Lemmas in Section 3.3

Proof of Lemma 3.1. We prove the error bounds for each Âm and then take a union bound.

Without loss of generality, we consider the estimation of A∗1 ∈ RM . With a little abuse of

notation, let S = supp(A∗1), ĥ = Â1 −A∗1, S = supp(A∗1), and H = 1
T

∑T−1
t=0 XtX>t (S is not the

decorrelated score function we defined in section 9). We would like to bound ‖ĥ‖1, ‖ĥ‖2 and

ĥ>Hĥ under two cases separately:

(1) Â = Â(L).

Here we adopt the standard proof framework for Lasso. By (25) we know that Â1 ∈ RM

satisfies

Â1 = arg min
β∈RM

1

T

T−1∑
t=0

(Xt+1,1 −X>t β)2 + λA‖β‖1,

which implies

1

T

T−1∑
t=0

(Xt+1,1 −X>t Â1)2 + λA‖Â1‖1 ≤
1

T

T−1∑
t=0

(Xt+1,1 −X>t A∗1)2 + λA‖A∗1‖1.

38



Rearranging the terms, we have

ĥ>Hĥ ≤ 2ĥ>

(
1

T

T−1∑
t=0

εt,1Xt

)
+ λA‖A∗1‖1 − λA‖Â1‖1

≤ 2

∥∥∥∥∥ 1

T

T−1∑
t=0

εtX>t

∥∥∥∥∥
∞

‖ĥ‖1 + λA‖ĥS‖1 − λA‖ĥSc‖1.

The last line is due to that

‖A∗1‖1 − ‖Â1‖1 = ‖(A∗1)S‖1 − ‖(Â1)S‖1 − ‖(Â1)Sc‖1
= ‖(A∗1)S‖1 − ‖(Â1)S‖1 − ‖ĥSc‖1
≤ ‖ĥS‖1 − ‖ĥSc‖1.

By Lemma 5.1, with probability at least 1− c1 exp{−c2 logM},∥∥∥∥∥ 1

T

T−1∑
t=0

εtX>t

∥∥∥∥∥
∞

≤ 1

4
λA = C

√
logM

T
.

Meanwhile, since H is positive semi-definite,

0 ≤ ĥ>Hĥ ≤ 3λA
2
‖ĥS‖1 −

λA
2
‖ĥSc‖1,

‖ĥSc‖1 ≤ 3‖ĥS‖1.

We have the following restricted eigenvalue condition for H.

Lemma A.1. Under the model specified in (3) with independent sub-Gaussian noise εti of

constant scale factor, and A∗ ∈ Ω0 ∪ Ω1, for any set J ⊂ {1, 2, · · · , pM}, positive integer

κ > 0, H satisfies the following REC:

inf{v>Hv : v ∈ C(J, κ), ‖v‖2 ≤ 1} ≥ C1 > 0,

with probability at least 1 − 2 exp {−cT}, when |J | log pM ≤ C2T . Here C(J, κ) = {v :

‖vJc‖1 ≤ κ‖vJ‖1}, constant C1 depends on β, c and C2 depend on κ and β.

Here ĥ ∈ C(S, 3), |S| = ρ1, by Lemma A.1, when T ≥ Cρ logM ,

ĥ>Hĥ ≥ C‖ĥ‖22,

with probability at least 1− 2 exp{−cT}, when T > Cρ logM . Thus

‖ĥ‖22 ≤ Cĥ>Hĥ ≤ CλA‖ĥS‖1 ≤ C
√
ρ1 logM

T
‖ĥ‖2, (54)

which implies

‖ĥ‖2 ≤C
√
ρ1 logM

T
, ĥ>Hĥ ≤ Cρ1 logM

T
,

‖ĥ‖1 ≤4‖ĥS‖1 ≤ 4
√
ρ1‖ĥ‖2 ≤ Cρ1

√
logM

T
,

with probability at least 1− c1 exp{−c2 logM}.
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(2) Â = Â(D).

Here we adopt the standard proof framework for Dantzig selector. By (26),

Â1 = arg min
β∈RM

‖β‖1, s.t.

∥∥∥∥∥ 1

T

T−1∑
t=0

(Xt+1,1 −X>t β)Xt

∥∥∥∥∥
∞

≤ λA. (55)

By Lemma 5.1, when T ≥ C logM , with probability at least 1− c1 exp{−c2 logM},∥∥∥∥∥ 1

T

T−1∑
t=0

(Xt+1,1 −X>t A∗1)Xt

∥∥∥∥∥
∞

=

∥∥∥∥∥ 1

T

T−1∑
t=0

εt,1Xt

∥∥∥∥∥
∞

≤ λA,

which implies

‖Hĥ‖∞ ≤ C
√

logM

T
.

Meanwhile, by (55),

‖Â1‖1 ≤ ‖A∗1‖1, ‖ĥSc‖1 ≤ ‖ĥS‖1.

Here ĥ ∈ C(S, 1), |S| = ρ1, by Lemma A.1, when T ≥ Cρ logM ,

ĥ>Hĥ ≥ C‖ĥ‖22,

with probability at least 1− 2 exp{−cT}, when T > Cρ logM . Thus

‖ĥ‖22 ≤ Cĥ>Hĥ ≤ ‖Hĥ‖∞‖ĥ‖1 ≤ C
√

logM

T
‖ĥ‖1 ≤ C

√
ρ1 logM

T
‖ĥ‖2, (56)

which implies

‖ĥ‖2 ≤C
√
ρ1 logM

T
, ĥ>Hĥ ≤ Cρ1 logM

T
,

‖ĥ‖1 ≤4‖ĥS‖1 ≤ 4
√
ρ1‖ĥ‖2 ≤ Cρ1

√
logM

T
,

with probability at least 1− c1 exp{−c2 logM}.

Therefore, after taking a union bound over m = 1, · · · , k, proof complete.

Proof of Lemma 3.2. Without loss of generality, we consider the estimation of (w∗1)·,1 and then

take a union bound. Let v∗ = (w∗1)·,1, v̂ = (ŵ1)·,1, ĥ = v̂− v∗ ∈ RM−d1 and S = supp(v∗). Then

we prove upper bounds for ‖ĥ‖1 and ĥ>HDc1,D
c
1
ĥ with high probability under two cases.

(1) ŵm = ŵ
(L)
m .

Looking into the definition (27) of ŵ1, it is clear that the optimization can be viewed as

d1 separate optimization problems, in terms of each column of ŵ1. Thus

v̂ = arg min
v∈RM−d1

1

T

T−1∑
t=0

(
(Xt,D1)1 −X

>
t,Dc1

v
)2

+ λw‖v‖1.
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The following proof is almost identical to the proof in Lemma 3.1 under Â = Â(L), except

some difference in notation and application of Lemmas. One can show that,

1

T

T−1∑
t=0

(
(Xt,D1)1 −X

>
t,Dc1

v̂
)2

+ λw‖v̂‖1

≤ 1

T

T−1∑
t=0

(
(Xt,D1)1 −X

>
t,Dc1

v∗
)2

+ λw‖v∗‖1,

Rearranging the inequality gives us

ĥ>HDc1,D
c
1
ĥ ≤2ĥ>

(
1

T

T−1∑
t=0

(
(Xt,D1)1 −Xt,Dc1v

∗)XDc1
)

+ λw‖v∗‖1 − λw‖v̂‖1

≤2

∥∥∥∥∥ 1

T

T−1∑
t=0

(Xt,D1 − w∗>1 Xt,Dc1)X>Dc1

∥∥∥∥∥
∞

‖ĥ‖1 + λw‖ĥS‖1 − λA‖ĥSc‖1.

By Lemma 5.6, with probability at least 1− c1 exp{−c2 logM},∥∥∥∥∥ 1

T

T−1∑
t=0

(Xt,D1 − w∗>1 Xt,Dc1)X>Dc1

∥∥∥∥∥
∞

≤ 1

4
λw = C

√
logM

T
,

which implies,

0 ≤ ĥ>HDc1,D
c
1
ĥ ≤ 3λw

2
‖ĥS‖1 −

λw
2
‖ĥSc‖1,

‖ĥSc‖1 ≤ 3‖ĥS‖1.

Let h̃ ∈ RM be defined as the following:

h̃D1 = 0, h̃Dc1 = ĥ, (57)

By Lemma A.1, when T ≥ Cs logM , with probability at least 1− 2 exp{−cT},

‖ĥ‖22 = ‖h̃‖22 ≤Ch̃>Hh̃ = 2ĥ>HDc1,D
c
1
ĥ ≤ Cλw‖ĥS‖1 ≤ C

√
s1 logM

T
‖ĥ‖2,

which implies

ĥ>Hĥ ≤ C s1 logM

T
,

and

‖ĥ‖1 ≤ 4‖ĥS‖1 ≤ 4
√
s1‖ĥ‖2 ≤ Cs1

√
logM

T
,

with probability at least 1− c1 exp{−c2 logM}.
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(2) ŵm = ŵ
(D)
m .

By (28),

v̂ = arg min
v∈RM−d1

‖v‖1, s.t.

∥∥∥∥∥ 1

T

T−1∑
t=0

(
(Xt,D1)1 − v>Xt,Dc1

)
Xt,Dc1

∥∥∥∥∥
∞

≤ λw. (58)

This proof is also pretty similar to the proof of Lemma 3.1 under the case where Â = Â(D).

By Lemma 5.6,∥∥∥∥∥ 1

T

T−1∑
t=0

(
(Xt,D1)1 − v

∗>Xt,Dc1
)

1
Xt,Dc1

∥∥∥∥∥
∞

≤ λw = C

√
logM

T
,

with probability at least 1− c1 exp{−c2 logM}. Thus,

∥∥∥H>Dc1,Dc1 ĥ∥∥∥∞ ≤ C
√

logM

T
.

Meanwhile, by (58),

‖v̂‖1 = ‖v̂S‖1 + ‖v̂Sc‖1 ≤ ‖v
∗‖1 = ‖v∗S‖1 ,

which further implies ∥∥∥ĥSc∥∥∥
1
≤
∥∥∥ĥS∥∥∥

1
. (59)

Recall the definition of h̃ in (57),then by Lemma A.1, (59) and (57), when T ≥ Cs logM ,

‖ĥ‖22 = ‖h̃‖22 ≤Ch̃>Hh̃

=Cĥ>HDc1,D
c
1
ĥ

≤C
∥∥∥ĥ∥∥∥

1

∥∥∥H>Dc1,Dc1 ĥ∥∥∥∞
≤C
√

logM

T
‖ĥS‖1

≤C
√
s1 logM

T
‖ĥ‖2,

which implies

ĥ>HDc1,D
c
1
ĥ ≤ C s1 logM

T
,

and

‖ĥ‖1 ≤ C
√
s1‖ĥ‖2 ≤ Cs1

√
logM

T
,

with probability at least 1− c1 exp{−c2 logM}.
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Since

‖(ŵ1)− (w∗1)‖1 =

d1∑
j=1

‖(ŵ1)·,j − (w∗1)·,j‖1,

and

tr

{
(ŵ1 − w∗1)>

(
1

T

T−1∑
t=0

Xt,DcmX
>
t,Dcm

)
(ŵ1 − w∗1)

}

=

d1∑
j=1

((ŵ1)·,j − (w∗1)·,j)
>
(

1

T

T−1∑
t=0

Xt,Dc1X
>
t,Dc1

)
((ŵ1)·,j − (w∗1)·,j) ,

taking a union bound over {ŵm : m = 1, · · · , k} and all columns of ŵm, proof is complete.

Proof of Lemma 3.3. The following established result can be applied here:

Lemma A.2. For any invertible matrix B, if B + ∆ is also invertible, then

‖(B + ∆)−1 −B−1‖2 ≤
‖B−1‖22‖∆‖2

1− ‖B−1‖2‖∆‖2
. (60)

Since ‖I‖2 = 1, one can show that for 1 ≤ m ≤ k,∥∥∥∥Υ(m) 1
2 Υ̂(m)

−1
Υ(m) 1

2 − I
∥∥∥∥
∞
≤
∥∥∥Υ(m) 1

2 Υ̂(m))−1Υ(m) 1
2 − I

∥∥∥
2
≤ ‖∆‖2

1− ‖∆‖2
,

where ∆ = Υ(m)− 1
2 Υ̂(m)Υ(m)− 1

2 − I. Due to (42),

‖∆‖2 ≤
(

ΛminΥ(m)
)−1 ∥∥∥Υ̂(m) −Υ(m)

∥∥∥
2

≤C
∥∥∥Υ̂(m) −Υ(m)

∥∥∥
F
≤ dm

∥∥∥Υ̂(m) −Υ(m)
∥∥∥
∞
.

In the following we bound
∥∥∥Υ̂(m) −Υ(m)

∥∥∥
∞

. Write Υ̂(m) −Υ(m) as

Υ̂(m) −Υ(m) =W ∗m

(
1

T

T−1∑
t=0

XtX>t −Υ

)
W ∗>m

− (ŵm − w∗m)>
1

T

T−1∑
t=0

Xt,Dcm(Xt,Dm − w∗>m Xt,Dcm)>

− 1

T

T−1∑
t=0

(Xt,Dm − w∗>m Xt,Dcm)X>t,Dcm(ŵm − w∗m)

+ (ŵm − w∗m)>

(
1

T

T−1∑
t=0

Xt,DcmX
>
t,Dcm

)
(ŵm − w∗m)

,E(m)
1 − E(m)

2 −
(
E

(m)
2

)>
+ E

(m)
3 ,
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where W ∗m is defined as in (48). Actually,

‖E(m)
1 ‖∞ = max

i,j

∣∣∣∣∣W ∗m,i·
(

1

T

T−1∑
t=0

XtX>t −Υ

)
W ∗>m,j·

∣∣∣∣∣
= max

i,j

∣∣∣∣∣ 1

T

T−1∑
t=0

X>t W ∗>m,i·W ∗m,j·Xt − tr(W ∗>m,i·W
∗
m,j·Υ)

∣∣∣∣∣ ,
which is the maximum over deviations of some quadratic forms from their expectation. The

following lemma provides a bound for quadratic form 1
T

∑T−1
t=0 X>t BXt, with B ∈ RM×M being

any symmetric matrix.

By Lemma 5.2, we only need to bound the trace norm and operator norm of

1

2

(
(W ∗m)>i· (W

∗
m)j· + (W ∗m)>j·(W

∗
m)i·

)
.

The following lemma establishes the relationship between ‖·‖tr and ‖·‖2 for symmetric matrices.

Lemma A.3. For any symmetric matrix U of rank r, ‖U‖tr ≤ r‖U‖2.

Since 1
2

(
(W ∗m)>i· (W

∗
m)j· + (W ∗m)>j·(W

∗
m)i·

)
is of rank 2,∥∥∥∥1

2

(
(W ∗m)>i· (W

∗
m)j· + (W ∗m)>j·(W

∗
m)i·

)∥∥∥∥
tr

≤2

∥∥∥∥1

2

(
(W ∗m)i·)

>(W ∗m)j· + (W ∗m)>j·(W
∗
m)i·

)∥∥∥∥
2

≤2
∥∥∥(W ∗m)>i· (W

∗
m)j·

∥∥∥
2

= 2‖(W ∗m)i·‖2‖(W ∗m)j·‖2.

(61)

Meanwhile, similar from (49), we bound maxi ‖(W ∗m)i·‖22 by

‖(W ∗m)i·‖22 =1 + ‖(w∗m)·,i‖22
≤1 + Λmax(Υ−1

Dcm,D
c
m

)2 ‖Υ·,i‖22
≤1 + Λmin(Υ)−2Λmax(Υ)2 ≤ C,

(62)

where the second inequality is due to that ‖Υ·,i‖22 = (Υ2)ii ≤ Λmax(Υ2) ≤ Λmax(Υ)2. Thus,

both the trace norm and `2 norm of 1
2

(
W ∗>m,i·W

∗
m,j· +W ∗>m,j·W

∗
m,i·

)
can be bounded by constant,

and applying Lemma 5.2 gives us

P

(
‖E(m)

1 ‖∞ > C

√
logM

T

)
≤ c1 exp{−c2 logM}.

Meanwhile, by Lemma 5.6 and Assumption 3.2, with probability at least 1− c1 exp{−c2 logM},

‖E(m)
2 ‖∞ ≤

∥∥∥∥∥ 1

T

T−1∑
t=0

(Xt,Dm − w∗>m Xt,Dcm)Xt,Dcm

∥∥∥∥∥
∞

‖ŵm − w∗m‖1
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≤ C sm logM

T
,

and ∥∥∥E(m)
3

∥∥∥
∞

= max
i,j

∣∣∣(E(m)
3 )ij

∣∣∣ = max
i,j

(ŵm − w∗m)>·,iHDcm,D
c
m

(ŵm − w∗m)·,j

≤max
l

(ŵm − w∗m)>·,lHDcm,D
c
m

(ŵm − w∗m)·,l

≤tr
{

(ŵm − w∗m)>HDcm,D
c
m

(ŵm − w∗m)
}

≤C sm logM

T
.

Here the second line is because that HDcm,D
c
m

= 1
T

∑T−1
t=0 Xt,DcmX

>
t,Dcm

is symmetric and positive

semi-definite, thus we can apply Cauchey-Schwartz inequality. When T ≥ Cs2 logM .

sm logM

T
≤
√

logM

T
,

which implies∥∥∥Υ̂(m) −Υ(m)
∥∥∥

2
≤ ‖Υ̂(m) −Υ(m)‖F ≤ dm‖Υ̂(m) −Υ(m)‖∞ ≤ C

√
logM

T
.

Therefore, take a union bound over 1 ≤ m ≤ k, with probability at least 1− c1 exp{−c2 logM},∥∥∥∥Υ(m) 1
2 Υ̂(m)

−1
Υ(m) 1

2 − I
∥∥∥∥
∞
≤ C

√
logM

T
.

when T ≥ Cs2 logM .

B Proof of Theorem 3.3 and Theorem 3.4

Proof of Theorem 3.3. Now we consider model (3), with unknown σ∗2 = Var(εti) ≥ σ2
0. Under

this model, we use the notation ÛT for the quantity defined in the following:

ÛT = T
k∑

m=1

Ŝ>m(Υ̂(m))−1Ŝm/σ
∗2.

As explained in Section 3.4, ÛT satisfies Theorem 3.1 and 3.2 under each corresponding condition.

We show in the following that we only need to control the estimation error of σ̂2. Note that for

any 0 < δ < 1,

P
(
ŨT ≤ x

)
≤ P

(
ÛT ≤

x

1− δ

)
+ P

(
σ∗2

σ̂2
< 1− δ

)
,

and

P
(
ŨT > x

)
≤ P

(
ÛT >

x

1 + δ

)
+ P

(
σ∗2

σ̂2
> 1 + δ

)
.
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For any distribution function F (x),∣∣∣P(ŨT ≤ x)− F (x)
∣∣∣ ≤ sup

y

∣∣∣P(ÛT ≤ y)− F (y)
∣∣∣+ sup

y
|F (y)− F (y(1− δ))|

+ P
(
σ̂2 <

σ∗2

1 + δ

)
+ P

(
σ̂2 >

σ∗2

1− δ

)
.

Recall that Theorem 3.1 and 3.2 establish bounds for P
(
ÛT ≤ x

)
− Fd(x) under H0, or under

HA with φ > 1
2 , for P

(
ÛT ≤ x

)
−F

d,‖∆̃‖22
(x) when φ = 1

2 , and for P
(
ÛT ≤ x

)
when 0 < φ < 1

2 .

Thus we only need to bound P
(
σ̂2 < σ∗2

1+δ

)
, P
(
σ̂2 > σ∗2

1−δ

)
and supy |F (y)− F (y(1− δ))| with

F (x) = Fd(x) or F (x) = F
d,‖∆̃‖22

(x). Since 0 < δ < 1,

P
(
σ̂2 <

σ∗2

1 + δ

)
+ P

(
σ̂2 >

σ∗2

1− δ

)
≤ P

(
|σ̂2 − σ∗2| > δσ∗2

2

)
≤ P

(
|σ̂2 − σ∗2| > δσ2

0

2

)
.

Meanwhile,

σ̂2 − σ∗2 =
1

MT

T−1∑
t=0

∥∥∥Xt+1 − ÂXt
∥∥∥2

2
− σ∗2

=
1

MT

T−1∑
t=0

‖εt‖22 − σ∗2 +
1

MT

T−1∑
t=0

∥∥∥(Â−A∗)Xt
∥∥∥2

2

+
2

MT

T−1∑
t=0

∣∣∣ε>t (Â−A∗)Xt
∣∣∣

=
1

MT

T−1∑
t=0

‖εt‖22 − σ∗2 +
1

M

M∑
i=1

(Âi −A∗i )>H(Âi −A∗i )

+
2

M

M∑
i=1

(Âi −A∗i )>
(

1

T

T−1∑
t=0

εtiXt

)
.

By Assumption 3.1 and Lemma 5.1, with probability at least 1− c1 exp{−c2 logM},

1

M

M∑
i=1

(Âi −A∗i )>H(Âi −A∗i ) ≤ C
ρ logM

T
≤ C

√
ρ logM

T
,

and

2

M

M∑
i=1

(Âi −A∗i )>H

(
1

T

T−1∑
t=0

εtiXt

)
≤2 max

i

∥∥∥Âi −A∗i ∥∥∥
1

(
1

T

T−1∑
t=0

εtX>t

)

≤Cρ logM

T
≤ C

√
ρ logM

T
.

Also, since εti are independent sub-Gaussian random variables with scale factor Cσ∗, the first

term can be bounded by Bernstein type inequality of sub-exponential random variables(see
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proposition 5.16 in Vershynin [2010]):

P

(∣∣∣∣∣ 1

MT

T−1∑
t=0

‖εt‖22 − σ∗2
∣∣∣∣∣ > δσ∗2

2

)
≤ 2 exp

{
−cMT min{δ2, δ}

}
.

Let δ = C
√

ρ logM
T , then

P
(
σ̂2 <

σ∗2

1 + δ

)
+ P

(
σ̂2 >

σ∗2

1− δ

)
≤2 exp {−c1ρM logM}+ c2 exp{−c3 logM}.

While for supx Fd,‖µ‖22(x)− Fd,‖µ‖22 (x(1− δ)) with any µ ∈ Rd satisfying ‖µ‖2 ≤ C, if δ < 1
2 ,

Fd,‖µ‖22(x)− Fd,‖µ‖22 (x(1− δ))

=P
(
‖Z + µ‖22 ∈ (x(1− δ), x]

)
≤C(d)

(
x
d
2 − (x(1− δ))

d
2

)
sup

‖z+µ‖22∈(x(1−δ),x]

e−‖z‖
2
2/2

≤C(d)δx
d
2 exp

{
−1

2

(√
x(1− δ)− ‖µ‖2

)2
1(
√
x(1− δ) ≥ ‖µ‖2)

}
.

Here Z ∈ Rd is a standard Gaussian random vector, the third line is due to that the density of

Z is (2π)−
d
2 e−‖z‖

2
2/2, and the fourth line applies the fact that when 0 < δ < 1

2 ,[
1− (1− δ)

d
2

]
≤ d

2
sup

ξ∈(1−δ,1)
ξ
d
2
−1δ =

d

2
(1− δ)( d

2
−1)1(d≤2)δ ≤ C(d)δ.

Meanwhile, when
√
x(1− δ) < ‖µ‖2,

x
d
2 ≤ ‖µ‖d2

(1− δ)
d
2

≤ C(d),

and when
√
x(1− δ) ≥ ‖µ‖2,

x
d
2 exp

{
−1

2

(√
x(1− δ)− ‖µ‖2

)2
1(
√
x(1− δ) ≥ ‖µ‖2)

}
≤ sup
y≥0

(y + C)de−y
2/2 ≤ C(d),

which implies

Fd,‖µ‖22(x)− Fd,‖µ‖22 (x(1− δ)) ≤ C(d)δ.

To see why all the bounds for ÛT still hold for ŨT , note that we only need to add C
√

ρ logM
T +

2 exp {−c1ρM logM}+ c2 exp{−c3 logM} to the bounds under H0, and under HA when φ ≥ 1
2 ,

which only changes the constant factors of the previous bounds. For the bound under HA
when 0 < φ < 1

2 , we substitute x by x
1−δ with δ = C

√
logM
T , and add 2 exp {−c1ρM logM} +

c2 exp{−c3 logM}, which only changes the constant factors as well. Therefore, all the conclusions

for ÛT in Theorem 3.1 and 3.2 still hold for ŨT under each corresponding condition.
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Proof of Theorem 3.4. First we show the connection between RT and ŨT . Note that

S̃m =− 1

T

T−1∑
t=0

(
Xt,Dm − ŵ>mXt,Dcm

)(
Xt+1,m − Â>mXt

)
= Ŝm +

[
1

T

T−1∑
t=0

(
Xt,Dm − ŵ>mXt,Dcm

)
X>t,Dm

]((
Âm

)
Dm
− (A∗m)Dm

)
= Ŝm + Υ̃(m)

((
Âm

)
Dm
− (A∗m)Dm

)
,

which implies

â(m)− (A∗m)Dm =(Âm)Dm − (A∗m)Dm −
(

Υ̃(m)
)−1

S̃m = −
(

Υ̃(m)
)−1

Ŝm.

Thus

RT =
T

σ̂2

k∑
m=1

(â(m)− (A∗m)Dm)> Υ̂(m) (â(m)− (A∗m)Dm)

=
T

σ̂2

k∑
m=1

Ŝ>m

(
Υ̃(m)

>)−1

Υ̂(m)
(

Υ̃(m)
)−1

Ŝm,

and the only difference betweenRT and ŨT is that we substitute
(

Υ̂(m)
)−1

by

(
Υ̃(m)

>)−1

Υ̂(m)
(

Υ̃(m)
)−1

.

We only need to prove that

(
Υ̃(m)

>)−1

Υ̂(m)
(

Υ̃(m)
)−1

satisfies Assumption 3.3. The argument

is very similar to the proof of Lemma 3.3, but we need to bound

∥∥∥∥Υ̃(m)
(

Υ̂(m)
)−1

Υ̃(m)
>
−Υ(m)

∥∥∥∥
∞

instead of
∥∥∥Υ̂(m) −Υ(m)

∥∥∥
∞

here.

Let E = Υ̃(m) − Υ̂(m), then

Υ̃(m)
(

Υ̂(m)
)−1

Υ̃(m)
>

=
(

Υ̂(m) + E
)(

Υ̂(m)
)−1 (

Υ̂(m) + E>
)

=Υ̂(m) + E + E> + E
(

Υ̂(m)
)−1

E>.

Recall that when proving Lemma 3.3, we already upper bound
∥∥∥Υ̂(m) −Υ(m)

∥∥∥
∞

by C
√

logM
T

with probability at least 1− c1 exp{−c2 logM}. Thus for any vector u ∈ Rdm s.t ‖u‖2 = 1,

u>Υ̂(m)u =u>Υ(m)u+ u>
(

Υ̂(m) −Υ(m)
)
u

≥Λmin

(
Υ(m)

)
− dm

∥∥∥Υ̂(m) −Υ(m)
∥∥∥
∞
≥ C,
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which implies Λmax

((
Υ̂(m)

)−1
)
≤ C, and

∥∥∥∥E (Υ̂(m)
)−1

E>
∥∥∥∥
∞
≤ Cdm‖E‖∞. We bound ‖E‖∞

in the following. One can show that

‖E‖∞ =

∥∥∥∥∥ 1

T

T−1∑
t=0

(
Xt,Dm − ŵ>mXt,Dcm

)
X>t,Dcmŵm

∥∥∥∥∥
∞

≤

∥∥∥∥∥ 1

T

T−1∑
t=0

(
Xt,Dm − w∗>m Xt,Dcm

)
X>t,Dcm

∥∥∥∥∥
∞

(‖w∗m‖1 + ‖ŵm − w∗m‖1)

+ max
i,j

∣∣∣∣∣((ŵm − w∗m))>·i
1

T

T−1∑
t=0

(
Xt,DcmX

>
t,Dcm

)
((ŵm − w∗m))·j

∣∣∣∣∣
+

∥∥∥∥∥ 1

T

T−1∑
t=0

Xt,DcmX
>
t,Dcm

w∗m

∥∥∥∥∥
∞

‖ŵm − w∗m‖1.

Applying (42), (62), Lemma 5.7, we have∥∥∥∥∥ 1

T

T−1∑
t=0

Xt,DcmX
>
t,Dcm

w∗m

∥∥∥∥∥
∞

≤
∥∥ΥDcm,D

c
m
w∗m
∥∥
∞ +

∥∥∥∥∥ 1

T

T−1∑
t=0

Xt,DcmX
>
t,Dcm

−ΥDcm,D
c
m

∥∥∥∥∥
∞

‖w∗m‖1

≤Λmax(Υ) max
i
‖(w∗m)·,i‖2 + C

sm logM

T
≤ C.

(63)

Thus, with Lemma 5.6, Assumption 3.2, and (63), we show that with probability at least 1 −
c1 exp{−c2 logM},

‖E‖∞ ≤ C
√

logM

T
+ C

sm logM

T
+ Csm

√
logM

T
≤ Csm

√
logM

T
.

Therefore, using the same arguments as in the proof of Lemma 3.3,∥∥∥∥Υ(m) 1
2 Υ̃(m)

(
Υ̂(m)

)−1
Υ̃(m)

>
Υ(m) 1

2 − I
∥∥∥∥

2

≤C
∥∥∥∥Υ̃(m)

(
Υ̂(m)

)−1
Υ̃(m)

>
−Υ(m)

∥∥∥∥
2

≤Cdm
∥∥∥∥Υ̃(m)

(
Υ̂(m)

)−1
Υ̃(m)

>
−Υ(m)

∥∥∥∥
∞

≤C
∥∥∥Υ̂(m) −Υ(m)

∥∥∥
∞

+ C ‖E‖∞

≤Csm

√
logM

T
.

By Lemma A.2,∥∥∥∥∥Υ(m)− 1
2

(
Υ̃(m)

>)−1

Υ̂(m)
(

Υ̃(m)
)−1

Υ(m)− 1
2 − I

∥∥∥∥∥
∞

≤ Csm

√
logM

T
.
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C Proof of Lemmas in Section 5

Proof of Lemma 5.3. Let

ξT,t = − 1√
T


εt,1(Υ(1))−

1
2W ∗1Xt

...

εt,k(Υ
(k))−

1
2W ∗kXt

 .

Define filtration FT,t = σ(X−p+1, X−p+2, · · · , Xt+1), then (ξTt,FTt)0≤t≤T−1 is a martingale

difference sequence, and VT =
∑T−1

t=0 ξT,t. To bound the convergence rate, we are going to use a

modified version of Lemma 4 in Grama and Haeusler (2006).

Lemma C.1. Let (ξni,Fni)0≤i≤n be a martingale difference sequence taking values in Rd. Let

Xn
k =

∑k
i=1 ξni, and 〈Xn〉k =

∑k
i=1 ani ,

∑k
i=1 E(ξniξ

>
ni|Fn,i−1). Define Rn,dδ = Ln,dδ +Nn,d

δ ,

Ln,dδ =
n∑
i=1

E‖ξni‖2+2δ
2 , Nn,d

δ = E‖ 〈Xn〉n − I‖
1+δ
tr .

Then ∀µ ∈ Rd, r ≥ 0, 0 < δ ≤ 1
2 , when Rn,dδ ≤ 1,

P(‖Xn
n + µ‖2 ≥ r)− P(‖Z + µ‖2 ≥ r) ≤ C(‖µ‖2, d, δ)

(
Rn,dδ

) 1
3+2δ

,

where Zd×1 ∼ N (0, I), C(‖µ‖2, d, δ) is non-decreasing as ‖µ‖2 increases.

By Lemma C.1, to bound supx>0,

∣∣∣P(‖VT + µ‖22 ≤ x)− Fd,‖µ‖22(x)
∣∣∣, we only need to bound

RT,dδ = LT,dδ +NT,d
δ .

LT,dδ =

T−1∑
t=0

E
(
‖ξT,t‖2+2δ

2

)

≤ CT−(1+δ)
T∑
t=1

E

(
k∑

m=1

‖W ∗mXt‖22ε2t,m

)1+δ

≤ CT−(1+δ)
T−1∑
t=0

kδ
k∑

m=1

E
(
|εt,m|2+2δ‖W ∗mXt‖2+2δ

2

)
= T−δkδC(δ)

k∑
m=1

E
(
‖W ∗mX0‖2+2δ

2

)
Here the second line is due to Λmin(Υ(m)) ≥ 1, and the third line is due to f(x) = x1+δ is a

convex function. More specifically,(
k∑

m=1

‖W ∗mXt‖22ε2t,K

)1+δ

≤ 1

k

k∑
m=1

(
k‖W ∗mXt‖22ε2t,K

)1+δ
= kδ

k∑
m=1

(
‖W ∗mXt‖2+2δ

2 ε2+2δ
t,K

)
.
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While for the last line, since εt,m is sub-Gaussian with parameter τ , E|εt,m|2+2δ ≤ C(δ). Note

that d, β, τ are all viewed as constants here. Due to the sub-Gaussianity of εt,i’s, we have the

following lemma.

Lemma C.2.

E (‖W ∗mXt‖
q
2)

1
q ≤ Cq for all q ≥ 1.

Therefore,

E
(
‖W ∗mX0‖2+2δ

2

)
≤ C(δ),

which implies

LT,dδ ≤ C(δ)T−δ.

While for NT,d
δ , since

T−1∑
t=0

E
(
ξT,tξ

>
T,t|FT,t−1

)
− I

=


(Υ(1))−

1
2B1(Υ(1))−

1
2 · · · · · · 0

0 (Υ(2))−
1
2B2(Υ(2))−

1
2 · · · 0

...
. . .

. . .
...

0 · · · · · · (Υ(k))−
1
2Bk(Υ

(k))−
1
2

 ,

where Bm = W ∗m

(
1
T

∑T−1
t=0 XtX>t −Υ

)
W ∗>m ,

NT,d
δ =E

( k∑
m=1

∥∥∥(Υ(m))−
1
2Bm(Υ(m))−

1
2

∥∥∥
tr

)1+δ


≤E

( k∑
m=1

dm

∥∥∥(Υ(m))−
1
2Bm(Υ(m))−

1
2

∥∥∥
2

)1+δ


≤E

( k∑
m=1

d2
m‖Bm‖∞

)1+δ
 ,

where the second line is because that (Υ(m))−
1
2Bm(Υ(m))−

1
2 is of rank at most dm, and we can

apply Lemma A.3; the last line is due to

‖Bm‖2 = sup
‖u‖2=1

‖Bmu‖2 ≤ sup
‖u‖2=1

√
dm‖Bmu‖∞ ≤ sup

‖u‖2=1

√
dm‖Bm‖∞‖u‖1 = dm‖Bm‖∞.

Since

(Bm)ij =
1

T

T−1∑
t=0

X>t (W ∗m)>i· (W
∗
m)j·Xt − tr

(
(W ∗m)>i· (W

∗
m)j·Υ

)
,
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by Lemma 5.2, we only need to bound the operator norm and trace norm of

1

2

(
(W ∗m)>i· (W

∗
m)j· + (W ∗m)>j·(W

∗
m)i·

)
.

By (61) and (62), we have the following:∥∥∥∥1

2

(
(W ∗m)>i· (W

∗
m)j· + (W ∗m)>j·(W

∗
m)i·

)∥∥∥∥
tr

≤2

∥∥∥∥1

2

(
(W ∗m)>i· (W

∗
m)j· + (W ∗m)>j·(W

∗
m)i·

)∥∥∥∥
2

≤ C.

Therefore, applying Lemma 5.2 leads us to

P

( k∑
m=1

d2
m‖Bm‖∞

)1+δ

> x


≤

k∑
m=1

P

(
‖Bm‖∞ >

x
1

1+δ

d2

)
≤c1 exp

{
−c2T min

{
x

1
1+δ , x

2
1+δ

}}
,

which implies

NT,d
δ ≤

∫ ∞
0

P

( k∑
m=1

d2
m‖Bm‖∞

)1+δ

> x

 dx

≤
∫ ∞

0
c1 exp

{
−c2T min

{
x

2
1+δ , x

1
1+δ

}}
dx

≤C(δ)

(∫ 1

0
uδ exp{−cTu2}du+

∫ ∞
1

uδ exp{−cTu}du
)

≤C(δ)

(
T−

1+δ
2 Γ

(
1 + δ

2

)
+ T−1−δΓ(1 + δ)

)
≤C(δ)T−

1+δ
2 .

Thus,

RT,dδ = NT,d
δ + LT,dδ ≤ C(δ)

(
T−δ + T−

1+δ
2

)
.

By Lemma C.1, for any x ≥ 0, µ ∈ Rd, and 0 ≤ δ ≤ 1
2 , when T > C(δ),∣∣∣P (‖VT + µ‖22 ≤ x

)
− Fd,‖µ‖22(x)

∣∣∣ ≤ C(‖µ‖2, δ)
(
RT,dδ

) 1
3+2δ

.

The best rate is achieved when δ = 1
2 , and thus when T > C,

sup
x≥0

∣∣∣P (‖VT + µ‖22 ≤ x
)
− Fd,‖µ‖22(x)

∣∣∣ ≤ C(‖µ‖2)T−
1
8 ,
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Proof of Lemma 42. We prove the lower and upper bounds for eigenvalues of Υ, by establishing

a connection between our stability condition (13) and another spectral density based condition

proposed in Basu et al. [2015]. First we introduce the following lemma, which is a direct result

of proposition 2.3 and (2.6) in Basu et al. [2015] under our setting.

Lemma C.3. Under the model specified in (3) with independent noise εti of unit variance, the

eigenvalues of Υ can be bounded as follows:

(µmax(A))−1 ≤ Λmin(Υ) ≤ Λmax(Υ) ≤ (µmin(A))−1 ,

where µmin(A) = min|z|=1 Λmin (A∗(z)A(z)), and µmax(A) = max|z|=1 Λmax (A∗(z)A(z)).

By Lemma C.3, we only need to prove that condition (13) implies a lower bound for µmin(A)

and upper bound for µmax(A). First note that

µmin(A) = min
|z|=1

Λmin (A(z)A∗(z))

= min
|z|=1

inf
u

‖A∗(z)u‖22
‖u‖22

= min
|z|=1

inf
v

‖v‖22∥∥∥(A∗(z))−1 v
∥∥∥2

2

= min
|z|=1

(∥∥∥(A∗(z))−1
∥∥∥

2

)−2
,

where the last equality is due to that
∥∥∥(A∗(z))−1

∥∥∥
2

= supv
‖(A∗(z))−1v‖

2
‖v‖2 . Meanwhile, for any

|z| = 1,

∥∥∥(A∗(z))−1
∥∥∥

2
=
∥∥A−1(z)

∥∥
2

=

∥∥∥∥∥∥
∞∑
j=0

Ψjz
j

∥∥∥∥∥∥
2

≤
∞∑
j=0

‖Ψj‖2 ≤ β,

where we apply condition (13) in the last inequality. Thus µmin(A) ≥ β−2.

While for bounding µmax(A), we start by bounding ‖An‖2 for 0 ≤ n ≤ p. Here we define

A0 = IM×M , and An = 0 for all n > p. Since

I = A−1(z)A(z) =

 ∞∑
j=0

Ψjz
j

( p∑
i=0

Aiz
i

)
=

∞∑
n=0

( ∞∑
i=0

ΨiAn−i

)
zn,

one can show that Ψ0 = I, and
∑n

i=0 ΨiAn−i = 0 for n ≥ 1. Thus

An = −
n∑
i=1

ΨiAn−i for n ≥ 1,

and ‖An‖2 ≤
∑n

i=1 ‖Ψi‖2‖An−i‖2. We have the following claim:

For 0 ≤ n ≤ p, ‖An‖2 ≤ βn ∨ 1. (64)
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This can be proved by induction. It is clear that ‖A0‖2 = ‖I‖2 = β0, and if (64) holds for

0 ≤ n = k ≤ p,

‖Ak+1‖2 ≤
n∑
i=1

‖Ψi‖2(βn−i ∨ 1) ≤ βmax
i

(βn−i ∨ 1) ≤ βn ∨ 1.

Therefore, µmax(A) can be bounded in the following:

µmax(A) = max
|z|=1

Λmax (A(z)A∗(z))

= max
|z|=1

‖A∗(z)‖22

≤

(
p∑
i=0

‖Ai‖2

)2

≤
(
βp+1 − 1

β − 1

)2

1(β > 1) + (p+ 1)21(0 ≤ β ≤ 1).

With Lemma C.3, we conclude that

C1(β) ≤ Λmin(Υ) ≤ Λmax(Υ) ≤ C2(β),

where C1(β) =
(

1−β
1−βp+1

)2
1(β > 1) + (p+ 1)−21(0 ≤ β ≤ 1), and C2(β) = β2.

Proof of Lemma 5.1. Recall that Xt =
∑∞

j=0 Ψjεt−j−1. Define Ψ
(p)
j ∈ RpM×M as the following:

Ψ
(p)
j =


Ψj1(j ≥ 0)

...

Ψj−p+11(j − p+ 1 ≥ 0)

 , (65)

then we can also write Xt as an infinite sum Xt =
∑∞

j=0 Ψ
(p)
j εt−j−1. Without loss of generality,

we consider the first entry of 1
T

∑T−1
t=0 εtX>t :

1

T

T−1∑
t=0

εt,1

∞∑
j=0

(Ψj)1·εt−j−1. (66)

In the following, we tackle the infinite sum in (66), by focusing our analysis on the finite sum

and let the residue converges to 0. Rigorously, for any positive integer m, let

ε̃ = (ε>−m−1, . . . , ε
>
T−1)>, η(t) = ((Ψt+m)1·, . . . , (Ψ0)1,·, 0, . . . , 0)> ∈ R(T+m+1)M ,

and e(t) ∈ R(T+m+1)M satisfying e
(t)
i = 1(i = (t+m)M + 1), then we have

1

T

T−1∑
t=0

εt,1

∞∑
j=0

(Ψj)1·εt−j−1

=ε̃>

(
1

T

T−1∑
t=0

e(t)η(t)>

)
ε̃+

1

T

T−1∑
t=0

εt,1

∞∑
j=t+m+1

(Ψj)1·εt−j−1

,E1 + E2.
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We will let m be sufficiently large in later argument. The following arguments are devided into

two parts: bounding E1 and E2.

(1) Bounding E1

Since all entries of ε̃ are independent sub-Gaussian with constant parameter, we can apply

the following Hanson-Wright inequality:

Lemma C.4. Let X = (X1, . . . , Xn) ∈ Rn be a random vector with independent components

Xi which satisfy E(Xi) = 0 and ‖Xi‖ψ2 ≤ K. Let A be an n × n matrix. Then, for every

t ≥ 0,

P
(
|X>AX − EX>AX| > t

)
≤ 2 exp

{
−cmin

(
t2

K4‖A‖2F
,

t

K2‖A‖2

)}
This lemma is a result in Rudelson et al. [2013].By Lemma C.4, we only need to bound the

norms of 1
T

∑T−1
t=0 e(t)η(t)> .

First note that ∥∥∥∥∥ 1

T

T−1∑
t=0

e(t)η(t)>

∥∥∥∥∥
2

= sup
‖u‖2=‖v‖2=1

1

T

T−1∑
t=0

u>e(t)η(t)>v.

For any u, v ∈ R(T+m+1)M with unit `2 norm, one can show that

1

T

T−1∑
t=0

u>e(t)η(t)>v

=
1

T

T−1∑
t=0

u(t+m)M+1

t+m∑
i=0

(Ψt+m−i)1·v
(i+1)

≤ 1

T

T−1∑
t=0

u(t+m)M+1

t+m∑
i=0

αt+m−i‖v(i+1)‖2

≤ 1

T
(umM+1, · · · , u(T+m−1)M+1)Γ


‖v(1)‖2

...

‖v(T+m)‖2


≤‖Γ‖2

T
,

where v(i) = (v(i−1)M+1, . . . , viM )>, αi = ‖Ψi‖2 ≥ ‖(Ψi)1·‖2, and Γ ∈ RT×(T+m) is a matrix

with each entry Γij = αm+i−j1(m+ i− j ≥ 0). Since Γ is a Toeplitz matrix, we will use the

following lemma to bound its `2 norm.

Lemma C.5. Let f(λ) be a Fourier series defined as f(λ) =
∑∞

t=−∞ tk exp{ikλ}, with∑∞
k=−∞ |tk| < ∞. We define a sequence of Toeplitz matrices Tn with (Tn)i,j = ti−j, then

the operator norm of Tn is bounded by

‖Tn‖2 ≤ 2ess sup f.

where ess sup f the essential supremum.
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This is actually Lemma 4.1 in Gray et al. [2006], and we directly apply it here. By Lemma

C.5,

‖Γ‖2 ≤ 2 sup
λ

∣∣∣∣∣
∞∑

k=−m
αm+ke

ikλ

∣∣∣∣∣ ≤ 2

∞∑
k=0

αk ≤
∞∑
i=0

 ∞∑
j=0

α2
i+j

 1
2

≤ β.

Thus
∥∥∥ 1
T

∑T−1
t=0 e(t)η(t)>

∥∥∥
2
≤ β

T . While for the Frobenius norm, we have

∥∥∥∥∥ 1

T

T−1∑
t=0

e(t)η(t)>

∥∥∥∥∥
2

F

=tr

((
1

T

T−1∑
t=0

η(t)e(t)>

)(
1

T

T−1∑
l=0

e(t)η(t)>

))

=
1

T 2

T−1∑
t=0

‖η(t)‖22

≤ 1

T 2

T−1∑
t=0

t+m∑
i=0

α2
i ≤

β2

T
.

Therefore, by Lemma C.4, for any δ > 0,

P (|E1| > δ) ≤ 2 exp
{
−cT min{δ, δ2}

}
.

(2) Bounding E2

First note that

|E2| =

∣∣∣∣∣∣ 1

T

T−1∑
t=0

εt,1

∞∑
j=t+m+1

(Ψj)1·εt−j−1

∣∣∣∣∣∣
≤ 1

2T

T−1∑
t=0

ε2t,1 +
1

2T

T−1∑
t=0

 ∞∑
j=t+m+1

(Ψj)1·εt−j−1

2

.

Recall the definition of ‖ · ‖ψ1 and ‖ · ‖ψ2 in the proof of Lemma C.2. Since ‖ε2t,1‖ψ1 ≤
2‖εt,1‖2ψ2

≤ 2τ2,

P

(∣∣∣∣∣ 1

2T

T−1∑
t=0

ε2t,1

∣∣∣∣∣ > δ

)
≤ 2 exp{−cT min{δ, δ2}},

by Bernstein type inequality of sub-exponential random variables(see proposition 5.16 in Ver-

shynin [2010]).

Now we bound the second term 1
2T

∑T−1
t=0

(∑∞
j=t+m+1(Ψj)1·εt−j−1

)2
. Since∣∣∣∣∣∣

∞∑
j=t+m+1

(Ψj)1·εt−j−1

∣∣∣∣∣∣ ≤
∞∑

j=t+m+1

αj‖εt−j−1‖2,
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one can show that ∥∥∥∥∥∥ 1

2T

T−1∑
t=0

 ∞∑
j=t+m+1

(Ψj)1·εt−j−1

2∥∥∥∥∥∥
ψ1

≤

∥∥∥∥∥∥
∞∑

j=t+m+1

(Ψj)1·εt−j−1

∥∥∥∥∥∥
2

ψ2

≤CMτ2

 ∞∑
j=t+m+1

αj

2

,

where we apply the fact that ‖‖εt‖2‖ψ2
≤ C
√
Mτ , which is shown in the proof of Lemma C.2.

Thus we have

P

 1

2T

T−1∑
t=0

 ∞∑
j=t+m+1

(Ψj)1·εt−j−1

2

> δ


≤C exp

− cδ

Mτ2
(∑∞

j=t+m+1 αj

)2

 .

due to the tail bound of sub-exponential r.v. (also see Vershynin [2010]). Since

∞∑
i=0

αi ≤
∞∑
i=0

 ∞∑
j=0

α2
i+j

 1
2

≤ β,

lim
m→∞

 ∞∑
j=t+m+1

αj

2

= 0.

Let m be sufficiently large such that
(∑∞

j=t+m+1 αj

)2
≤ 1

MT , then we arrive at the following

P

(
1

T

T−1∑
t=0

εt,1(Xt)1

)
≤ C exp{−cT min{δ, δ2}}.

Let δ = C
√

logMT and take a union bound over the pM2 entries of 1
T

∑T−1
t=0 εtX>t , the

conclusion follows.

Proof of Lemma 5.6. Without loss of generality, consider

1

T

T−1∑
t=0

(
Xt,Dm − w∗>m Xt,Dcm

)
i
Xt,j
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for any 1 ≤ i ≤ dm, and j ∈ Dc
m. Similar from the proof of Lemma 5.6, We can write it as a

quadratic form

1

T

T−1∑
t=0

X>t
1

2

(
(W ∗m)>i· e

>
j + ej(W

∗
m)i·

)
Xt,

where W ∗m is defined as in (48). Since 1
2

(
(W ∗m)>i· e

>
j + ej(W

∗
m)i·

)
is of rank 2, and we have

bounded ‖(W ∗m)i·‖2 in (62), applying Lemma A.3 leads to∥∥∥∥1

2

(
(W ∗m)>i· e

>
j + ej(W

∗
m)i·

)∥∥∥∥
tr

≤2

∥∥∥∥1

2

(
(W ∗m)>i· e

>
j + ej(W

∗
m)i·

)∥∥∥∥
2

≤‖(W ∗m)i·‖2 ≤ C.

Applying Lemma 5.2, and taking a union bound over all entries of

1

T

T−1∑
t=0

(
Xt,Dm − w∗>m Xt,Dcm

)
Xt,

the conclusion follows.

Proof of Lemma 5.7. Similar from the proof of Lemma 5.1, we consider
∣∣∣ 1
T

∑T−1
t=0 XtiXtj −Υij

∣∣∣.
Since

1

T

T−1∑
t=0

XtiXtj =
1

T

T−1∑
t=0

X>t

(
1

2
(eie

>
j + eje

>
i )

)
Xt,

by Lemma 5.2, we need to bound norms of 1
2(eie

>
j + eje

>
i ), which is of rank at most 2. One can

show that ∥∥∥∥1

2
(eie

>
j + eje

>
i )

∥∥∥∥
tr

≤ 2

∥∥∥∥1

2
(eie

>
j + eje

>
i )

∥∥∥∥
2

≤ 2‖ei‖2‖ej‖2,

with Lemma A.3. Therefore, by taking a union bound, it is clear that∥∥∥∥∥ 1

T

T−1∑
t=0

XtX
>
t −Υ

∥∥∥∥∥
∞

≤ C
√

logM

T
,

with probability at least 1− c1 exp{−c2 logM}.

D Proof of Lemmas in Section A and Appendix C

Proof of Lemma C.1. Here we adopt the proof framework for Lemma 4 in Grama and Haeusler

[2006], but with some small adjustments. First we construct a new martingale difference sequence

(mnk,Gnk)1≤k≤n+1, sum of whose covariances equal to Id×d. Random projections are used for

construction. The following lemma on random projections is stated as Lemma 3 in Grama and

Haeusler [2006].
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Lemma D.1. Let V and a1, · · · , an be positive semi-definite d × d matrices. Set Ak = a1 +

· · · + ak, for k = 1, · · · , n. Then there exist a sequence of integers 1 ≤ τ1 ≤ · · · ≤ τd ≤ n and

a corresponding sequence S1 ⊇ · · · ⊇ Sd of subspaces of Rd such that, with Pk defined as the

projection matrix of subspace Si, for τi ≤ k < τi+1 (where τ0 = 1, τd+1 = n + 1,S0 = Rd), the

following statements hold true for k = 1, · · · , n:

(a)V − Âk is non-negative definite, where Âk = P1a1P1 + · · ·+ PkakPk;

(b)x>(Âk −Ak)x = 0, for all x ∈ Πk , {Pkx : x ∈ Rd};
(c)x>(Âk − V + αkI)x ≥ 0 for all x ∈ Π>k , where αk = max{‖aτj‖2 : τj ≤ k}.
Meanwhile, Pk is determined by a1, · · · , ak and V .

Given this claim, mnk can be constructed as follows:

Recall the martingale sequence we consider is (ξnk,Fnk)1≤k≤n+1, and ank = E
(
ξnkξ

>
nk

)
. Apply

the fact with V = I, ak = ank, and let {Pnk}nk=1 be the corresponding projection matrices. Let

Dn = I −
∑n

k=1 PnkankPnk, which is non-negative definite. Define

Mn
k =

n∑
k=1

mnk, 1 ≤ k ≤ n+ 1,

where

mnk = Pnkξnk, for 1 ≤ k ≤ n, mn,n+1 = D
1
2
n ηn,n+1.

Since Pnk ∈ Fn,k−1, mnk ∈ Fnk for 1 ≤ k ≤ n.Thus (mnk,Gnk) is also a martingale difference

sequence with Gnk = Fnk, when 1 ≤ k ≤ n, and Gn,n+1 = σ(Fnn, ηn,n+1). Meanwhile,

〈Mn〉n+1 =

n+1∑
k=1

E(mnkm
>
nk|Fn,k−1) = Id×d.

This construction is from Grama and Haeusler [2006]. They also prove that, for any ε, δ > 0,

P
(
‖Xn

n −Mn
n+1‖2 ≥ ε

)
≤ C(d, δ)ε−2−2δ

(
Ln,dδ +Nn,d

δ

)
, (67)

Since

− P(‖Xn
n −Mn

n+1‖2 > ε)− P(‖Z + µ‖2 ≥ r + 2ε)

+ P(‖Mn
n+1 + µ‖2 ≥ r + ε)− P(Z ∈ [r, r + 2ε))

≤P(‖Xn
n + µ‖2 ≥ r)− P(‖Z + µ‖2 ≥ r)

≤P(‖Mn
n+1 + µ‖2 ≥ r − ε)− P(‖Z + µ‖2 ≥ r − 2ε)

+ P(‖Xn
n −Mn

n+1‖2 > ε) + P(Z ∈ [r − 2ε, r)),

(68)

for any µ ∈ Rd, r ≥ 0, ε > 0, we need to bound

E(1(‖Z + µ‖2 ≥ r + 2ε))− E(1(‖Mn
n+1 + µ‖2 ≥ r + ε))
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and

E(1(‖Mn
n+1 + µ‖2 ≥ r − ε))− E(1(‖Z + µ‖2 ≥ r − 2ε)).

The following functions are defined as a smooth relaxation for indicator function. Let

f∗(z) =

∫ z− 1
2

−∞
φ(t)dt, with φ(t) =

1

C
exp{− 4

1− 4t2
}1(− 1

2
, 1
2)(t), (69)

where C is a normalizing constant s.t.
∫
φ(t)dt = 1. Then we have f∗(z) = 0 if z ≤ 0,

0 ≤ f∗(z) ≤ 1 if 0 ≤ z ≤ 1, and f∗(z) = 1 if z ≥ 1. f∗(z) is infinitely many times differentiable

on R, and since f∗(z) is constant when z ≤ 0 or z ≥ 1, for any fixed order, the derivative of

f∗(z) is bounded. For any z ∈ Rd, let

fl,µ,r,ε(z) = f∗(gl,µ,r,ε(z)), (70)

where

g1,µ,r,ε(z) =
‖z + µ‖2 − r − ε

ε
, g2,µ,r,ε(z) =

‖z + µ‖2 − r + 2ε

ε
. (71)

In the following proof, we will denote fl,µ,r,ε(z) and gl,µ,r,ε(z) as fl(z) and gl(z), l = 1, 2 for

brevity. Therefore,

E(1(‖Z + µ‖2 ≥ r + 2ε))− E(1(‖Mn
n+1 + µ‖2 ≥ r + ε)) ≤ E(f1(Z)− f1(Mn

n+1)),

E(1(‖Mn
n+1 + µ‖2 ≥ r − ε))− E(1(‖Z + µ‖2 ≥ r − 2ε)) ≤ E(f2(Mn

n+1)− f1(Z)).

Thus,

|P(‖Xn
n + µ‖2 ≥ r)− P(‖Z + µ‖2 ≥ r)|

≤max
l=1,2

|E(fl(M
n
n+1)− fl(Z))|+ P(‖Xn

n −Mn
n+1‖2 > ε)

+ P(‖Z + µ‖2 ∈ [r − 2ε, r + 2ε]).

Actually, when r ≤ 3ε, the right hand side of (68) can be substituted by

P(‖Z + µ‖2 < 3ε),

and

|P(‖Xn
n + µ‖2 ≥ r)− P(‖Z + µ‖2 ≥ r)|

≤max{|E(f1(Mn
n+1)− f1(Z))|+ P(‖Xn

n −Mn
n+1‖2 > ε)

+ P(‖Z + µ‖2 ∈ [r, r + 2ε]),P(‖Z + µ‖2 ∈ [0, 3ε))}.

(72)

To bound E(fl(M
n
n+1)− fl(Z)), we will use the following lemma.

Lemma D.2. For fl(·) defined as in (70),∣∣∣∣∣∣
∑

1≤i1,··· ,ik≤d
yi1 · · · yik

∂k

∂zi1 · · · ∂zik
fl(z)

∣∣∣∣∣∣ ≤ C(k)ε−k‖y‖k2, (73)

for any k ∈ Z∗, y, z ∈ Rd, when l = 1, or when l = 2 and r > 3ε.
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The proof of this lemma is deferred to Appendix E. In the following proof, we will always

assume the condition l = 1 or l = 2 and r > 3ε hold. Therefore, for any m ∈ Z∗,∣∣∣∣∣∣fl(z + y)− fl(y)−
m∑
k=1

∑
1≤i1,··· ,ik≤d

yi1 · · · yik
∂k

∂zi1 · · · ∂zik
fl(z)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

1≤i1,··· ,im+1≤d
yi1 · · · yim+1

∂m+1

∂ui1 · · · ∂uim+1

fl(u)

∣∣∣∣∣∣
≤C(m+ 1)ε−m−1‖y‖m+1

2 ,

where u = z + t1y for some 0 ≤ t1 ≤ 1. Meanwhile,∣∣∣∣∣∣fl(z + y)− fl(y)−
m∑
k=1

∑
1≤i1,··· ,ik≤d

yi1 · · · yik
∂k

∂zi1 · · · ∂zik
fl(z)

∣∣∣∣∣∣
=

∣∣∣∣∣ ∑
1≤i1,··· ,im≤d

yi1 · · · yi(m)

∂m

∂vi1 · · · ∂vim
fl(v)

−
∑

1≤i1,··· ,im≤d
yi1 · · · yim

∂m

∂zi1 · · · ∂zim
fl(z)

∣∣∣∣∣
≤2C(m)ε−m‖y‖m2 ,

where v = z + t2y for some 0 ≤ t2 ≤ 1. Thus, for any δ > 0,∣∣∣∣∣∣fl(z + y)− fl(y)−
d2+2δe−1∑
k=1

∑
1≤i1,··· ,ik≤d

yi1 · · · yik
∂k

∂zi1 · · · ∂zik
fl(z)|

∣∣∣∣∣∣
≤C(δ) max{ε−d2+2δe+1‖y‖d2+2δe−1

2 , ε−d2+2δe‖y‖d2+2δe
2 }

≤C(δ)ε−2−2δ‖y‖2+2δ
2 .

Let w̃nk, 1 ≤ k ≤ n be i.i.d. standard Gaussian random vectors that are independent of Gn,n+1,

wnk = (bnk)
1
2 w̃nk, for k = 1, · · · , n+ 1, where bnk = E(mnkm

>
nk|Gn,k−1). Define

Wn
n+2 = 0, Wn

k =

n+1∑
i=k

wni, 1 ≤ k ≤ n+ 1.
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Then Wn
1 follows standard Gaussian distribution. Let Unk = Mn

k−1 +Wn
k+1, then∣∣E(fl(M

n
n+1)− fl(Z))

∣∣
=
∣∣E(fl(M

n
n+1)− fl(Wn

1 ))
∣∣

=

∣∣∣∣∣
n+1∑
k=1

E(fl(U
n
k +mnk)− fl(Unk + wnk))

∣∣∣∣∣
≤
n+1∑
k=1

∣∣∣∣∣E(fl(U
n
k +mnk)− fl(Unk )

−
d2+2δe−1∑

j=1

∑
1≤i1,··· ,ij≤d

(mnk)i1 · · · (mnk)ij
∂j

∂zi1 · · · ∂zij
fl(U

n
k ))

∣∣∣∣∣
+

n+1∑
k=1

∣∣∣∣∣E(fl(U
n
k + wnk)− fl(Unk )

−
d2+2δe−1∑

j=1

∑
1≤i1,··· ,ij≤d

(wnk)i1 · · · (wnk)ij
∂j

∂zi1 · · · ∂zij)
fl(U

n
k ))

∣∣∣∣∣
≤
n+1∑
k=1

C(δ)ε−2−2δE(‖mnk‖2+2δ
2 ).

Generally this inequality holds for δ ∈ (0, 1
2 ], since wnk and mnk have the same second order

moments, which justifies the fourth line. By the proof of Lemma 4 in Grama and Haeusler

[2006],
n+1∑
k=1

E(‖mnk‖2+2δ
2 ) ≤ C(d, δ)(Ln,dδ +Nn,d

δ ),

thus ∣∣E (fl(Mn
n+1)− fl(z)

)∣∣ ≤ C(d, δ)ε−2−2δRn,dδ . (74)

Now we only need to bound P (‖Z + µ‖2 ∈ [r − 2ε, r + 2ε]) and P (‖Z + µ‖2 ∈ [0, 3ε)). Assume

ε ≤ 1, then

P (‖Z + µ‖2 ∈ [0, 3ε)) = P (Z ∈ B3ε(−µ)) ≤ C(d)εd ≤ C(d)ε.

Meanwhile,

P(‖Z + µ‖2 ∈ [r − 2ε, r + 2ε])

=P(Z ∈ Br+2ε(−µ)\Br−2ε(−µ))

≤

C(d)
(
(r + 2ε)d − (r − 2ε)d

)
, r ≤ 2ε+ ‖µ‖

C(d) exp{−(r − 2ε− ‖µ‖2)2/2}
(
(r + 2ε)d − (r − 2ε)d

)
, r > 2ε+ ‖µ‖2

≤C(d, ‖µ‖2)ε.

The last line is due to that

(r + 2ε)d − (r − 2ε)d ≤4εd(r + 2ε)d−1 ≤ 4dε(4 + ‖µ‖2)d−1,
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when r ≤ 2ε+ ‖µ‖2, and

exp{−(r − 2ε− ‖µ‖2)2/2}
(

(r + 2ε)d − (r − 2ε)d
)

≤4εd sup
x>0

(x+ 4ε+ ‖µ‖2)d−1 exp{−x2/2}

≤4d sup
x>0

(x+ 4 + ‖µ‖2)d−1 exp{−x2/2}ε.

Here clearly C(d, ‖µ‖2) is non-decreasing with respect to ‖µ‖2. Therefore, by (72), (67) and

(74), when Rn,dδ ≤ 1, for any µ ∈ Rd, r ≥ 0, 0 < δ ≤ 1
2 , with ε = (Rn,dδ )

1
3+2δ ,

P(‖Xn
n + µ‖2 ≥ r)− P(‖Z + µ‖2 ≥ r) ≤ C(d, δ, ‖µ‖2)

(
Rn,dδ

) 1
3+2δ

,

where C(d, δ, ‖µ‖2) is non-decreasing with respect to ‖µ‖2.

Proof of Lemma C.2. First we introduce the following two norms:

For any random variable X,

‖X‖ψ1 = sup
p≥1

p−1E (|X|p)
1
p ,

‖X‖ψ2 = sup
p≥1

p−
1
2E (|X|p)

1
p .

These two norms are related to sub-exponential and sub-Gaussian random variables, and the

following lemma shows the connections between the two norms and the scale factor for sub-

Gaussian r.v.

Lemma D.3. For any sub-Gaussian r.v. X with scale factor τ , the following hold:

cτ ≤ ‖X‖ψ2 ≤ Cτ,

with some absolute constants c, C, and

‖X‖2ψ2
≤ ‖X‖ψ1 ≤ 2‖X‖2ψ2

.

This is an established result in Vershynin [2010]. By Lemma D.3, bounding
∥∥∥‖W ∗mXt‖22∥∥∥

ψ1

would be sufficient, and we start from bounding E (exp {λ (W ∗m)i·Xt}) for any λ ∈ R. Recall

that Xt = Ψ
(p)
j εt−j−1, with Ψ

(p)
j defined as in (65), we can write

(W ∗m)i·Xt = (W ∗m)i·

∞∑
k=0

Ψ
(p)
k εt−k−1 = lim

N→∞

N∑
k=0

(W ∗m)i·Ψ
(p)
k εt−k−1,

exp {λ (W ∗m)i·Xt} = lim
N→∞

exp

{
λ

N∑
k=0

(W ∗m)i·Ψ
(p)
k εt−k−1

}
,
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and

exp

{
λ

N∑
k=0

(W ∗m)i·Ψ
(p)
k εt−k−1

}
≤ exp

{
|λ|

∞∑
k=0

‖(W ∗m)i·‖2 α̃k ‖εt−k−1‖2

}
,

where α̃k is defined as
∥∥∥Ψ

(p)
k

∥∥∥
2
. The relationship between α̃k and αk = ‖Ψk‖2 can be established

as follows:

α̃k = sup
‖u‖2=1

∥∥∥Ψ
(p)
k u

∥∥∥
2

= sup
‖u‖2=1

(p−1)∧j∑
n=0

‖Ψk−nu‖22

 1
2

≤

(
p−1∑
n=0

α2
k−n

) 1
2

, (75)

if we define αi = 0 when i < 0. We now prove that exp {|λ|
∑∞

k=0 ‖(W ∗m)i·‖2 α̃k ‖εt−k‖2} is

integrable so that we can use Dominated Convergence Theorem. Since εti’s are all independent

sub-Gaussian random variables with parameter τ ,

‖‖εt‖2‖ψ2
≤
∥∥‖εt‖22∥∥ 1

2

ψ1
≤
(
M‖ε2ti‖ψ1

) 1
2 ≤ C

√
Mτ, (76)

where the second inequality is due to Minkowski’s inequality. Thus,

E

(
exp

{
|λ|

∞∑
k=0

‖(W ∗m)i·‖2 α̃k ‖εt−k‖2

})

= lim
N→∞

E

(
exp

{
|λ|

N∑
k=0

‖(W ∗m)i·‖2 α̃k ‖εt−k‖2

})

≤ lim
N→∞

exp

{
CMλ2 ‖(W ∗m)i·‖22

N∑
k=0

α̃2
k

}
≤ exp

{
CMλ2

}
,

where the first equality is due to Monotone Convergence Theorem, and the last line is due to

(62) and the fact that

N∑
k=0

α̃2
k ≤

N∑
k=0

p−1∑
n=0

α2
k−n ≤ p

N∑
k=0

α2
k ≤ β2.

Therefore, by Dominated Convergence Theorem,

E (exp {λ (W ∗m)i·Xt})

= lim
N→∞

E

(
exp

{
λ

N∑
k=0

(W ∗m)i·Ψ
(p)
k εt−k

})

≤ exp

{
Cλ2‖(W ∗m)i·‖22

∞∑
k=0

α̃2
k

}
= exp

{
Cλ2

}
.

By Lemma D.3, ‖(W ∗m)i·Xt‖ψ2
≤ C, and

∥∥∥‖W ∗mXt‖22∥∥∥
ψ1

≤
dm∑
i=1

∥∥∥((W ∗m)i·Xt)
2
∥∥∥
ψ1

≤ 2

dm∑
i=1

‖(W ∗m)i·Xt‖
2
ψ2
≤ C.
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Thus

E (‖W ∗mXt‖
p
2)

1
p ≤ C√p.

Proof of Lemma 5.2. Recall that Xt =
∑∞

j=0 Ψ
(p)
j εt−j−1, where Ψ

(p)
j is defined in (65). Similar

from the proof of Lemma 5.1, for any positive integer m, we can write down 1
T

∑T−1
t=0 X>t BXt as

the following:

1

T

T−1∑
t=0

X>t BXt =
1

T

T−1∑
t=0

 ∞∑
j=0

Ψ
(p)
j εt−j−1

>B
 ∞∑
j=0

Ψ
(p)
j εt−j−1


=

1

T

T−1∑
t=0

t+m−1∑
j=0

Ψ
(p)
j εt−j−1

>B
t+m−1∑

j=0

Ψ
(p)
j εt−j−1


+

1

T

T−1∑
t=0

 ∞∑
j=t+m

Ψ
(p)
j εt−j−1

>B
 ∞∑
j=t+m

Ψ
(p)
j εt−j−1


+

2

T

T−1∑
t=0

t+m−1∑
j=0

Ψ
(p)
j εt−j−1

>B
 ∞∑
j=t+m

Ψ
(p)
j εt−j−1


,E1 + E2 + E3.

Then we can bound each Ei from its expectation separately, and m will be chosen to be suffi-

ciently large later.

(1) Bounding E1 − E(E1)

Let Θ(t) ∈ RpM×(T+m)M and ε̃ ∈ R(T+m)M be defined as

Θ(t) =
(

Ψ
(p)
t+m−1 · · · Ψ

(p)
0 0 · · · 0

)
,

ε̃ =
(
ε>−m · · · ε>T−1

)>
.

Then E1 = ε̃>
(

1
T

∑T−1
t=0 Θ(t)>BΘ(t)

)
ε̃, and by Lemma C.4 we only need to bound the operator

norm and Frobenius norm of 1
T

∑T−1
t=0 Θ(t)>BΘ(t).

i. Bounding
∥∥∥ 1
T

∑T−1
t=0 Θ(t)>BΘ(t)

∥∥∥
2
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For any unit vector u, v ∈ R(t+m)M ,

u>
1

T

T−1∑
t=0

Θ(t)>BΘ(t)v =
1

T

T−1∑
t=0

t+m∑
i,j=1

u(i)>Ψ
(p)>
t+m−1BΨ

(p)
t+m−jv

(j)

=
1

T

T+m−1∑
i,j=1

u(i)>

 T−1∑
t=(i∨j−m)∨0

Ψ
(p)>
t+m−1BΨ

(p)
t+m−j

 v(j)

≤ 1

T

T+m−1∑
i,j=1

‖u(i)‖2‖v(j)‖2‖B‖2
∞∑
l=0

∥∥∥Ψ
(p)
|i−j|+l

∥∥∥
2

∥∥∥Ψ
(p)
l

∥∥∥
2
,

where u(i) = (u(i−1)M+1, . . . , uiM ). Let α̃i =
∥∥∥Ψ

(p)
i

∥∥∥
2
, and Γ ∈ R(t+m)×(t+m) be defined as

Γij =
∑∞

k=0 α̃|i−j|+kα̃k, then

u>
1

T

T−1∑
t=0

Θ(t)>BΘ(t)v ≤‖B‖2
T

(‖u(1)‖2, . . . , ‖u(t+m)‖2)Γ


‖v(1)‖2

...

‖v(t+m)‖2


≤‖B‖2Λmax(Γ)

T
.

Thus we only need to bound Λmax(Γ). Applying Lemma C.5, the largest eigenvalue of

Toeplitz matrix Γ can be bounded by

Λmax(Γ) ≤ess sup
λ

∣∣∣∣∣∣
∞∑

l=−∞

∞∑
j=0

α̃|l|+jα̃je
ilλ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∞∑

l=−∞

∞∑
j=0

α̃|l|+jα̃j

∣∣∣∣∣∣
≤2

∞∑
l=0

 ∞∑
j=0

α̃2
l+j

 1
2
 ∞∑
j=0

α̃2
j

 1
2

.

where the third inequality is due to Cauchey-Schwartz inequality. Due to (75), we can

further obtain

Λmax(Γ) ≤2
∞∑
l=0

 ∞∑
j=0

p−1∑
n=0

α2
l+j−n

 1
2
 ∞∑
j=0

p−1∑
n=0

α2
j−n

 1
2

≤2p

( ∞∑
i=0

α2
1−p+i

) 1
2 ∞∑
l=0

( ∞∑
i=0

α2
l+1−p+i

) 1
2

≤ C(β).

and we define αi = 0 when i < 0 for convenience. Therefore,∥∥∥∥∥ 1

T

T−1∑
t=0

Θ(t)>BΘ(t)

∥∥∥∥∥
2

≤ C‖B‖2
T

.
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ii. Bounding
∥∥∥ 1
T

∑T−1
t=0 Θ(t)>BΘ(t)

∥∥∥2

F
First note that∥∥∥∥∥ 1

T

T−1∑
t=0

Θ(t)>BΘ(t)

∥∥∥∥∥
2

F

≤ 1

T 2

T−1∑
s,t=0

∣∣∣tr(Θ(s)>BΘ(s)Θ(t)>BΘ(t)
)∣∣∣ ,

and if we write B = P>ΛP with orthogonal P and diagonal Λ (since B is symmetric),∣∣∣tr(Θ(s)>BΘ(s)Θ(t)>BΘ(t)
)∣∣∣

=
∣∣∣tr(PΘ(s)Θ(t)>BΘ(t)Θ(s)>P>Λ

)∣∣∣
≤‖B‖tr

∥∥∥Θ(s)Θ(t)>BΘ(t)Θ(s)>
∥∥∥

2

≤‖B‖tr‖B‖2
∥∥∥Θ(s)Θ(t)>

∥∥∥2

2
.

Meanwhile, due to that α̃i =
∥∥∥Ψ

(p)
i

∥∥∥
2

and (75),

T−1∑
s,t=0

∥∥∥Θ(s)Θ(t)>
∥∥∥2

2
=

T−1∑
s,t=0

∥∥∥∥∥
t∧s+m∑
i=1

Ψ
(p)
t+m−iΨ

(p)
s+m−i

∥∥∥∥∥
2

2

≤
T−1∑
s,t=0

(
t∧s+m∑
i=1

α̃t+m−iα̃s+m−i

)2

=
T−1∑
s,t=0

(t∧s)+m−1∑
i=0

α̃iα̃|t−s|+i

2

≤
T−1∑
s,t=0

(
p
∞∑
i=0

α2
i

)p ∞∑
i=1−p

α2
|t−s|+i

 .

Note that
∑∞

i=0

(∑∞
j=0 α

2
i+j

) 1
2 ≤ β,

T−1∑
s,t=0

∥∥∥Θ(s)Θ(t)>
∥∥∥2

2
≤Cp2

T−1∑
s,t=0

 ∞∑
i=1−p

α2
|t−s|+i


≤Cp2

T−1∑
l=0

2(T − l)

 ∞∑
i=1−p

α2
l+i


≤CT

∞∑
l=0

( ∞∑
i=0

α2
l+i

)

≤CT

 ∞∑
l=0

( ∞∑
i=0

α2
l+i

) 1
2

2

≤ CT,
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where the fourth line is due to Cauchey-Schwartz inequality. Therefore,∥∥∥∥∥ 1

T

T−1∑
t=0

Θ(t)>BΘ(t)

∥∥∥∥∥
2

F

≤ C‖B‖2‖B‖tr
T

.

Now we apply Lemma C.4, and arrive at

P (|E1 − E(E1)| > δ) ≤ 2 exp

{
−cT min

{
δ

‖B‖2
,

δ2

‖B‖2‖B‖tr

}}
.

(2) Bounding E2 − E(E2)

We will show that |E2 − E(E2)| vanishes when m is large enough. First we bound ‖E2‖ψ1 .

Since

|E2| ≤
1

T

T−1∑
t=0

‖B‖2

 ∞∑
j=t+m

α̃j‖εt−j−1‖2

2

,

by (75) and (76),

‖E2‖ψ1 ≤
2

T

T−1∑
t=0

‖B‖2

 ∞∑
j=t+m

α̃j
∥∥‖εt−j−1‖2

∥∥
ψ2

2

≤CM‖B‖2
T

T−1∑
t=0

 ∞∑
j=t+m

α̃j

2

≤CM‖B‖2

 ∞∑
j=m

α̃j

2

≤CM‖B‖2p2

 ∞∑
j=m−p

αj

2

.

Meanwhile,

|E(E2)| =

∣∣∣∣∣∣ 1

T

T−1∑
t=0

tr

B ∞∑
j=t+m

Ψ
(p)
j Ψ

(p)>
j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

T

T−1∑
t=0

‖B‖tr
∞∑

j=t+m

α̃2
j

∣∣∣∣∣∣
≤p‖B‖tr

∞∑
j=m−p

α2
j .

For any δ > 0, let m be sufficiently large such that
∑∞

j=m−p α
2
j <

δ
2p‖B‖tr , ‖E2‖ψ1 ≤

C‖B‖2
T ,

then by tail bound of sub-exponential random variable (see Vershynin [2010]),

P (|E2 − E(E2)| > δ) ≤ C exp

{
− cδT

‖B‖2

}
.
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(3) Bounding E3 − E(E3)

One can show that

|E3| ≤
2‖B‖2
T

T−1∑
t=0

∞∑
j=t+m

α̃j‖εt−j−1‖2
∞∑
j=0

α̃j‖εt−j−1‖2,

and ∥∥∥∥∥∥
∞∑
j=n

α̃j‖εt−j−1‖2

∥∥∥∥∥∥
ψ2

≤ C
√
Mτ

∞∑
j=n

α̃j ≤ Cp
√
Mτ

∞∑
j=n−p

αj .

Thus

‖E3‖ψ1 ≤
4‖B‖2
T

T−1∑
t=0

∥∥∥∥∥∥
∞∑

j=t+m

α̃j‖εt−j−1‖2

∥∥∥∥∥∥
ψ2

∥∥∥∥∥∥
∞∑
j=0

α̃j‖εt−j−1‖2

∥∥∥∥∥∥
ψ2

≤C‖B‖2
√
Mpτ

 ∞∑
j=m−p

αj

 ∞∑
j=0

αj


≤C‖B‖2

√
M

∞∑
j=m−p

αj .

The first line is due to the following fact: For any two sub-Gaussian random variables X and

Y , ‖XY ‖ψ1
≤ 2‖X‖ψ2‖Y ‖ψ2 . We can prove this in the following:

sup
q≥1

q−1 (E|XY |q)
1
q ≤ sup

q≥1
q−1

(
E|X|2q

) 1
2q
(
E|Y |2q

) 1
2q

≤2 sup
q≥1

q−
1
2 (E|X|q)

1
q sup
q≥1

q−
1
2 (E|Y |q)

1
q

=2‖X‖ψ2‖Y ‖ψ2 ,

where the first line applies Cauchey-Schwartz inequality. Thus, with large enoughm, ‖E3‖ψ1 ≤
‖B‖2
T . Also, E(E3) = 0, therefore implies the same bound for E3 − E(E3) as the one for

E2 − E(E2):

P (|E3 − E(E3)| > δ) ≤ C exp

{
− cδT

‖B‖2

}
.

In conclusion, for any δ > 0, if we choose some m accordingly,

P

(∣∣∣∣∣ 1

T

T−1∑
t=0

X>t BXt − tr(BΥ)

∣∣∣∣∣ > δ

)

≤
3∑
i=1

P
(
|Ei − E(Ei)| >

δ

3

)
≤C exp

{
−cT min

{
δ

‖B‖2
,

δ2

‖B‖2‖B‖tr

}}
.
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Proof of Lemma A.1. Here we apply some results in Basu et al. [2015] with a little change in no-

tation. These results simplifies the original problem to finding a upper bound for
∣∣v>(H −Υ)v

∣∣
with any fixed unit vector v. Specifically, the following lemmas are useful:

Lemma D.4. For any J ⊂ {1, · · · , pM}, and κ > 0,

C(J, κ) ∩ {v ∈ RpM : ‖v‖2 ≤ 1} ⊂ (κ+ 2)cl {conv {K (|J |)}} ,

where K(l) = {v ∈ RpM : ‖v‖0 ≤ l, ‖v‖2 ≤ 1} for any positive integer l.

Lemma D.5.

sup
v∈cl{conv(K(l))}

∣∣∣v>Dv∣∣∣ ≤ 3 sup
v∈K(2l)

∣∣∣v>Dv∣∣∣ .
Lemma D.6. Consider a symmetric matrix D ∈ RpM×pM . If for any vector v ∈ RpM with

‖v‖2 ≤ 1, and any η ≥ 0,

P
(∣∣∣v>Dv∣∣∣ > η

)
≤ c1 exp

{
−c2T min

{
η, η2

}}
,

then for any integer l ≥ 1,

P

(
sup
v∈K(l)

∣∣∣v>Dv∣∣∣ > η

)
≤ c1 exp

{
−c2T min

{
η, η2

}
+ lmin {log(pM), log(21epM/l)}

}
.

By Lemma D.4 and Lemma D.5,

sup
{∣∣∣v>(H −Υ)v

∣∣∣ : v ∈ C(J, κ), ‖v‖2 ≤ 1
}

≤ sup
{∣∣∣v>(H −Υ)v

∣∣∣ : v ∈ (κ+ 2)cl {conv{K(|J |)}}
}

≤3(κ+ 2)2 sup
{∣∣∣v>(H −Υ)v

∣∣∣ : v ∈ K(2|J |)
}
.

For any unit vector v ∈ RpM ,

v>(H −Υ)v =
1

T

T−1∑
t=0

X>t vv>Xt − tr
(
vv>Υ

)
,

Thus
∣∣v>(H −Υ)v

∣∣ can be bounded by Lemma 5.2.∥∥∥vv>∥∥∥
tr

=
∥∥∥vv>∥∥∥

2
= ‖v‖22 = 1,

which implies

P
(∣∣∣v>(H −Υ)v

∣∣∣ > η
)
≤ c1 exp{−c2T min{η, η2}}.

By Lemma D.6, when |J | log pM ≤ C(η)T ,

sup
{∣∣∣v>(H −Υ)v

∣∣∣ : v ∈ K(2|J |)
}
≤ η,
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with probability at least 1− c1 exp{−c2T min{η, η2}}. Let η = [6(κ+ 2)2]−1Λmin(Υ) ≥ C(κ, β),

then

inf
{
v>Hv : v ∈ C(J, κ), ‖v‖2 ≤ 1

}
≥Λmin(Υ)− sup

{∣∣∣v>(H −Υ)v
∣∣∣ : v ∈ C(J, κ), ‖v‖2 ≤ 1

}
≥1

2
Λmin(Υ) ≥ C(β),

with probability at least 1 − c1 exp{−c2T}, when |J | log pM ≤ C(κ, β)T , and c2 depends on κ

and β. Here we apply Lemma 5.4 to lower bound the eigenvalues of Υ.

E Proof of Lemma D.2, 2.1, A.2, and A.3

Proof of Lemma D.2. Recall that fl(z) = f∗(gl(z)), with f∗(z) =
∫ z− 1

2
−∞ φ(z)dz, g1(z) = (‖Z + µ‖2 − r − ε) /ε,

and g2(z) = (‖Z + µ‖2 − r + 2ε) /ε. In order to bound the partial derivatives of composite func-

tion, we apply the following lemma which is a direct result of Proposition 1 and 2 in Hardy

[2006].

Lemma E.1. Suppose univariate function f and g: Rn → R have derivatives and partial

derivatives of orders up to k, then ∀{i1, . . . , ik} ⊂ {1, . . . , n},

∂k

∂xi1 · · · ∂xik
f(g(x)) =

∑
π∈Π(k)

f (|π|)(g(x))
∏
B∈π

∂|B|g(x)∏
j∈B ∂xij

,

where Π(k) is the set of partitions for {1, · · · , k}, and B ∈ π is a block in π. Formally,

Π(k) = {{B1, B2, · · · , Bn} : Bi ∩Bj = ∅,∪iBi = {1, 2, · · · , k}}.

By Lemma E.1, we can write out the kth order partial derivatives of fl:

∂k

∂zi1 · · · ∂zik
fl(z) =

∑
π∈Π(k)

f
(|π|)
∗ (gl(z))

∏
B∈π

∂|B|gl(z)∏
j∈B ∂zij

.

Moreover, we can also write gl(z) as a composite function ϕl(ψ(z)), with ϕ1(x) =
√
x−r−ε
ε ,

ϕ2(x) =
√
x−r+2ε
ε , and ψ(z) = ‖z + µ‖22. Then applying Lemma E.1 on gl(z) gives us

∂n

∂zi1 · · · ∂zin
gl(z) =

∑
π∈Π(n)

ϕ
(|π|)
l (ψ(z))

∏
B∈π

∂|B|ψ(z)∏
j∈B ∂zij

. (77)

Note that

∂|B|ψ(z)∏
j∈B ∂zij

=


zij + µij if B = {j} for any j

1(ij = il) if B = {j, l} for any j, l

0 if |B| > 2,
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which means that we only need to consider the partitions with all blocks of size 1 or 2, when

calculating the partial derivative of gl(z) using (77). Also note that we need partitions for

blocks within an original partition π, we define the following partition set C(π) for any partition

π = {B1, . . . , Bn} of size n:

C(π) = {∪ni=1π̃i : π̃i ∈ Π(Bi)s.t.∀C ∈ π̃i, |C| ≤ 2} .

This set C(π) include the unions of partitions for each block Bi within π, and each block within

the partition of Bi has size bounded by 2. Let S(π̃) = {i : {i} ∈ π̃}, and P (π̃) = {{i, j} : {i, j} ∈
π̃}, then the partial derivative of fl(z) can be expanded as

∂k

∂zi1 · · · ∂zik
fl(z) =

∑
π∈Π(n)
π̃∈C(π)

f
|π|)
∗ (gl(z))C(π, π̃)

Πj∈S(π̃)(zij + µij )Π{j,l}∈P (π̃)1(ij = il)

ε|π|‖z + µ‖2|π̃|−|π|2

, (78)

where we apply the fact that ϕ
(k)
l (x) = C(k)

εxk−
1
2

. For each fixed π ∈ Π(k) and π̃ ∈ C(π),∣∣∣∣∣∣
∑

1≤i1,··· ,ik≤d
yi1 · · · yikΠj∈S(π̃)(zij + µij )Π{j,l}∈P (π̃)1(ij = il)

∣∣∣∣∣∣
=

∣∣∣∣(y>(z + µ)
)|S(π̃)|

‖y‖2|P (π̃)|
2

∣∣∣∣ ≤ ‖y‖k2‖z + µ‖|S(π̃)|
2 ,

then combine this with (78), we have∣∣∣∣∣∣
∑

1≤i1,··· ,ik≤d
yi1 · · · yik

∂k

∂zi1 · · · ∂zik
fl(z)

∣∣∣∣∣∣ ≤
∑

π∈Π(n)
π̃∈C(π)

f
(|π|)
∗ (gl(z))C(π, π̃)‖y‖k2
ε|π|‖z + µ‖k−|π|2

.

In addition, note that f
(k)
∗ (x) = φ(k−1)(x − 1

2) = 0 when x ≤ 0 or x ≥ 1, and is bounded on

(0, 1).Thus we only have to consider ‖z + µ‖2 > r + ε when l = 1 and ‖z + µ‖2 > r − 2ε when

l = 2. If r > 3ε and l = 2, ‖z + µ‖2 > r − 2ε > ε. Therefore,∣∣∣∣∣∣
∑

1≤i1,··· ,ik≤d
y(i1) · · · y(ik) ∂k

∂z(i1) · · · ∂z(ik)
fl(z)

∣∣∣∣∣∣
≤
∑

π∈Π(k)

∑
(Si,Pi)

|π|
i=1∈C(π)

C(|π|)‖y‖k

εk
≤ C(k)ε−k‖y‖k.

Proof of Lemma 2.1. Note that

w∗m = Υ−1
Dcm,D

c
m

ΥDcm,Dm = −(Υ−1)Dcm,Dm
[
(Υ−1)Dm,Dm

]−1
.
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When A∗ is symmetric, Υ−1 = I − (A∗)2, thus

w∗m =
(
(A∗)2

)
Dcm,Dm

[
I −

(
(A∗)2

)
Dm,Dm

]−1
∈ R(M−dm)×dm .

It is clear that

sm = ‖w∗m‖0 ≤dm |{i : (w∗m)i· 6= 0}| ≤ dm
∣∣{i : [(A∗)2]i,Dm 6= 0}

∣∣ .
Let Rm =

∣∣{i : [(A∗)2]i,Dm 6= 0}
∣∣ and Cm = {j : A∗j,Dm 6= 0}, then

|Cm| ≤ dm max
1≤i≤M

‖a∗i ‖0

and

Rm ⊂ {i : supp(A∗i·) ∩ Cm 6= ∅}.

Therefore,

sm ≤ dm|Rm| ≤ dm
∑
j∈Cm

|supp(A∗·j)| ≤ d2
m( max

1≤i≤M
‖a∗i ‖0)2.

Proof of Lemma A.2. Let Y = (B + ∆)−1, then immediately we have Y B − I = −Y∆, which

is equivalent to Y − B−1 = −Y∆B−1. Thus the `2 norm of Y − B−1 can be bounded by

‖Y ‖2‖∆‖2‖B−1‖2. Moreover, note that ‖Y ‖2 ≤ ‖Y −B−1‖+ ‖B−1‖, we have

‖Y ‖2 ≤ ‖B−1‖2 + ‖Y ‖2‖∆‖2‖B−1‖2,

and rearranging terms gives us

‖Y ‖2 ≤
‖B−1‖2

1− ‖B−1‖2‖∆‖2
.

Therefore,

‖Y −B−1‖2 ≤
‖B−1‖22‖∆‖2

1− ‖B−1‖2‖∆‖2
.

Proof of Lemma A.3. First note that for any symmetric matrix U , we can write it as U = P>ΛP ,

with orthogonal matrix P and diagonal matrix Λ. By the definition of trace norm,

‖U‖tr = tr
(√

U2
)

= tr
(√

P>Λ2P
)

= tr
(
P>
√

Λ2P
)

= tr
(√

Λ2
)
.

If we denote the non-zero eigenvalues of U as λ1, . . . , λr, then

‖U‖tr = tr
(√

Λ2
)
≤ rmax

i
|λi| ≤ r‖U‖2.
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