
Learning Large-Scale Poisson DAG Models based on
OverDispersion Scoring

Gunwoong Park
Department of Statistics

University of Wisconsin-Madison
Madison, WI 53706

parkg@stat.wisc.edu

Garvesh Raskutti
Department of Statistics

Department of Computer Science
Wisconsin Institute for Discovery, Optimization Group

University of Wisconsin-Madison
Madison, WI 53706

raskutti@cs.wisc.edu

Abstract

In this paper, we address the question of identifiability and learning algorithms
for large-scale Poisson Directed Acyclic Graphical (DAG) models. We define
general Poisson DAG models as models where each node is a Poisson random
variable with rate parameter depending on the values of the parents in the under-
lying DAG. First, we prove that Poisson DAG models are identifiable from ob-
servational data, and present a polynomial-time algorithm that learns the Poisson
DAG model under suitable regularity conditions. The main idea behind our algo-
rithm is based on overdispersion, in that variables that are conditionally Poisson
are overdispersed relative to variables that are marginally Poisson. Our algorithms
exploits overdispersion along with methods for learning sparse Poisson undirected
graphical models for faster computation. We provide both theoretical guarantees
and simulation results for both small and large-scale DAGs.

1 Introduction

Modeling large-scale multivariate count data is an important challenge that arises in numerous ap-
plications such as neuroscience, systems biology and many others. One approach that has received
significant attention is the graphical modeling framework since graphical models include a broad
class of dependence models for different data types. Broadly speaking, there are two sets of graph-
ical models: (1) undirected graphical models or Markov random fields and (2) directed acyclic
graphical (DAG) models or Bayesian networks.

Between undirected graphical models and DAGs, undirected graphical models have generally re-
ceived more attention in the large-scale data setting since both learning and inference algorithms
scale to larger datasets. In particular, for multivariate count data Yang et al. [1] introduce undirected
Poisson graphical models. Yang et al. [1] define undirected Poisson graphical models so that each
node is a Poisson random variable with rate parameter depending only on its neighboring nodes in
the graph. As pointed out in Yang et al. [1] one of the major challenges with Poisson undirected
graphical models is ensuring global normalizability.

Directed acyclic graphs (DAGs) or Bayesian networks are a different class of generative models that
model directional or causal relationships (see e.g. [2, 3] for details). Such directional relationships
naturally arise in most applications but are difficult to model based on observational data. One of
the benefits of DAG models is that they have a straightforward factorization into conditional distri-
butions [4], and hence no issues of normalizability arise as they do for undirected graphical models
as mentioned earlier. However a number of challenges arise that make learning DAG models of-
ten impossible for large datasets even when variables have a natural causal or directional structure.

1

These issues are: (1) identifiability since inferring causal directions from data is often not possible;
(2) computational complexity since it is often computationally infeasible to search over the space of
DAGs [5]; (3) sample size guarantee since fundamental identifiability assumptions such as faithful-
ness are often required extremely large sample sizes to be satisfied even when the number of nodes
p is small (see e.g. [6]).

In this paper, we define Poisson DAG models and address these 3 issues. In Section 3 we prove that
Poisson DAG models are identifiable and in Section 4 we introduce a polynomial-time DAG learning
algorithm for Poisson DAGs which we call OverDispersion Scoring (ODS). The main idea behind
proving identifiability is based on the overdispersion of variables that are conditionally Poisson but
not marginally Poisson. Using overdispersion, we prove that it is possible to learn the causal ordering
of Poisson DAGs using a polynomial-time algorithm and once the ordering is known, the problem of
learning DAGs reduces to a simple set of neighborhood regression problems. While overdispersion
with conditionally Poisson random variables is a well-known phenomena that is exploited in many
applications (see e.g. [7, 8]), using overdispersion has never been exploited in DAG model learning
to our knowledge.

Statistical guarantees for learning the causal ordering are provided in Section 4.2 and we provide
numerical experiments on both small DAGs and large-scale DAGs with node-size up to 5000 nodes.
Our theoretical guarantees prove that even in the setting where the number of nodes p is larger than
the sample size n, it is possible to learn the causal ordering under the assumption that the degree
of the so-called moralized graph of the DAG has small degree. Our numerical experiments support
our theoretical results and show that our ODS algorithm performs well compared to other state-of-
the-art DAG learning methods. Our numerical experiments confirm that our ODS algorithm is one
of the few DAG-learning algorithms that performs well in terms of statistical and computational
complexity in the high-dimensional p > n setting.

2 Poisson DAG Models

In this section, we define general Poisson DAG models. A DAG G = (V,E) consists of a set of
vertices V and a set of directed edges E with no directed cycle. We usually set V = {1, 2, . . . , p}
and associate a random vector (X1, X2, . . . , Xp) with probability distribution P over the vertices
in G. A directed edge from vertex j to k is denoted by (j, k) or j → k. The set Pa(k) of parents
of a vertex k consists of all nodes j such that (j, k) ∈ E. One of the convenient properties of
DAG models is that the joint distribution f(X1, X2, ..., Xp) factorizes in terms of the conditional
distributions as follows [4]:

f(X1, X2, ..., Xp) = Πp
j=1fj(Xj |XPa(j)),

where fj(Xj |XPa(j)) refers to the conditional distribution of node Xj in terms of its parents. The
basic property of Poisson DAG models is that each conditional distribution fj(xj |xPa(j)) has a
Poisson distribution. More precisely, for Poisson DAG models:

Xj |X{1,2,...,p}\{j} ∼ Poisson(gj(XPa(j))), (1)

where gj(.) is an arbitrary function of XPa(j). To take a concrete example, gj(.) can represent the
link function for the univariate Poisson generalized linear model (GLM) or gj(XPa(j)) = exp(θj +∑
k∈Pa(j) θjkXk) where (θjk)k∈Pa(j) represent the linear weights.

Using the factorization (1), the overall joint distribution is:

f(X1, X2, ..., Xp) = exp
(∑
j∈V

θjXj+
∑

(k,j)∈E

θjkXkXj−
∑
j∈V

logXj !−
∑
j∈V

e
θj+

∑
k∈Pa(j)

θjkXk
)
.

(2)

To contrast this formulation with the Poisson undirected graphical model in Yang et al. [1], the joint
distribution for undirected graphical models has the form:

f(X1, X2, ..., Xp) = exp
(∑
j∈V

θjXj +
∑

(k,j)∈E

θjkXkXj −
∑
j∈V

logXj !−A(θ)
)
, (3)

2

where A(θ) is the log-partition function or the log of the normalization constant. While the two
forms (2) and (3) look quite similar, the key difference is the normalization constant ofA(θ) in (3) as

opposed to the term
∑
j∈V e

θj+
∑

k∈Pa(j)
θkjXk in (2) which depends onX . To ensure the undirected

graphical model representation in (3) is a valid distribution, A(θ) must be finite which guarantees
the distribution is normalizable and Yang et al. [1] prove that A(θ) is normalizable if and only if all
θ values are less than or equal to 0.

3 Identifiability

In this section, we prove that Poisson DAG models are identifiable under a very mild condition.
In general, DAG models can only be defined up to their Markov equivalence class (see e.g. [3]).
However in some cases, it is possible to identify the DAG by exploiting specific properties of the
distribution. For example, Peters and Bühlmann prove that for Gaussian DAGs based on structural
equation models with known or the same variance, the models are identifiable [9], Shimizu et al. [10]
prove identifiability for linear non-Gaussian structural equation models, and Peters et al. [11] prove
identifiability of non-parametric structural equation models with additive independent noise. Here
we show that Poisson DAG models are also identifiable using the idea of overdispersion.

To provide intuition, we begin by showing the identifiability of a two-node Poisson DAG model.
The basic idea is that the relationship between nodes X1 and X2 generates the overdispersed child
variable. To be precise, consider all three models: M1 : X1 ∼ Poisson(λ1), X2 ∼ Poisson(λ2),
where X1 and X2 are independent;M2 : X1 ∼ Poisson(λ1) and X2|X1 ∼ Poisson(g2(X1)); and
M3 : X2 ∼ Poisson(λ2) and X1|X2 ∼ Poisson(g1(X2)). Our goal is to determine whether the
underlying DAG model isM1,M2 orM3.

X1 X2

M1

X1 X2

M2

X1 X2

M3

Figure 1: Directed graphs ofM1,M2 andM3

Now we exploit the fact that for a Poisson random variable X , Var(X) = E(X), while for a distri-
bution which is a conditionally Poisson, the variance is overdispersed relative to the mean. Hence
forM1, Var(X1) = E(X1) and Var(X2) = E(X2). ForM2, Var(X1) = E(X1), while

Var(X2) = E[Var(X2|X1)] + Var[E(X2|X1)] = E[g2(X1)] + Var[g2(X1)] > E[g2(X1)] = E(X2),

as long as Var(g2(X1)) > 0.

Similarly under M3, Var(X2) = E(X2) and Var(X1) > E(X1) as long as Var(g1(X2)) > 0.
Hence we can identify modelM1,M2, andM3 by testing whether the variance is greater than the
expectation or equal to the expectation. With finite sample size n, the quantities E(·) and Var(·) can
be estimated from data and we consider the finite sample setting in Section 4 and 4.2. Now we
extend this idea to provide an identifiability condition for general Poisson DAG models.

The key idea to extending identifiability from the bivariate to multivariate scenario involves con-
dition on parents of each node and then testing overdispersion. The general p-variate result is as
follows:

Theorem 3.1. Assume that for any j ∈ V , K ⊂ Pa(j) and S ⊂ {1, 2, .., p} \K,

Var(gj(XPa(j))|XS) > 0,

the Poisson DAG model is identifiable.

We defer the proof to the supplementary material. Once again, the main idea of the proof is
overdispersion. To explain the required assumption note that for any j ∈ V and S ⊂ Pa(j),
Var(Xj |XS) − E(Xj |XS) = Var(gj(XPa(j))|XS). Note that if S = Pa(j) or {1, ...j − 1},
Var(gj(XPa(j))|XS) = 0. Otherwise Var(gj(XPa(j))|XS) > 0 by our assumption.

3

1 23

G

1 23

Gm

Figure 2: Moralized graph Gm for DAG G

4 Algorithm

Our algorithm which we call OverDispersion Scoring (ODS) consists of three main steps: 1) esti-
mating a candidate parents set [1, 12, 13] using existing learning undirected graph algorithms; 2)
estimating a causal ordering using overdispersion scoring; and 3) estimating directed edges using
standard regression algorithms such as Lasso. Steps 3) is a standard problem in which we use off-
the-shelf algorithms. Step 1) allows us to reduce both computational and sample complexity by
exploiting sparsity of the moralized or undirected graphical model representation of the DAG which
we introduce shortly. Step 2) exploits overdispersion to learn a causal ordering.

An important concept we need to introduce for Step 1) of our algorithm is the moral graph or
undirected graphical model representation of the DAG (see e.g. [14]). The moralized graph Gm
for a DAG G = (V,E) is an undirected graph where Gm = (V,Eu) where Eu includes edge
set E without directions plus edges between any nodes that are parents of a common child. Fig. 2
demonstrates concepts of a moralized graph for a simple 3-node example whereE = {(1, 3), (2, 3)}
for DAG G. Note that 1, 2 are parents of a common child 3. Hence Eu = {(1, 2), (1, 3), (2, 3)}
where the additional edge (1, 2) arises from the fact that nodes 1 and 2 are both parents of node 3.

Further, define N (j) := {k ∈ {1, 2, ..., p} |(j, k) or (k, j) ∈ Eu} denote the neighborhood set of a
node j in the moralized graph Gm. Let {X(i)}ni=1 denote n samples drawn from the Poisson DAG
model G. Let π : {1, 2, ..., p} → {1, 2, ..., p} be a bijective function corresponding to a permutation
or a causal ordering. We will also use the convenient notation .̂ to denote an estimate based on the
data. For ease of notation for any j ∈ {1, 2, ...p}, and S ⊂ {1, 2, ..., p} let µj|S and µj|S(xS)

represent E(Xj |XS) and E(Xj |XS = xS), respectively. Furthermore let σ2
j|S and σ2

j|S(xS) denote

Var(Xj |XS) and Var(Xj |XS = xS), respectively. We also define n(xS) =
∑n
i=1 1(X

(i)
S = xS)

and nS =
∑
xS
n(xS)1(n(xS) ≥ c0.n) for an arbitrary c0 ∈ (0, 1).

The computation of the score ŝjk in Step 2) of our ODS algorithm 1 involves the following equation:

ŝjk =
∑

x∈X (Ĉjk)

n(x)

nĈjk

(
σ̂2
j|Ĉjk

(x)− µ̂j|Ĉjk
(x)
)

(4)

where Ĉjk refers to an estimated candidate set of parents specified in Step 2) of our ODS algorithm 1
and X (Ĉjk) = {x ∈ {X(1)

Ĉjk
, X

(2)

Ĉjk
, ..., X

(n)

Ĉjk
} | n(x) ≥ c0.n} so that we ensure we have enough

samples for each element we select. In addition, c0 is a tuning parameter of our algorithm that we
specify in our main Theorem 4.2 and our numerical experiments.

We can use a number of standard algorithms for Step 1) of our ODS algorithm since it boils down
to finding a candidate set of parents. The main purpose of Step 1) is to reduce both computational
complexity and the sample complexity by exploiting sparsity in the moralized graph. In Step 1)
a candidate set of parents is generated for each node which in principle could be the entire set of
nodes. However since Step 2) requires computation of a conditional mean and variance, both the
sample complexity and computational complexity depend significantly on the number of variables
we condition on as illustrated in Section 4.1 and 4.2. Hence by making the set of candidate parents
for each node as small as possible we gain significant computational and statistical improvements
by exploiting the graph structure. A similar step is taken in the MMHC [15] and SC algorithms [16].
The way we choose a candidate set of parents is by learning the moralized graph Gm and then using
the neighborhood set N (j) for each j. Hence Step 1) reduces to a standard undirected graphical
model learning algorithm. A number of choices are available for Step 1) including the neighborhood
regression approach of Yang et al. [1] as well as standard DAG learning algorithms which find a
candidate parents set such as HITON [13] and MMPC [15].

4

Algorithm 1: OverDispersion Scoring (ODS)
input : n samples from the given Poisson DAG model. X(1), ..., X(n) ∈ {{0} ∪ N}p
output: A causal ordering π̂ ∈ Np and a graph structure, Ê ∈ {0, 1}p×p

Step 1: Estimate the undirected edges Êu corresponding to the moralized graph with
neighborhood set N̂ (j);
Step 2: Estimate causal ordering using overdispersion score;
for i ∈ {1, 2, ..., p} do

ŝi = σ̂2
i − µ̂i

end
The first element of a causal ordering π̂1 = arg minj ŝj ;
for j = {2, 3, ...p− 1} do

for k ∈ N (π̂j−1) ∩ {1, 2, ..., p} \ {π̂1, ...π̂j−1} do
The candidate parents set Ĉjk = N̂ (k) ∩ {π̂1, π̂2, ..., π̂j−1};
Calculate ŝjk using (4);

end
The jth element of a causal ordering π̂j = arg mink ŝjk;
Step 3: Estimate directed edges toward π̂j , denoted by D̂j ;

end
The pth element of the causal ordering π̂p = {1, 2, ..., p} \ {π̂1, π̂2, ..., π̂p−1};
The directed edges toward π̂p, denoted by D̂p = N̂ (π̂p);

Return the estimated causal ordering π̂ = (π̂1, π̂2, ..., π̂p);
Return the estimated edge structure Ê = {D̂2, D̂3, ..., D̂p};

Step 2) learns the causal ordering by assigning an overdispersion score for each node. The basic idea
is to determine which nodes are overdispersed based on the sample conditional mean and conditional
variance. The causal ordering is determined one node at a time by selecting the node with the
smallest overdispersion score which is representative of a node that is least likely to be conditionally
Poisson and most likely to be marginally Poisson. Finding the causal ordering is usually the most
challenging step of DAG learning, since once the causal ordering is learnt, all that remains is to
find the edge set for the DAG. Step 3), the final step finds the directed edge set of the DAG G by
finding the parent set of each node. Using Steps 1) and 2), finding the parent set of node j boils
down to selecting which variables are parents out of the candidate parents of node j generated in
Step 1) intersected with all elements before node j of the causal ordering in Step 2). Hence we have
p regression variable selection problems which can be performed using GLMLasso [17] as well as
standard DAG learning algorithms.

4.1 Computational Complexity

Steps 1) and 3) use existing algorithms with known computational complexity. Clearly the compu-
tational complexity for Steps 1) and 3) depend on the choice of algorithm. For example, if we use
the neighborhood selection GLMLasso algorithm [17] as is used in Yang et al. [1], the worst-case
complexity isO(min(n, p)np) for a single Lasso run but since there are p nodes, the total worst-case
complexity is O(min(n, p)np2). Similarly if we use GLMLasso for Step 3) the computational com-
plexity is also O(min(n, p)np2). As we show in numerical experiments, DAG-based algorithms for
Step 1) tend to run more slowly than neighborhood regression based on GLMLasso.

For Step 2) where we estimate the causal ordering has (p − 1) iterations and each iteration has a
number of overdispersion scores ŝj and ŝjk computed which is bounded by O(|K|) where K is
a set of candidates of each element of a causal ordering, N (π̂j−1) ∩ {1, 2, ..., p} \ {π̂1, ...π̂j−1},
which is also bounded by the maximum degree of the moralized graph d. Hence the total number
of overdispersion scores that need to be computed is O(pd). Since the time for calculating each
overdispersion score which is the difference between a conditional variance and expectation is pro-
portional to n, the time complexity is O(npd). In worst case where the degree of the moralized
graph is p, the computational complexity of Step 2) is O(np2). As we discussed earlier there is a

5

significant computational saving by exploiting a sparse moralized graph which is why we perform
Step 1) of the algorithm. Hence Steps 1) and 3) are the main computational bottlenecks of our ODS
algorithm. The addition of Step 2) which estimates the causal ordering does not significantly add
to the computational bottleneck. Consequently our ODS algorithm, which is designed for learning
DAGs is almost as computationally efficient as standard methods for learning undirected graphical
models.

4.2 Statistical Guarantees

In this section, we show consistency of recovering a valid causal ordering recovery of our ODS
algorithm under suitable regularity conditions. We begin by stating the assumptions we impose on
the functions gj(.).
Assumption 4.1.

(A1) For all j ∈ V , K ⊂ Pa(j) and all S ⊂ {1, 2.., p} \ K, there exists an m > 0 such that
Var(gj(XPa(j))|XS) > m.

(A2) For all j ∈ V , there exists an M <∞ such that E[exp(gj(XPa(j)))] < M .

(A1) is a stronger version of the identifiability assumption in 3.1 Var(gj(XPa(j))|XS) > 0 where
since we are in the finite sample setting, we need the conditional variance to be lower bounded by a
constant bounded away from 0. (A2) is a condition on the tail behavior of gj(Pa(j)) for controlling
tails of the score ŝjk in Step 2 of our ODS algorithm. To take a concrete example for which (A1)
and (A2) are satisfied, it is straightforward to show that the GLM DAG model (2) with non-positive
values of {θkj} satisfies both (A1) and (A2). The non-positivity constraint on the θ’s is sufficient
but not necessary and ensures that the parameters do not grow too large.

Now we present the main result under Assumptions (A1) and (A2). For general DAGs, the true
causal ordering π∗ is not unique. Therefore let E(π∗) denote all the causal orderings that are con-
sistent with the true DAG G∗. Further recall that d denotes the maximum degree of the moralized
graph G∗m.
Theorem 4.2 (Recovery of a causal ordering). Consider a Poisson DAG model as specified in (1),
with a set of true causal orderings E(π∗) and the rate function gj(.) satisfies assumptions 4.1. If
the sample size threshold parameter c0 ≤ n−1/(5+d), then there exist positive constants, C1, C2, C3

such that

P(π̂ /∈ E(π∗)) ≤ C1exp(−C2n
1/(5+d) + C3 log max{n, p}).

We defer the proof to the supplementary material. The main idea behind the proof uses the overdis-
persion property exploited in Theorem 3.1 in combination with concentration bounds that exploit
Assumption (A2). Note once again that the maximum degree d of the undirected graph plays an im-
portant role in the sample complexity which is why Step 1) is so important. This is because the size
of the conditioning set depends on the degree of the moralized graph d. Hence d plays an important
role in both the sample complexity and computational complexity.

Theorem 4.2 can be used in combination with sample complexity guarantees for Steps 1) and 3)
of our ODS algorithm to prove that our output DAG Ĝ is the true DAG G∗ with high probability.
Sample complexity guarantees for Steps 1) and 3) depend on the choice of algorithm but for neigh-
borhood regression based on the GLMLasso, provided n = Ω(d log p), Steps 1) and 3) should be
consistent.

For Theorem 4.2 if the triple (n, d, p) satisfies n = Ω((log p)5+d), then our ODS algorithm recovers
the true DAG. Hence if the moralized graph is sparse, ODS recovers the true DAG in the high-
dimensional p > n setting. DAG learning algorithms that apply to the high-dimensional setting
are not common since they typically rely on faithfulness or similar assumptions or other restrictive
conditions that are not satisfied in the p > n setting. Note that if the DAG is not sparse and d = Ω(p),
our sample complexity is extremely large when p is large. This makes intuitive sense since if the
number of candidate parents is large, we would need to condition on a large set of variables which
is very sample-intensive. Our sample complexity is certainly not optimal since the choice of tuning
parameter c0 ≤ n−1/(5+d). Determining optimal sample complexity remains an open question.

6

0

25

50

75

100

2500 5000 7500 10000
sample size

A
cc

u
ra

cy
 (

%
)

Causal ordering

(a) p = 10, d ≥ 3

0

25

50

75

100

2500 5000 7500 10000
sample size

Causal ordering

(b) p = 50, d ≥ 3

0

25

50

75

100

2500 5000 7500 10000
sample size

Causal ordering

(c) p = 100, d ≥ 3

0

20

40

60

80

2500 5000 7500 10000
sample size

A
cc

u
ra

cy
 (

%
)

Causal ordering for large DAGs

(d) p = 5000, d ≥ 3

Figure 3: Accuracy rates of successful recovery for a causal ordering via our ODS algorithm using
different base algorithms

The larger sample complexity of our ODS algorithm relative to undirected graphical models learning
is mainly due to the fact that DAG learning is an intrinsically harder problem than undirected graph
learning when the causal ordering is unknown. Furthermore note that Theorem 4.2 does not require
any additional identifiability assumptions such as faithfulness which severely increases the sample
complexity for large-scale DAGs [6].

5 Numerical Experiments

In this section, we support our theoretical results with numerical experiments and show that our ODS
algorithm performs favorably compared to state-of-the-art DAG learning methods. The simulation
study was conducted using 50 realizations of a p-node random Poisson DAG that was generated as
follows. The gj(.) functions for the general Poisson DAG model (1) was chosen using the standard
GLM link function (i.e.gj(XPa(j)) = exp(θj +

∑
k∈Pa(j) θjkXk)) resulting in the GLM DAG

model (2). We experimented with other choices of gj(.) but only present results for the GLM
DAG model (2). Note that our ODS algorithm works well as long as Assumption 4.1 is satisfied
regardless of choices of gj(.). In all results presented (θjk) parameters were chosen uniformly
at random in the range θjk ∈ [−1,−0.7] although any values far from zero and satisfying the
assumption 4.1 work well. In fact, smaller values of θjk are more favorable to our ODS algorithm
than state-of-the-art DAG learning methods because of weak dependency between nodes. DAGs are
generated randomly with a fixed unique causal ordering {1, 2..., p} with edges randomly generated
while respecting desired maximum degree constraints for the DAG. In our experiments, we always
set the thresholding constant c0 = 0.005 although any value below 0.01 seems to work well.

In Fig. 3, we plot the proportion of simulations in which our ODS algorithm recovers the correct
causal ordering in order to validate Theorem 4.2. All graphs in Fig. 3 have exactly 2 parents for
each node and we plot how the accuracy in recovering the true π∗ varies as a function of n for
n ∈ {500, 1000, 2500, 5000, 10000} and for different node sizes (a) p = 10, (b) p = 50, (c)
p = 100, and (d) p = 5000. As we can see, even when p = 5000, our ODS algorithm recovers the
true causal ordering about 40% of the time even when n is approximately 5000 and for smaller DAGs
accuracy is 100%. In each sub-figure, 3 different algorithms are used for Step 1): GLMLasso [17]
where we choose λ = 0.1; MMPC [15] with α = 0.005; and HITON [13] again with α = 0.005
and an oracle where the edges for the true moralized graph is used. As Fig. 3 shows, the GLMLasso
seems to be the best performing algorithm in terms of recovery so we use the GLMLasso for Steps 1)
and 3) for the remaining figures. GLMLasso was also the only algorithm that scaled to the p = 5000
setting. However, it should be pointed out that GLMLasso is not necessarily consistent and it is
highly depending on the choice of gj(.). Recall that the degree d refers to the maximum degree of
the moralized DAG.

Fig. 4 provides a comparison of how our ODS algorithm performs in terms of Hamming distance
compared to the state-of-the-art PC [3], MMHC [15], GES [18], and SC [16] algorithms. For the PC,
MMHC and SC algorithms, we use α = 0.005 while for the GES algorithm we use the mBDe [19]
(modified Bayesian Dirichlet equivalent) score since it performs better than other score choices.
We consider node sizes of p = 10 in (a) and (b) and p = 100 in (c) and (d) since many of these
algorithms do not easily scale to larger node sizes. We consider two Hamming distance measures:
in (a) and (c), we only measure the Hamming distance to the skeleton of the true DAG, which is the
set of edges of the DAG without directions; for (b) and (d) we measure the Hamming distance for

7

0

5

10

15

2500 5000 7500 10000
sample size

N
o

rm
a

liz
e

d
 H

a
m

m
in

g
 D

is
t

(%
) Skeletons

(a) p = 10, d ≥ 3

0

10

20

30

2500 5000 7500 10000
sample size

Directed edges

(b) p = 10, d ≥ 3

0.0

0.5

1.0

1.5

2.0

2500 5000 7500 10000
sample size

N
o

rm
a

liz
e

d
 H

a
m

m
in

g
 D

is
t

(%
) Skeletons

(c) p = 100, d ≥ 3

0

1

2

3

2500 5000 7500 10000
sample size

Directed edges

(d) p = 100, d ≥ 3

Figure 4: Comparison of our ODS algorithm (black) and PC, GES, MMHC, SC algorithms in terms
of Hamming distance to skeletons and directed edges.

the edges with directions. The reason we consider the skeleton is because the PC does not recover
all directions of the DAG. We normalize the Hamming distance by dividing by the total number of
edges

(
p
2

)
and p(p − 1), respectively so that the overall score is a percentage. As we can see our

ODS algorithm significantly out-performs the other algorithms. We can also see that as the sample
size n grows, our algorithm recovers the true DAG which is consistent with our theoretical results.
It must be pointed out that the choice of DAG model is suited to our ODS algorithm while these
state-of-the-art algorithms apply to more general classes of DAG models.

Now we consider the statistical performance for large-scale DAGs. Fig. 5 plots the statistical per-
formance of ODS for large-scale DAGs in terms of (a) recovering the causal ordering; (b) Ham-
ming distance to the true skeleton; (c) Hamming distance to the true DAG with directions. All
graphs in Fig. 5 have exactly 2 parents for each node and accuracy varies as a function of n for
n ∈ {500, 1000, 2500, 5000, 10000} and for different node sizes p = {1000, 2500, 5000}. Fig. 5
shows that our ODS algorithm accurately recovers the causal ordering and true DAG models even
in high dimensional setting, supporting our theoretical results 4.2.

Fig. 6 shows run-time of our ODS algorithm. We measure the running time (a) by varying node size
p from 10 to 125 with the fixed n = 100 and 2 parents; (b) sample size n from 100 to 2500 with
the fixed p = 20 and 2 parents; (c) the number of parents of each node |Pa| from 1 to 5 with the
fixed n = 5000 and p = 20. Fig. 6 (a) and (b) support the section 4.1 where the time complexity
of our ODS algorithm is at most O(np2). Fig. 6 (c) shows running time is proportional to a parents
size which is a minimum degree of a graph. It agrees with the time complexity of Step 2) of our
ODS algorithm is O(npd). We can also see that the GLMLasso has the fastest run-time amongst all
algorithms that determine the candidate parent set.

0

20

40

60

80

2500 5000 7500 10000
sample size

Ac
cu

ra
cy

 (%
)

Causal ordering for large DAGs

(a) d ≥ 3

0.00

0.25

0.50

0.75

2500 5000 7500 10000
sample size

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
 (%

) Skeletons for large DAGs

(b) d ≥ 3

0.0

0.1

0.2

0.3

2500 5000 7500 10000
sample size

Directed edges for large DAGs

(c) d ≥ 3

Figure 5: Performance of our ODS algorithm for large-scale DAGs with p = 1000, 2500, 5000

0

50

100

150

25 50 75 100 125
Node size, p

R
un

ni
ng

 ti
m

e
(s

ec
)

Time complexity

(a) n = 100, d ≥ 3

1

2

3

4

5

0 500 1000 1500 2000
Sampe size, n

Time complexity

(b) p = 20, d ≥ 3

2.5

5.0

7.5

10.0

12.5

1 2 3 4 5
Parents size, |Pa|

Time complexity

(c) n = 5000, p = 20

Figure 6: Time complexity of our ODS algorithm with respect to node size p, sample size n, and
parents size |Pa|

8

References
[1] E. Yang, G. Allen, Z. Liu, and P. K. Ravikumar, “Graphical models via generalized linear

models,” in Advances in Neural Information Processing Systems, 2012, pp. 1358–1366.
[2] P. Bonissone, M. Henrion, L. Kanal, and J. Lemmer, “Equivalence and synthesis of causal

models,” in Uncertainty in artificial intelligence, vol. 6, 1991, p. 255.
[3] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction and Search. MIT Press, 2000.
[4] S. L. Lauritzen, Graphical models. Oxford University Press, 1996.
[5] D. M. Chickering, “Learning Bayesian networks is NP-complete,” in Learning from data.

Springer, 1996, pp. 121–130.
[6] C. Uhler, G. Raskutti, P. Bühlmann, B. Yu et al., “Geometry of the faithfulness assumption in

causal inference,” The Annals of Statistics, vol. 41, no. 2, pp. 436–463, 2013.
[7] C. B. Dean, “Testing for overdispersion in Poisson and binomial regression models,” Journal

of the American Statistical Association, vol. 87, no. 418, pp. 451–457, 1992.
[8] T. Zheng, M. J. Salganik, and A. Gelman, “How many people do you know in prison? Using

overdispersion in count data to estimate social structure in networks,” Journal of the American
Statistical Association, vol. 101, no. 474, pp. 409–423, 2006.

[9] J. Peters and P. Bühlmann, “Identifiability of Gaussian structural equation models with equal
error variances,” Biometrika, p. ast043, 2013.

[10] S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen, “A linear non-Gaussian acyclic
model for causal discovery,” The Journal of Machine Learning Research, vol. 7, pp. 2003–
2030, 2006.

[11] J. Peters, J. Mooij, D. Janzing et al., “Identifiability of causal graphs using functional models,”
arXiv preprint arXiv:1202.3757, 2012.

[12] I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The max-min hill-climbing Bayesian network
structure learning algorithm,” Machine learning, vol. 65, no. 1, pp. 31–78, 2006.

[13] C. F. Aliferis, I. Tsamardinos, and A. Statnikov, “HITON: a novel Markov Blanket algorithm
for optimal variable selection,” in AMIA Annual Symposium Proceedings, vol. 2003. Ameri-
can Medical Informatics Association, 2003, p. 21.

[14] R. G. Cowell, P. A. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter, Probabilistic Networks and
Expert Systems. Springer-Verlag, 1999.

[15] I. Tsamardinos and C. F. Aliferis, “Towards principled feature selection: Relevancy, filters and
wrappers,” in Proceedings of the ninth international workshop on Artificial Intelligence and
Statistics. Morgan Kaufmann Publishers: Key West, FL, USA, 2003.

[16] N. Friedman, I. Nachman, and D. Peér, “Learning bayesian network structure from massive
datasets: the sparse candidate algorithm,” in Proceedings of the Fifteenth conference on Un-
certainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 1999, pp. 206–215.

[17] J. Friedman, T. Hastie, and R. Tibshirani, “glmnet: Lasso and elastic-net regularized general-
ized linear models,” R package version, vol. 1, 2009.

[18] D. M. Chickering, “Optimal structure identification with greedy search,” The Journal of Ma-
chine Learning Research, vol. 3, pp. 507–554, 2003.

[19] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian networks: The com-
bination of knowledge and statistical data,” Machine learning, vol. 20, no. 3, pp. 197–243,
1995.

9

