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Abstract

In this paper, we study the minimax rates and provide a convex implementable

algorithm for Poisson inverse problems under weak sparsity and physical constraints.

In particular we assume the model yi ∼ Poisson(TaTi f
∗) for 1 ≤ i ≤ n where T ∈ R+

is the intensity, where we impose weak sparsity on f∗ ∈ Rp by assuming f∗ lies in an

`q-ball when rotated according to an orthonormal basis D ∈ Rp×p. In addition, since

we are modeling real physical systems we also impose positivity and flux-preserving

constraints on the matrix A = [a1, a2, ..., an]T and the function f∗. We prove minimax

lower bounds for this model which scale as Rq(
log p
T )1−q/2 where it is noticeable that the

rate depends on the intensity T and not the sample size n. We also show that a convex

`1-based regularized least-squares estimator achieves this minimax lower bound up to

a log n factor, provided a suitable restricted eigenvalue condition is satisfied. Finally

we prove that provided n is sufficiently large, our restricted eigenvalue condition and

physical constraints are satisfied for random bounded ensembles. Our results address

a number of open issues from prior work on Poisson inverse problems that focusses

on strictly sparse models and does not provide guarantees for convex implementable

algorithms.
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1 Introduction

Large-scale Poisson inverse problems arise in a number of applications including imag-

ing Duarte et al. (2008); Studer et al. (2012), conventional fluorescence microscopy Harmany

et al. (2011); Bobin et al. (2007b,a), network flow analysis Estan and Varghese (2003); Lu

et al. (2008); Raginsky et al. (2010a, 2011), DNA analysis Sansonnet (2013) and many more.

In all these problems, a small number of events (e.g. photons hitting a sensor, packets being

output, etc.) are observed and these are modeled using a Poisson distribution. In the above

application settings, the number of observed events is small relative to the number of model

parameters meaning we are in the so-called high-dimensional setting.

One standard approach to model the observed counts in the settings above is via a high-

dimensional Poisson inverse problem. Specifically, (yi)
n
i=1 follows a Poisson distribution and

if y = (y1, y2, ..., yn) ∈ Rn, we consider the Poisson linear model defined as (see e.g. Raginsky

et al. (2010b); Jiang et al. (2014); Willett and Raginsky (2011)):

y ∼ Poisson(TAf ∗), (1)

where A ∈ Rn×p
+ is a sensing matrix corresponding to the n different projections of our signal

of interest f ∗ ∈ Rp
+ and T ∈ R+ is the total intensity. In particular, (1) is a shorthand

expression for the model

yi ∼ Poisson(T

p∑
j=1

Aijf
∗
j ), i = 1, ..., n,

where the yi’s are independent. Here our goal is to learn the underlying parameter vector

f ∗ based on the observed counts (yi)
n
i=1 where A is known. Furthermore we are typically in

the high-dimensional setting where p� n.

Since we are interested in modeling real physical systems, additional physical constraints

are required on f ∗ and A as in Raginsky et al. (2010b); Jiang et al. (2014); Willett and

Raginsky (2011). Since f ∗ corresponds to the rate at which events occur, f ∗ � 0. In

addition A must be composed of non-negative real numbers with each column summing to

at most one. Specifically A must satisfy the following physical constraints:

A � 0 (2)

AT1n×1 � 1p×1. (3)
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The first constraint (2) is referred to as positivity that is f ∗ � 0 and Aij ≥ 0 and the second

constraint (3) corresponds to a flux-preserving constraint.

Recent work of Jiang et al. (2014) provides minimax optimal rates for Poisson inverse

problems described here, when f ∗ is strictly sparse in a basis spanned by the columns of

the orthonormal matrix D ∈ Rp×p, meaning that only a small subset of entries of DTf ∗ are

non-zero. Furthermore, Jiang et al. (2014) provides only minimax upper and lower bounds

and do not provide theoretical guarantees for implementable convex methods.

In many practical applications, the signal of interest DTf ∗ is weakly sparse meaning that

low-dimensional structure is imposed on DTf ∗ by requiring that its co-efficients need not

be zero, but many co-efficients make a very small contribution to the overall signal. To be

specific we write D = [d1, ..., dp] for di ∈ Rp for all i and assume that d1 = p−1/2
1p×1 and

denote D̄ = [d2, ..., dp] ∈ Rp×(p−1). If we define θ∗ = DTf ∗ ∈ Rp, note that by construction

θ∗1 = 1/
√
p. To impose weak sparsity, the low-dimensional structure we impose is that we

require the signal D̄T f̄ ∗ to lie in an `q-ball, meaning ‖D̄T f̄ ∗‖qq :=
∑p−1

j=1 |(D̄T f̄ ∗)j|q ≤ Rq

where 0 < q ≤ 1. In this paper, we study the Poisson model (1) under the positivity and

flux-preserving constraints and `q-ball sparsity.

To summarize, we consider f ∗ belonging to the following set:

Fp,q,D = {f ∈ Rp
+ : f1 =

1
√
p
, f̄ = (f2, f3, , fp), ‖f‖1 = 1, ‖D̄T f̄‖qq ≤ Rq}.

Note that our `q-ball assumption ensures that many of the co-efficients are small and the

convention that is often used is q = 0 corresponds to the strictly sparse case studied in Jiang

et al. (2014). The constraint ‖f‖1 = 1 is a normalization that is also used in Jiang et al.

(2014). In this paper, we study minimax rates for the mean-squared `2-error for the Poisson

inverse problem (1) where f ∗ lies in Fp,q,D. That is we provide a lower bound with high

probability on the following quantity:

min
f(A,y)

max
f∗∈Fp,q,D

‖f − f ∗‖2
2,

where the minimum is taken over measurable functions of (A, y). In addition we show that

a convex `1-penalized approach achieves this optimal rate up to a log n factor.
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1.1 Our Contributions

• Provide a minimax lower bound which scale as Rq

(
log p
T

)1−q/2
.

• Show that our minimax lower bound can be achieved up to a log n factor by an `1-based

convex method under a suitable restricted eigenvalue condition.

• We prove that random bounded ensembles satisfy the restricted eigenvalue condition

along with the imposed physical constraints.

Our bounds are consistent with the intuition from Jiang et al. (2014) under strictly sparse

models, where the intensity T and not the sample size n influences the minimax rate. To

further support this intuition we provide a comparison of our result to the linear Gaussian

inverse problem studied in Raskutti et al. (2011), and show how the minimax rates match

the linear Gaussian rate when we set the noise variance σ2 in terms of n and T in Section 3.1.

We point out that it is not straightforward to adapt the techniques developed in Jiang

et al. (2014) to the `q-ball case. The techniques we use involve combining techniques for

proving minimax rates in the high-dimensional Gaussian linear inverse problems under weak

sparsity used in Raskutti et al. (2011) and theoretical results for convex implementable

methods developed in Negahban et al. (2012) to the non-linear Poisson setting. A number

of technical challenges arise in analyzing the Poisson inverse problem setting since the noise

is now signal-dependent. In particular, to use techniques from Negahban et al. (2012) in

the Poisson setting we need to use and develop two-sided concentration bounds for Poisson

inverse problems which build on prior work in Bobkov and Ledoux (1998). We go into greater

detail on the technical challenges in Sections 2, 3 and 4.

The remainder of the paper is organized as follows: In Section 2 we provide our main

assumptions and theoretical results which includes a minimax lower bound, an upper bound

for convex methods and discuss matrices A that satisfy the assumptions leading to minimax

rates; in Section 3 we discuss a number of comparisons and implications of our results in

particular, comparisons to the linear Gaussian model studied in Raskutti et al. (2011) and

comparison to the strictly sparse case in Jiang et al. (2014), and proofs are provided in

Section 4.
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2 Assumptions and Main Results

In this section, we present our assumptions and main results, which includes a minimax

lower bound, an upper bound for a convex `1-based approach that matches the minimax

lower bound up to a log n factor and finally we show that if A is a random matrix with

suitably bounded entries, it satisfies the statistical conditions and physical constraints.

2.1 Minimax Lower Bound

We begin by introducing the Assumptions for the minimax lower bound.

Assumption 2.1. There exist constants a` and au such that a` < au and a matrix Ã ∈
[a`/
√
n, au/

√
n]n×p

A =
Ã+ au−2a`√

n
1n×p

2(au − a`)
√
n
. (4)

Assumption 2.1 is originally imposed in Jiang et al. (2014) and ensures that the positivity

and flux-preserving conditions are satisfied. By Lemma 2.1 in Jiang et al. (2014) if matrix

Ã satisfies Ãi,j ∈ 1√
n
[a`, au] for all entries, then the sensing matrix A will satisfy the physical

constraints (2) and (3).

Assumption 2.2. For all u ∈ Rp, ‖u‖0 ≤ 2K̃, there exists a constant δK̃ ≡ δK̃(n, p) > 0 such

that:

‖ÃDu‖2
2 ≤ (1 + δK̃)‖u‖2

2,

where K̃ is a constant satisfies K̃ = O(Rq(
log p
T

)−
q
2 ), without loss of generality we can as-

sume K̃ is a integer.

Assumption 2.2 is an upper restricted eigenvalue condition similar to that imposed

in Jiang et al. (2014). The main difference is that we use a different sparse parameter

K̃ instead of s. In particular we set K̃ = O(Rq(
log p
T

)−
q
2 ) which grows as T grows. This

assumption will be used for both the lower bound and upper bound for the `1-based method.

As pointed out in Jiang et al. (2014), Assumption 2.2 holds if n ≥ C0K̃ log(p/K̃) holds for

a re-scaled Bernoulli ensemble matrix Ã with P (Ãij = 1√
n
) = P (Ãij = − 1√

n
) = 1

2
, with

probability at least 1− e−C1n using results in Baraniuk et al. (2008).
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Finally we define a s-sparse localization quantity also introduced in Jiang et al. (2014).

The interaction between the orthonormal basis matrix D and the sparsity constraint has an

effect on the lower bound which is captured by this s-sparse localization quantity:

Definition 2.1. λs is said to be the s-sparse localization quantity of a matrix X if

λs = λs(X) := max
v∈{−1,0,1}p;‖v‖0=s

‖Xv‖∞.

Our minimax lower bound depends on λk(D). Now we present the minimax upper and

lower bounds. Different scalings for the k-sparse localization constant λk(D) for basis D for

both Fourier and wavelet transforms are provided in Jiang et al. (2014). Now we present the

minimax lower bound.

Theorem 1. If f ∗ ∈ Fp,q,D, p ≥ max(260, RqT
q
2 ), Assumption 2.1 and 2.2 hold with 0 ≤

δK̃ < 1, let λk = λk(D) be the k-sparse localization quantity of D, then if K̃ = O(Rq(
log p
T

)−
q
2 ),

there exists a constant CL > 0 that depends on au, a` such that

min
f

max
f∗∈Fp,q,D

‖f − f ∗‖2
2 ≥ CL max

1≤k≤K̃
min(

k

p2λ2
k

, Rq(
log p

T
)1− q

2 )

with probability greater than 1
2
.

Remarks:

• In the case q = 0, the minimax rate is s log p
T

as proven in Jiang et al. (2014). Note that

if we set s = sq = Rq(
log p
T

)−q/2 leading to the overall rate Rq(
log p
T

)1−q/2. This interpre-

tation is consistent with the case of Gaussian linear models discussed in Raskutti et al.

(2011).

• Note that like in the case q = 0 discussed in Jiang et al. (2014), the minimax lower

bound depends on the intensity T and not the sample size n. We discuss this in greater

detail in Section 3.1.

• Values for λk are displayed in Table 1 of Jiang et al. (2014) for the discrete cosine

transform (DCT), discrete Hadamard transform (DHT), and a discrete Haar wavelet

basis (DWT). In particular for the DCT and DHT basis, λk =
√

2k√
p

and for DWT,

λk = 1√
2−1

. Therefore the first term is 1
p

for DCT and DHT, and
Rq(

log p
T

)−q/2

p2
for DWT.

For all sets of bases, the second term is smaller than the first when p = o(
√
T ).
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• The proof in the case of `q-ball sparsity is more challenging than the strictly sparse

case since the `q-ball is a compact set and we need to construct a packing set for

the intersection of the `q-ball with the physical constraints on f ∗. Our packing set

is based on a combination of the hypercube construction provided in Kühn (2001)

along with the construction in Jiang et al. (2014) which incorporates the positivity

and flux-preserving constraints. Further details are provided in Section 4.1.

2.2 `1-based Method

In this section we present an `2-error upper bound for `1-based estimator by adapting existing

results and techniques in Negahban et al. (2012) to our Poisson inverse problem setting. We

assume that

θ̂λn ∈ arg min
θ∈Rp,θ1= 1√

p

1

n
‖n
T

(y − TADθ)‖2
2 + λn‖θ‖1

or equivalently

θ̂λn ∈ arg min
θ∈Rp,θ1= 1√

p

n

T 2
‖y − TADθ‖2

2 + λn‖θ‖1, (5)

with (θ̂λn)1 = θ∗1 = 1√
p
. Note that here we use normalized observations ( n

T
yi)

n
i=1 in the squared

error term and λn > 0 is the regularization parameter. Then we define the estimator for f ∗

to be f̂λn = Dθ̂λn . Next we introduce two further assumptions.

Assumption 2.3. There exists a constant M1 > 0 such that

8n log n < T < M1(
n

Rq log p
)
2
q log p log n.

This assumption provides an upper and lower bound for the intensity T of each yi which

we require when we prove the concentration bounds for the upper bounds. The lower bound

for T is similar to the high intensity setting described in Jiang et al. (2014). From another

perspective, Assumption 2.3 controls the signal-to-noise ratio which is controlled by the ratio

T
n

.

Assumption 2.4. There are strictly positive constants (k1, k2) that depend on au, a` such

that
√
n‖AD̄x‖2 ≥ k1‖x‖2 − k2

√
log p

n
‖x‖1, ∀x ∈ Rp−1.
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Assumption 2.4 is equivalent to the so-called restricted eigenvalue condition (see e.g. Bickel

et al. (2008); Raskutti et al. (2010); van de Geer and Buhlmann (2009)) for the matrix AD̄.

This assumption holds for many appropriate choices of A, as we show in Theorem 3 in

Section 2.3.

Hence we have the following result:

Theorem 2. Suppose f ∗ ∈ Fp,q,D, Assumption 2.1, 2.2, 2.3 and 2.4 hold with 0 ≤ δK̃ < 1.

Then there exists a constant CU > 0 that depends on au, a` and δK̃ such that

‖f̂λn − f ∗‖2
2 ≤ CURq(

log n log p

T
)1− q

2

with probability at least 1− 2
p−1

.

Remarks:

• Note that the upper bound matches our minimax lower bound up to a log n factor.

The log n factor is an artifact of our analysis since one of the important steps of our

proof requires us showing that linear combinations of Poisson random variables have

sharp concentration bounds and the log n factor arises here in showing that the total

counts are bounded with high probability. To prove that the total counts are bounded,

we use Bobkov and Ledoux (1998) and develop our own two-sided version of it in com-

bination with the union bound. The lower bound on T from Assumption 2.3 is needed

for our concentration. Once we have bounded the Poisson counts, we exploit classical

concentration bounds for linear combinations of bounded random variables Hoeffding

(1963).

• Aside from the log n factor, the upper and lower bounds with a mean-squared error

rate Rq(
log p
T

)1−q/2.

2.3 Restricted Eigenvalue Condition

In this section we show that Assumption 2.4 is satisfied with high probability for many

choices of random matrices A under the appropriate scaling. In particular we show that

the restricted eigenvalue condition is satisfied by matrices A with independent sub-Gaussian
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entries which include independent Bernoulli ensembles that also satisfy our flux-preserving

and positivity constraints.

To characterize the sub-Gaussian parameter of a random variable, we define the Orlicz

norm ‖.‖ψ2 for a random variable X ∈ R as follows:

‖X‖ψ2 := inf{t : E exp(X2/t2) ≤ 2}.

The Orlicz norm as defined above is known to represent the sub-Gaussian parameter of a

random variable. For example if X ∼ N (0, σ2), ‖X‖ψ2 = σ. Now we provide a definition of

isotropic random vectors introduced in Mendelson et al. (2007) and Zhou (2009).

Definition 2.2 (Zhou (2009), Definition 1.3). Let Y be a random vector in Rp; Y is called

isotropic if for every y ∈ Rp, E|〈Y, y〉|2 = ‖y‖2
2, and:

‖〈Y, y〉‖ψ2 ≤ α‖y‖2.

Important examples of isotropic vectors are the Gaussian random vector Y = (h1, ..., hp)

where hi, ∀i are independent N(0, 1) random variables where α = 1, and random vectors

Y = (ε1, ..., εp) where εi, ∀i are independent, symmetric ±1 Bernoulli random variables with

α = 1.

Now we are ready to state the main theorem for this section:

Theorem 3. There exists positive constants c′, c′′ for which the following holds. Let µ to

be an isotropic ψ2 probability measure with constant α ≥ 1. For n ≥ 1 let X1, ..., Xn be

independent, distributed according to µ and define Γ =
∑n

i=1〈Xi, . 〉ei. Then with probability

at least 1− c′ exp(−c′′n), for all x ∈ Rp we will have

‖x‖2

4
− Cα

√
log p

n
‖x‖1 ≤

‖Γx‖2√
n
,

where Cα is a positive constant only depends on α.

Remarks:

• Theorem 3 shows that the restricted eigenvalue condition holds for matrices with ran-

dom sub-Gaussian entries which include both Gaussian and bounded random variables.
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The proof techniques are based on a combination of techniques from Raskutti et al.

(2010) for random Gaussian matrices with techniques from Mendelson et al. (2007) for

sub-Gaussian random variables. The proof is provided in Section 4.3.

• Based on this theorem, there are many choices of A which satisfy Assumption 2.4. In

our particular context, we also require A to satisfy Assumption 2.1 so that it satisfies

our physical constraints. Hence we require the entries of A to be bounded, and we

provide a concrete example below.

• Theorem 3 is more general than the restricted eigenvalue condition for strictly sparse

vectors proven by Zhou (2009). Our result easily adapts to weak `q-ball sparse vectors

and in addition our result applies to any x that may be random which we address using

a peeling argument in our proof.

To construct, a random matrix A that satisfies the restricted eigenvalue condition and

Assumption 2.1, let Ã have the following entries:

P(Ãij) =


1
2

Ãij = −
√

1
n

1
2

Ãij =
√

1
n
,

then
√
nÃ will satisfy the conditions for Γ in Theorem 3. Since we want our result to apply

after we apply an orthonormal basis D we use the following Lemma:

Lemma 1. Let µ to be an isotropic ψ2 probability measure with constant α ≥ 1. And let

X ∈ Rp be distributed according to µ, then XD̄ ∈ Rp−1 is distributed according to another

isotropic ψ2 probability measure µ′ with some constant α′ ≥ 1.

Thus by Lemma 1,
√
nÃD̄ satisfies the restricted eigenvalue condition from Theorem 3

and with high probability:

‖ÃD̄x‖2 =
‖
√
nÃD̄x‖2√
n

≥ ‖x‖2

4
− C

√
log p

n
‖x‖1, ∀x ∈ Rp−1,

where C > 0 is some absolute constant. Note that by the construction of A in Assumption

2.1 and definition of D̄ we have

AD̄x =
Ã+ au−2a`√

n
1n×p

2(au − a`)
√
n
D̄x =

ÃD̄x

2(au − a`)
√
n
,
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Then
√
n‖AD̄x‖2 ≥

‖x‖2

8(au − a`)
− C

2(au − a`)

√
log p

n
‖x‖1, ∀x ∈ Rp−1,

which satisfies Assumptions 2.1 and 2.4.

3 Discussion

In this section, we discuss some of the consequences and intuition for our three main results.

In particular we discuss the dependence of the rates on n and T and discuss connections to

the results for the Gaussian linear model in Raskutti et al. (2011), how the results for the `q

case relate to the strictly sparse developed in Jiang et al. (2014) and finally we compare our

upper bound to the upper bounds developed in the recent work of Jiang et al. (2015) based

on the weighted Lasso.

3.1 Dependence on T and n

One of the interesting and perhaps surprising aspects about both the upper and lower bounds

is that they depend explicitly on the the intensity T and not on the sample size n, aside

from the conditions on design and the log n factor. This phenomenon also occurred in the

strictly sparse case in Jiang et al. (2014) where the rate is s log p
T

. To understand this, we

relate our rate of Rq(
log p
T

)1−q/2 to the earlier results developed in Raskutti et al. (2011) for

the Gaussian linear model and see how the signal-dependent noise and physical constraints

ensure the minimax rate depends on T and not n.

In the Gaussian linear model under the `q-ball constraint studied in Raskutti et al. (2011),

we have

y = Āf ∗ + w,

where y ∈ Rn, Ā ∈ Rn×p with p > n and w ∼ N(0, σ2In×n), and we have the constraint

‖f ∗‖qq ≤ Rq with 0 < q ≤ 1. Raskutti et al. (2011) show that the minimax rate is:

min
f̂

max
f∗∈Bq(Rq)

‖f̂ − f ∗‖2
2 � Rq(

σ2 log p

n
)1− q

2 ,

with high probability. In particular, take note of the role of σ2 in the minimax rate. Later

work by Negahban et al. (2012) proves that the Lasso achieves these minimax rates. We will
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show how the dependence of the scaling on T and not n follows from our comparison to the

rates for the Gaussian linear model and the impact of σ2.

For our Poisson inverse problem we can express the model as follows:

y ∼ Poisson(TAf ∗),

which can be expressed equivalently

y = TAf ∗ + ω,

or

yi = T

p∑
j=1

Aijf
∗
j + ωi, 1 ≤ i ≤ n,

where

E(yi) = Var(yi) = T

p∑
j=1

Aijf
∗
j =

αT

n
, 1 ≤ i ≤ n,

where 1
2
≤ α ≤ 1 by Lemma 4 in section 4.1. Note that this scaling of A follows from

the flux-preserving constraint ‖Af‖1 ≤ ‖f‖1. Since we have E(yi) scaling as T
n

, to ensure

that the mean of our observations has the same scaling as in the Gaussian linear model

independent of n and T , we consider the normalized responses:

ỹi =
n

T
yi = n

p∑
j=1

Aijf
∗
j +

n

T
ωi, 1 ≤ i ≤ n,

where now E(ỹi) = 0 has a scaling independent of n and T and

E(ω̃i) = 0 and Var(ω̃i) =
n2

T 2

αT

n
=
αn

T
.

Hence the combination of the signal-dependent noise and the flux-preserving constraint mean

that we have σ2 scaling as n
T

in the appropriately normalized model.

Recall that for the Gaussian model, the minimax rate is Rq(
σ2 log p

n
)1−q/2, if we replace

this σ2 by αn
T

we will get the minimax rate scaling as Rq(
α log p
T

)1−q/2, which is consistent with

our minimax lower bound. Hence, if we want to relate our physically constrained Poisson

model to the Gaussian linear model, we need to consider a model with variance σ2 ∝ n
T

.

This observation that the minimax rate depends on the signal intensity T rather than

the sample size n was also made in the recent work of Jiang et al. (2014) and simulation
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results supported this observation. Our analysis shows that this observation carries over to

the `q-ball setting. The caveat is that n is required to be sufficiently large to ensure that the

restricted eigenvalue is satisfied which is also required in the strictly sparse case.

3.2 Comparison to prior results

For the strictly sparse case studied by Jiang et al. (2014), the minimax rate scales as s log p
T

whereas in the weakly sparse case in this paper, the minimax rate scales as Rq(
log p
T

)1−q/2.

Another way to interpret the result for the `q-ball case is that the minimax rate scales as
sq log p

T
where sq = O(Rq(

log p
T

)−q/2). This can be explained in terms of a bias-variance tradeoff

to determine how many co-ordinates of f ∗ should be included in the model and using the

`q-ball constraint, selecting sq = O(Rq(
log p
T

)−q/2) with largest magnitude optimizes the bias-

variance tradeoff to minimize the mean-squared error. This interpretation is used at several

points in the proofs of both the minimax lower bound and upper bound. This phenomena

was also observed in the Gaussian linear model case in Raskutti et al. (2011).

Another recent related work is by Jiang et al. (2015) which provides analysis for a

weighted Lasso estimator. Sparse Poisson inverse problems under the model Y ∼ Poisson(Af ∗)

are discussed in Jiang et al. (2015) and the weighted Lasso estimator Jiang et al. (2015) pro-

vides a weighted Lasso estimator f̂WL based on the minimizer of the following optimization

problem:

f̂WL ∈ arg min ‖Y − Af‖2
2 +

p∑
j=1

dj|fj|,

where weights (dj)
p
j=1 are chosen in a specific way to minimize mean-squared error. In the

case where all the weights are the same dk = λn for all k which corresponds to the ordinary

Lasso estimator we analyze in this paper. We summarize their result and show that it is

sub-optimal for `q-balls. To summarize their result, they introduce a bias term:

Bs := max{‖A(f ∗ − f ∗s )‖2
2, ‖f ∗ − f ∗s ‖1},

and then state that

‖f ∗ − f̂WL‖2
2 � Bs + λ2s+ (1 + 1/λ)2B2

s .

It must be pointed out that Jiang et al. (2015) analyze a broader choice of weights

(dj)
p
j=1 but we were unable to find different choices of weights that provided a sharper upper
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bound in our `q-ball context. As discussed in Jiang et al. (2015), their analysis yields the

optimal rates (up to log n factors) if f ∗ is s-sparse and the bias term Bs = 0. In the case

of `q-ball sparsity as discussed earlier an appropriate choice for s is s = sq = O(Rq(
log p
T

)−
q
2 )

and λn = O(
√

log p
T

), for the Bs term, ‖f ∗ − f ∗s ‖1 will be bounded by Rqλ
1−q
n by inequality

(29). By replacing these terms in bound (2.3) in Jiang et al. (2015), ‖f ∗ − f̂WL‖2
2 will be

bounded by O(Rqλ
1−q
n + R2

qλ
−2q
n ), which scales as Rq(

log p
T

)
1−q
2 + R2

q(
log p
T

)−q, this bound is

clearly sub-optimal when T > log p since the upper bound provided in our result scales as

Rq(
log p
T

)1− q
2 .

4 Proofs

In this section we provide the proofs for our three main results. We defer the more technical

steps to the appendix.

4.1 Proof of Theorem 1

The proof for the lower bound uses a combination of standard information-theoretic tech-

niques involving Fano’s inequality, and the explicit construction of a packing set that satisfies

the `q-ball constraint and our other physical constraints. In particular, the proof involves

constructing a packing set for Fp,q,D and then applying the generalized Fano method to the

packing set (see Han and Verdu (1994), Ibragimov and Has’minskii (1981) and Yang and

Barron (1999) for details). Constructing the packing set is the main challenge and novelty in

the proof. Our packing set is based on a constrained hypercube construction in Jiang et al.

(2014) along with the hyper-cube construction for `q-balls in Kühn (2001).

Proof. We begin our proof by constructing a packing set for Fp,q,D. For 1 ≤ k ≤ K̃ let Hk =

{β ∈ {−1, 0,+1}p−1 : ‖β‖0 = k}. From [Raskutti et al. (2011), Lemma 4] we can find a

subset H̃k ⊆ Hk with cardinality |H̃k| ≥ exp(k
2
log

p− k
2
−1

k
) such that the Hamming distance

ρH(β, β′) ≥ k
2

for all β, β′ ∈ H̃k. Then note that (Rq
k

)
1
qHk = {β ∈ {−(Rq

k
)
1
q , 0,+(Rq

k
)
1
q }p−1 :

‖β‖qq = Rq}. Now consider the re-scaled hypercube H̃k by αk with 0 < αk ≤ (Rq
k

)
1
q , we

define: Hk,αk = {θ ∈ Rp : θ = [1/
√
p, αkβ

T ]T , β ∈ H̃k}, let η2
αk

= k
2
α2
k, then Hk,αk is a

ηαk-packing set for Fp,q,D in the `2 norm. To contrast with the packing set used in Jiang

14



et al. (2014), we require the extra constraint that each vertex has value at most (Rq
k

)
1
q to

ensure ‖β‖qq ≤ Rq.

The following lemma shows useful properties of this packing set.

Lemma 2 (Jiang et al. (2014), Lemma 4.1). For 1 ≤ k ≤ K̃, let λk = λk(D̄). Then the

packing sets Hk,αk with 0 < αk ≤ 1
pλk

have the following properties:

1. The `2 distance between any two points θ and θ′ in Hk,αk is bounded:

η2
αk
≤ ‖θ − θ′‖2

2 ≤ 8η2
αk
.

2. For any θ ∈ Hk,αk , the corresponding f = Dθ satisfies:

fi ≥ 0, ∀i ∈ {1, 2, ..., p}, and ‖f‖1 = 1.

3. The size of the packing set

|Hk,αk | ≥ exp(
k

2
log

p− k
2
− 1

k
).

The proof for this lemma can be found in Jiang et al. (2014).

For convenience we define the matrix Φ , AD and then Φθ = Af where f = Dθ. Next

we will apply the generalized Fano method to the packing set, these techniques are developed

in Han and Verdu (1994), Ibragimov and Has’minskii (1981) and Yang and Barron (1999).

Define Mk to be the cardinality of set Hk,αk , and the elements in Hk,αk can be denoted as

{θ1, ..., θMk}. Let Θ̃ ∈ Rp be a random vector that drawn from a uniform distribution over

the packing set {θ1, ..., θMk}. Further let θ̃ = arg minθ∈Hk,αk ‖θ − D
Tf‖2 . Then since D is

an orthonormal basis we can bound the minimax estimation error according to Yang and

Barron (1999):

P (min
f

max
f∗∈Fp,q,D

‖f − f ∗‖2
2 ≥

η2
αk

4
) ≥ min

θ̃
P[θ̃ 6= Θ̃]. (6)

Applying Fano’s inequality yields the lower bound as following:

P[θ̃ 6= Θ̃] ≥ 1− I(y; Θ̃) + log 2

logMk

, (7)
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where y|Θ̃ ∼ Poisson(TΦΘ̃) and I(y; Θ̃) is the mutual information between random vari-

able y and Θ̃. Then from Han and Verdu (1994) we have

I(y; Θ̃) ≤ 1(
Mk

2

) ∑
i,j=1,..,Mk,i 6=j

KL(p(y|TΦθi)||p(y|TΦθj)), (8)

where KL(p1||p2) is the Kullback-Leibler (KL) divergence between distributions p1 and p2.

We will use the following lemma to bound KL divergence of Poisson distributions in terms

of the squared `2-distance.

Lemma 3 (Jiang et al. (2014), Lemma 4.2). Let p(y|u) denote the vector Poisson distribution

with mean parameter µ ∈ Rn
+. For µ1, µ2 ∈ Rn

+, if there exists some value c > 0 such

that µ2 � c1n×1, then the following holds:

KL(p(y|µ1)||p(y|µ2)) ≤ 1

c
||µ1 − µ2||22.

The following lemma shows that entries in Af ∗ are bounded between 1
2n

and 1
n

under

Assumption 2.1:

Lemma 4 (Jiang et al. (2014), Lemma 4.3). If the sensing matrix A satisfies Assumption

2.1, then for all nonnegative f with ‖f‖1 = 1, we have:

1

2n
1n×1 � Af � 1

n
1n×1.

The proofs for these two lemmas can be found in Jiang et al. (2014).

By Lemma 4 we have Φθj = ADθj � 1
2n
1n×1 and then it follows that TΦθj � T

2n
1n×1.

Then from Lemma 3 can bound the KL divergence between p(y|TΦθi) and p(y|TΦθj) as

following:

KL(p(y|TΦθi)||p(y|TΦθj)) ≤ 2n

T
||TΦ(θi − θj)||22 = 2nT‖Φ(θi − θj)‖2

2. (9)

By Assumption 2.1 and 2.2 if we denote f i = Dθi, f j = Dθj, then

‖Φ(θi − θj)‖2
2 = ‖A(f i − f j)‖2

2 = ‖ 1

2(aµ − a`)
√
n
ÃD(θi − θj)‖2

2 ≤
1 + δK̃

4(aµ − a`)2n
‖θi − θj‖2

2.

Since ‖θi − θj‖2
2 ≤ 8η2

αk
by Lemma 2, we further have

‖Φ(θi − θj)‖2
2 ≤

2(1 + δK̃)

(aµ − a`)2n
η2
αk
. (10)
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Then by combing (9) and (10) we have the following:

KL(p(y|TΦθi)||p(y|TΦθj)) ≤ 2nT‖Φ(θi − θj)‖2
2 ≤

4(1 + δK̃)T

(aµ − a`)2
η2
αk
. (11)

Then the mutual information can be bounded as following by using (8) and (11)

I(y; Θ̃) ≤ 1(
Mk

2

)∑
i 6=j

KL(p(y|TΦθi)||p(y|TΦθj)) ≤ max
i 6=j

KL(p(y|TΦθi)||p(y|TΦθj)) ≤ 4(1 + δK̃)T

(aµ − a`)2
η2
αk
.

Then from (7) and the lower bound for Mk we have

P[θ̃ 6= Θ̃] ≥ 1− I(y; Θ̃) + log 2

logMk

≥ 1−
4(1+δK̃)T

(aµ−a`)2
η2
αk

+ log 2

k
2

log
p− k

2
−1

k

. (12)

Next we will show the probability in (12) is bounded by the constant 1/2. This constant is

guaranteed if the following two inequalities are true:

k

2
log

p− k
2
− 1

k
≥ 4 log 2, (13)

k

2
log

p− k
2
− 1

k
≥ 16(1 + δK̃)T

(aµ − a`)2
η2
αk
. (14)

For the first inequality (13) if k = 1,

k

2
log

p− k
2
− 1

k
=

1

2
log (p− 3

2
) ≥ 1

2
log (

515

2
− 3

2
) = 4 log 2,

where the inequality is a result of p ≥ 260. And if k ≥ 2,

k

2
log

p− k
2
− 1

k
≥ log

p− k
2
− 1

k
≥ log

p− K̃
2
− 1

K̃
≥ log

(33K̃
2

+ 1)− ( K̃
2

+ 1)

K̃
= 4 log 2,

where the inequality is the result of p ≥ RqT
q
2 ≥ 33K̃

2
+ 1 when p is big enough. For the

second inequality (14) we need:

k

32
log

p− k
2
− 1

k
≥ (1 + δK̃)T

(aµ − a`)2
η2
αk
,

which leads to

η2
αk
≤ (aµ − a`)2k

32(1 + δK̃)T
log

p− k
2
− 1

k
.
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Since in the condition of Lemma 2 we require that 0 < αk ≤ 1
pλk

, also recall the extra

constraint that αk ≤ (Rq
k

)
1
q , thus we have:

η2
αk

= min(
k

2
(

1

pλk
)2,

(aµ − a`)2k

32(1 + δK̃)T
log

p− k
2
− 1

k
,
k

2
(
Rq

k
)
2
q ).

Then with probability greater than 1
2

we have

min
f

max
f∗∈Fp,q,D

‖f − f ∗‖2
2 ≥

η2
αk

4
= min(

k

8
(

1

pλk
)2,

(aµ − a`)2k

128(1 + δK̃)T
log

p− k
2
− 1

k
,
k

8
(
Rq

k
)
2
q ). (15)

And if we set (here C1 > 0 is some absolute constant)

(aµ − a`)2k

128(1 + δK̃)T
log

p− k
2
− 1

k
= C1

k

8
(
Rq

k
)
2
q ,

then k will satisfy the following condition

k = O(Rq(
log p

k

T
)−

q
2 ). (16)

Under assumption p ≥ RqT
q
2 we can see (16) will be satisfied by choosing k = K̃ =

O(Rq(
log p
T

)−
q
2 ). Then if K̃ = O(Rq(

log p
T

)−
q
2 ) in (15), there exists some constant CL > 0

such that

min
f

max
f∗∈Fp,q,D

||f − f ∗||22 ≥ CL max
1≤k≤K̃

min(
Rq(

log p
T

)−
q
2

p2λ2
K̃

, Rq(
log p

T
)1− q

2 )

with probability greater than 1
2
.

4.2 Proof for Theorem 2

The proof for the upper bound involves direct analysis of the lasso estimator defined in (5).

Our analysis follows standard steps for analysis of regularized M-estiamtors Bickel et al.

(2009); Negahban et al. (2012); van de Geer (2000) along with addressing two challenges

specific to this setting: (1) we use concentration bounds for linear combinations of Poisson

random variable and how they are used to determine a λn; (2) use Assumption 2.3 to

show that matrix AD̄ satisfies the restricted eigenvalue condition and satisfies the phycial

constraints.
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Proof. From (5) in Section 2.2 we know θ̂λn is a solution to the following problem:

θ̂λn ∈ arg min
θ∈Rp,θ1= 1√

p

n

T 2
‖y − TADθ‖2

2 + λn‖θ‖1, (17)

with (θ̂λn)1 = 1√
p
. Since θ∗ satisfies the constraint that θ∗ ∈ R and θ∗1 = 1√

p
, we have the

following basic inequality

n

T 2
‖y − TADθ̂λn‖2

2 + λn‖θ̂λn‖1 ≤
n

T 2
‖y − TADθ∗‖2

2 + λn‖θ∗‖1.

Hence

n

T 2
‖TAD(θ∗ − θ̂λn)‖2

2 ≤
2n

T 2
|(y − TADθ∗)TTAD(θ∗ − θ̂λn)|+ λn(‖θ∗‖1 − ‖θ̂λn‖1),

and

n‖AD(θ∗ − θ̂λn)‖2
2 ≤

2n

T
|(y − TADθ∗)TAD(θ∗ − θ̂λn)|+ λn(‖θ∗‖1 − ‖θ̂λn‖1). (18)

Note that (θ∗)1 = (θ̂λn)1 = 1√
p
, thus it is reasonable to define the error vector ∆̂ = θ̄∗− ¯̂

θλn ∈
Rp−1, where θ̄∗ = [θ∗2, ..., θ

∗
p]
T ∈ Rp−1 and

¯̂
θλn = [(θ̂λn)2, ..., (θ̂λn)p]

T ∈ Rp−1. Then (18) can

be reduced to:

n‖AD̄∆̂‖2
2 ≤

2n

T
|(y − TADθ∗)TAD̄∆̂|+ λn(‖θ∗‖1 − ‖θ̂λn‖1) (19)

≤ ‖2n

T
(y − TADθ∗)TAD̄‖∞‖∆̂‖1 + λn(‖θ∗‖1 − ‖θ̂λn‖1), (20)

where D̄ = [d2, ..., dp] ∈ Rp×(p−1).

In order to associate the term ‖θ∗‖1 − ‖θ̂λn‖1 with ∆̂, we define a threshold parameter

η > 0 and the threshold subset as follows:

Sη := {j ∈ {2, 3, ..., p} | |θ∗j | > η}

and its complement

Scη := {j ∈ {2, 3, ..., p} | |θ∗j | ≤ η}.

Suppose u is a vector in Rp−1, we will define uSη ∈ Rp−1 as following:

(uSη)j =

uj if j + 1 ∈ Sη

0 if j + 1 6∈ Sη
for 1 ≤ j ≤ p− 1,
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and uScη is defined in similar way. Now we show how to connect ‖θ∗‖1−‖θ̂λn‖1 with ∆̂. Note

that

‖θ∗‖1 − ‖θ̂λn‖1 = ‖θ̄∗‖1 − ‖ ¯̂θλn‖1, (21)

since θ∗1 = θ̂1,λn = 1√
p
. Then by using triangle inequality we have

‖ ¯̂θλn‖1 = ‖θ̄∗ − ∆̂‖1 = ‖θ̄∗Sη + θ̄∗Scη − ∆̂Sη − ∆̂Scη‖1

≥ ‖θ̄∗Sη − ∆̂Scη‖1 − ‖θ̄∗Scη‖1 − ‖∆̂Sη‖1 = ‖θ̄∗Sη‖1 + ‖∆̂Scη‖1 − ‖θ̄∗Scη‖1 − ‖∆̂Sη‖1,

on the other hand we have ‖θ̄∗‖1 ≤ ‖θ̄∗Sη‖1 + ‖θ̄∗Scη‖1, thus by combing these two inequalities

we have

‖θ̄∗‖1 − ‖ ¯̂θλn‖1 ≤ ‖∆̂Sη‖1 − ‖∆̂Scη‖1 + 2‖θ̄∗Scη‖1.

Therefore by (21):

‖θ∗‖1 − ‖θ̂λn‖1 ≤ ‖∆̂Sη‖1 − ‖∆̂Scη‖1 + 2‖θ̄∗Scη‖1. (22)

By using (22) in (20) we have

n‖AD̄∆̂‖2
2 ≤ ‖

2n

T
(y − TADθ∗)TAD̄‖∞‖∆̂‖1 + λn(‖∆̂Sη‖1 − ‖∆̂Scη‖1 + 2‖θ̄∗Scη‖1). (23)

Now we upper bound the ‖.‖∞ norm through the following Lemma:

Lemma 5. Under Assumption 2.1, 2.2 and 2.3, with probability at least 1− 2
p−1

that

‖2n

T
(y − TADθ∗)TAD̄‖∞ ≤

√
512M log n log p

T
,

where M =
1+δK̃

4(au−a`)2
.

The proof of Lemma 5 is found in the appendix.

Thus by setting λn = 2
√

512M logn log p
T

in (23) we have

n‖AD̄∆̂‖2
2 ≤

λn
2
‖∆̂‖1 + λn(‖∆̂Sη‖1 − ‖∆̂Scη‖1 + 2‖θ̄∗Scη‖1)

≤ λn
2

(‖∆̂Sη‖1 + ‖∆̂Scη‖1 + 2‖∆̂Sη‖1 − 2‖∆̂Scη‖1 + 4‖θ̄∗Scη‖1)

=
λn
2

(3‖∆̂Sη‖1 − ‖∆̂Scη‖1 + 4‖θ̄∗Scη‖1), (24)
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where the second inequality follows from the triangle inequality. From (24) we can see

that 0 ≤ 3‖∆̂Sη‖1 − ‖∆̂Scη‖1 + 4‖θ̄∗Scη‖1, then the error vector ∆̂ should satisfy ‖∆̂Scη‖1 ≤
3‖∆̂Sη‖1 + 4‖θ̄∗Scη‖1. The following lemma shows that n‖AD̄∆̂‖2

2 is lower bounded for all

∆̂ ∈ {∆ ∈ Rp−1 | ||∆Scη ||1 ≤ 3||∆Sη ||1 + 4||θ̄∗Scη ||1}:

Lemma 6. Suppose Assumption 2.3 and 2.4 hold, for all ∆̂ ∈ {∆ ∈ Rp−1 | ‖∆Scη‖1 ≤
3‖∆Sη‖1 + 4||θ̄∗Scη ||1} we have

n||AD̄∆̂||22 ≥ c1k
2
1||∆̂||22 − c2k

2
2

log p

n
||θ̄∗Scη ||

2
1,

where c1, c2 > 0 are some constants.

By using Lemma 6 in (24) we have

c1k
2
1||∆̂||22 − c2k

2
2

log p

n
||θ̄∗Scη ||

2
1 ≤

λn
2

(3‖∆̂Sη‖1 − ‖∆̂Scη‖1 + 4‖θ̄∗Scη‖1)

≤ λn
2

(3‖∆̂Sη‖1 + 4‖θ̄∗Scη‖1). (25)

Then note that ‖∆̂Sη‖1 ≤
√
|Sη|‖∆̂Sη‖2 ≤

√
|Sη|‖∆̂‖2, where |Sη| is the cardinality of set

Sη, then from (25) we have

c1k
2
1‖∆̂‖2

2 − c2k
2
2

log p

n
‖θ̄∗Scη‖

2
1 ≤

λn
2

(3
√
|Sη|‖∆̂‖2 + 4‖θ̄∗Scη‖1),

which implies that

c1k
2
1||∆̂||22 −

3λn
√
|Sη|

2
||∆̂||2 − c2k

2
2

log p

n
||θ̄∗Scη ||

2
1 − 2λn‖θ̄∗Scη‖1 ≤ 0. (26)

Note that the left hand side of (26) can be seen as a quadratic form of ||∆̂||2, thus by solving

this quadratic inequality for ||∆̂||2,

‖∆̂‖2
2 ≤ 9

λ2
n

c2
1k

4
1

|Sη|+
1

c1k2
1

(2c2k
2
2

log p

n
||θ̄∗Sη ||

2
1 + 4λn‖θ̄∗Sη‖1).

Hence

||f̂λn − f ∗||22 = ||D(θ̂λn − θ∗)||22 = ||θ̂λn − θ∗||22 = || ¯̂θλn − θ̄∗||22 = ‖∆̂‖2
2

≤ 9
λ2
n

c2
1k

4
1

|Sη|+
1

c1k2
1

(2c2k
2
2

log p

n
||θ̄∗Sη ||

2
1 + 4λn||θ̄∗Sη ||1). (27)
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Since

Rq ≥
∑
j∈Sη

|θ∗j |q ≥ ηq|Sη|, (28)

we have |Sη| ≤ η−qRq. On the other hand

‖θ̄∗Scη‖1 =
∑
j∈Scη

|θ̄∗j | =
∑
j∈Scη

|θ̄∗j |q|θ̄∗j |1−q ≤ Rqη
1−q. (29)

If we set η = λn
c1k21

, by using (28) and (29) in (27) we have

||f̂λn − f ∗||22 ≤ 13Rq(
λn
c1k2

1

)2−q +
2c2k

2
2

c1k2
1

log p

n
R2
q(
λn
c1k2

1

)2−2q. (30)

By Assumption 2.3 that T < M1( n
Rq log p

)
2
q log p log n and λn = 2

√
512M logn log p

T
we have

2c2k
2
2

c1k2
1

log p

n
R2
q(
λn
c1k2

1

)2−2q ≤ cM1Rq(
λn
c1k2

1

)2−q,

where cM1 > 0 is some constant depends on M1. Then from (30) with probability at least

1− 2
p−1

there exists CU > 0 such that

||f̂λn − f ∗||22 ≤ CURq(
log n log p

T
)1− q

2 .

4.3 Proof for Theorem 3

The proof for Theorem 3 uses techniques developed in Raskutti et al. (2010) adapted from

Gaussian to sub-Gaussian ensembles. The reason we adapt to sub-Gaussian ensembles is so

that we construct a random ensemble that satisfies all the physical constraints. In the proof

of Raskutti et al. (2010) the first step is to show the term M(r,Γ) := supx∈V (r){1−
‖Γx‖2√

n
} is

sharply concentrated around its expectation with high probability when Γ is a matrix with

gaussian random variables, we will use [Mendelson et al. (2007), Theorem 2.3] to show this

is also true when Γ is a matrix with subgaussian random variables. Finally we use peeling

techniques to complete the proof, which is quite similar to Raskutti et al. (2010).

To begin we define the standard Gaussian width of a star-shaped set T .
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Definition 4.1 (Mendelson et al. (2007), Definition 2.1). Let T ⊂ Rp and let g1, ..., gp be

independent standard Gaussian random variables. Denote by `∗(T ) = E supt∈T |
∑p

i=1 giti|,
where t = (ti)

p
i=1 ∈ Rp.

Now we state the following result following result which is a restricted eigenvalue condition

for random matrices with independent entries where each entry is an isotropic ψ2 probability

measure:

Theorem 4 (Mendelson et al. (2007), Theorem 2.3). There exist absolute constants c, c̄ > 0

for which the following holds. Let T ⊂ Rp be a star-shaped set and put µ to be an isotropic ψ2

probability measure with constant α ≥ 1. For n ≥ 1 let X1, ..., Xn be independent, distributed

according to µ and define Γ =
∑n

i=1〈Xi, . 〉ei. If 0 < t < 1, then with probability at least

1− exp(−c̄f 2n/α4), for all x ∈ T such that ‖x‖2 ≥ r∗n(t/cα2), we have

(1− t)||x||2 ≤
||Γx||2√

n
≤ (1 + t)||x||2, (31)

where

r∗n(f) = r∗n(f, T ) := inf{ρ > 0 : ρ ≥ `∗(Tρ)/(f
√
n)}

and

Tρ = {x ∈ T ; ||x||2 ≤ ρ}.

Next we want to prove the restricted eigenvalue condition for subgaussian random ma-

trices by using this theorem.

Proof. We first note that it is sufficient to prove this theorem for ||x||2 = 1. In fact if

x = 0 ∈ Rp this claim holds trivially. Otherwise we can consider the re-scaled vector

x̃ = x/||x||2 with ||x̃||2 = 1. It can be seen that if this theorem holds for the re-scaled vector

x̃, it also holds for x.

Next we define the set V (r) := {x ∈ Rp | ||x||2 = 1, ||x||1 ≤ r}, for a fixed radius r > 0.

It is possible that this set is empty for some choices of r > 0, but we only concern those

choices for which it is non-empty. Define the random variable:

M(r,Γ) := sup
x∈V (r)

{1− ||Γx||2√
n
}.
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Our goal is to show that with probability no larger than exp(−cαnf(r)2) that

M(r,Γ) = sup
x∈V (r)

{1− ||Γx||2√
n
} ≥ 3f(r)

2
,

where f(r) = 1
4

+ 3cα2r
√

log p
n

, cα and c are positive constants.

To see this, we choose f = f(r) = 1
4

+ 3cα2r
√

log p
n

in Theorem 4 (this c here is defined

in Theorem 4). We first bound `∗(V (r)) as following:

`∗(V (r)) ≤ rE max
1≤i≤p

|gi| ≤ 3r
√

log p

by using known results on Gaussian maxima (Ledoux and Talagrand (1991), Equation

(3.13)). Then for all x ∈ V (r) we will have

||x||2 = 1 ≥
3cα2r

√
log p
n

f(r)
≥ cα2`∗(V (r))

f(r)
√
n

=
`∗(V (r))
f(r)
cα2

√
n
,

and by Theorem 4 with probability at least 1− exp(−c̄f(r)2n/α4) we have for all x ∈ V (r)

1− f(r) ≤ ||Γx||2√
n

.

Hence with probability no larger than exp(−9c̄nf(r)2/4α4) that

M(r,Γ) = sup
x∈V (r)

{1− ||Γx||2√
n
} ≥ 3f(r)

2
.

The remainder of the proof will mainly follow steps in Raskutti et al. (2010) where we

use a peeling technique to extend our result to hold for x’s that have a random radius. We

define the event

Υ := {∃ x ∈ Rp s.t ||x||2 = 1 and (1− ||Γx||2)/
√
n ≥ 3f(||x||1)}.

To proof the main theorem, the next step is to show that there are positive constants c′, c′′

such that P [Υ] ≤ c′ exp(−c′′n). Now we follow the standard peeling technique (van de Geer

(2000); Alexander (1985)) and we state the following lemma which is stated and proven in

Raskutti et al. (2010).
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Lemma 7 (Raskutti et al. (2010), Lemma 3). Suppose that d(v;X) is a random objective

function with v ∈ Rp and X is some random vector. h : Rp → R+ is some non-negative

and increasing constraint function. g : R → R+ is a non-negative and strictly increasing

function. A is a non-empty set. Moreover we suppose g(r) ≥ u for all r ≥ 0, and there

exists some constant c > 0 such that for all r > 0, we have the tail bound

P( sup
v∈A,h(v)≤r

d(v;X) ≥ g(r)) ≤ 2 exp(−cang2(r)),

for some an > 0. Then we have

P[E ] ≤ 2 exp(−4canu
2)

1− exp(−4canu2)
,

where

E := {∃v ∈ A such that d(v;X) ≥ 2g(h(v))}.

In order to use this lemma we choose the sequence an = n and the set A = {x ∈
Rp | ||x||2 = 1}, moreover we set

d(x,Γ) = 1− ||Γx||2/
√
n, h(x) = ||x||1, and g(r) = 3f(r)/2.

Since g(r) = 3f(r)
2

= 3
8

+ 9
2
cα2r

√
log p
n
≥ 3

8
for all r > 0 and is strictly increasing, so

that Lemma 7 is applicable with u = 3
8
. Thus by using Lemma 7 we have that P [Υc] ≥

1− c′ exp(−c′′n) for some numerical constants c′ and c′′.

Then for all x ∈ Rp with ||x||2 = 1, conditioned on the event Υc we have

1− ||Γx||2√
n
≤ 3f(||x||1) =

3

4
+ 9cα2||x||1

√
log p

n
,

then
||Γx||2√

n
≥ 1

4
− 9cα2||x||1

√
log p

n
,

which completes the proof.

5 Appendix

5.1 Proof of Lemma 1

The proof for this lemma will mainly base on results in Vershynin (2010). First by using

Lemma 5.5 in Vershynin (2010) we know that the definition of ψ2 norm in Vershynin (2010)
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is equivalent with our definition up to some absolute constant. Then we use similar technique

for the proof of Lemma 5.24 in Vershynin (2010). For every x = (x1, ..., xp−1) ∈ Sp−2 we

have

||〈XD̄, x〉||2ψ2
= ||〈X, xD̄T 〉||2ψ2

≤ C

p∑
i=1

(xD̄T )2
i ||Xi||2ψ2

≤ C max
1≤i≤p

||Xi||2ψ2
,

where the first inequality comes from Lemma 5.9 in Vershynin (2010) and we also used∑p
i=1(xD̄T )2

i = (xD̄T )(xD̄T )T = xxT = 1 since x ∈ Sp−2. Since X = (X1, ..., Xp) is

distributed according to µ, then we have show ||〈XD̄, x〉||ψ2 is bounded by some absolute

constant for every x ∈ Sp−2. It is also easy to see that XD̄ is isotropic since X is isotropic

and D̄ is orthonormal.

5.2 Proof of Lemma 5

To bound ‖2n
T

(y−TADθ∗)TAD̄‖∞ we need the following two lemmas. Lemma 8 gives a con-

centration bound for poisson random variable and Lemma 9 gives a bound for
∑n

i=1(AD)2
ij, with 2 ≤

j ≤ p.

Lemma 8. Under Assumption 2.1 and 2.3, with probability at least 1− 2
n

,

|n
T

(yi − T (ADθ∗)i)| = |
n

T
(yi − T

p∑
j=1

Aijf
∗
j )| ≤

√
32n log n

T
for all 1 ≤ i ≤ n.

The proof for Lemma 8 involves two-sided concentration bounds for Poisson random

variables in combination with the union bound.

Lemma 9. Under Assumption 2.2 we have for 2 ≤ j ≤ p,

n∑
i=1

(AD)2
ij ≤

(1 + δK̃)

4n(au − a`)2
.

Proof. By the definition of D̄ and the construction of A

AD̄ = (
Ã+ au−2a`√

n
1n×p

2(au − a`)
√
n

)D̄ =
ÃD̄

2(au − a`)
√
n
.

Then for 2 ≤ j ≤ p we choose u = ej ∈ Rp with j-th location to be 1 and all others to be 0,

by Assumption 2.2,

n∑
i=1

(AD)2
ij = ‖AD̄ej‖2

2 =
‖ÃD̄ej‖2

2

4(au − a`)2n
=
‖ÃDej‖2

2

4(au − a`)2n
≤ (1 + δK̃)

4n(au − a`)2
,
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where e′j ∈ Rp−1 is just ej without the first element 0.

Returning to the proof of Lemma 5, define w̄i = n
T

(yi − T (ADθ∗)i) and

P (‖2n

T
(y − TADθ∗)TAD̄‖∞ > t) = P ( max

2≤j≤p
|2n
T

n∑
i=1

(yi − T (ADθ∗)i)(AD)ij| > t)

= P ( max
2≤j≤p

|
n∑
i=1

w̄i(AD)ij| >
t

2
).

Since for 1 ≤ i ≤ n, w̄i(AD)ij ∈ [−
√

32n logn
T
|(AD)ij|,

√
32n logn

T
|(AD)ij|] by Lemma 8, then

by using Hoeffding’s inequality and Lemma 9 we have

P (|
n∑
i=1

w̄i(AD)ij| ≥
t

2
) ≤ 2 exp(−

2( t
2
)2

128n logn
T

∑n
i=1(AD)2

ij

) ≤ 2 exp(− t2T

256M log n
),

where M =
1+δK̃

4(au−a`)2
. By the union bound,

P ( max
2≤j≤p

|
n∑
i=1

w̄i(AD)ij| >
t

2
) ≤ 2 exp(− t2T

256M log n
+ log(p− 1)).

If we set t =
√

512M logn log(p−1)
T

then

P (‖2n

T
(y − TADθ∗)TAD̄‖∞ > t =

√
512M log n log(p− 1)

T
) ≤ 2

p− 1
. (32)

Thus with probability at least 1− 2
p−1

the following is true:

‖2n

T
(y − TADθ∗)TAD̄‖∞ ≤

√
512M log n log p

T
.

5.3 Proof of Lemma 6

Since ∆̂ ∈ {∆ ∈ Rp−1 | ||∆Scη ||1 ≤ 3||∆Sη ||1 + 4||θ̄∗Scη ||1}, we have

||∆̂||1 ≤ 4||∆̂Sη ||1 + 4||θ̄∗Sη ||1 ≤ 4
√
|Sη|||∆̂||2 + 4||θ̄∗Sη ||1

≤ 4
√
Rqη

−q/2||∆̂||2 + 4||θ̄∗Sη ||1,

where the third inequality follows from (28). Then by Assumption 2.4 we have

√
n||AD̄∆̂||2 ≥ k1||∆̂||2 − 4k2

√
log p

n
(
√
Rqη

−q/2||∆̂||2 + ||θ̄∗Sη ||1)
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= ||∆̂||2(k1 − 4k2

√
Rq log p

n
η−q/2)− 4k2

√
log p

n
||θ̄∗Sη ||1.

By choosing η =
√

logn log p
T

,

√
n||AD̄∆̂||2 ≥ (k1 − 4k2

√
Rq log p

n
(

T

log p log n
)q/4)||∆̂||2 − 4k2

√
log p

n
||θ̄∗Sη ||1.

Recall that Assumption 2.3 states that T < M1( n
Rq log p

)
2
q log p log n which implies

√
n||AD̄∆̂||2 ≥ c′k1||∆̂||2 − c′′k2

√
log p

n
||θ̄∗Sη ||1,

where c′, c′′ > 0 are some constants. We can then find constants c1, c2 > 0 such that

n||AD̄∆̂||22 ≥ c1k
2
1||∆̂||22 − c2k

2
2

log p

n
||θ̄∗Sη ||

2
1.

5.4 Proof of Lemma 8

To prove Lemma 8 we need the following result which is a two-sided version of the one-sided

concentration bound from Bobkov and Ledoux (1998):

Lemma 10. If W ∼ Poisson(λ), for any t > 0 we will have

P (|W − λ| > t) ≤ 2 exp(− t
4

log(1 +
t

2λ
)).

Proof. First assume t > 0 and u > 0 meaning we have

P (W − λ > t) = P (u(W − λ) > ut) = P (eu(W−λ) > eut)

≤ E(eu(W−λ))

eut
=
E(euW )

eu(t+λ)
= eλ(eu−1−u)−ut.

Let f(u) = λ(eu − 1− u)− ut, the minimizer for f(u) is u∗ = log(1 + t
λ
). Hence

P (W − λ > t) ≤ eλ(eu
∗−1−u∗)−u∗t = et−λ log(1+ t

λ
)−t log(1+ t

λ
),

since

t− λ log(1 +
t

λ
)− t log(1 +

t

λ
) ≤ − t

4
log(1 +

t

2λ
),

we have

P (W − λ > t) ≤ exp(− t
4

log(1 +
t

2λ
)).
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On the other hand we assume v > 0 and 0 < t ≤ λ which implies

P (W − λ < −t) = P (λ−W > t) = P (v(λ−W ) > vt) = P (ev(λ−W ) > evt)

≤ Eev(λ−W )

evt
= eλ(e−v−1+v)−vt

Let g(v) = λ(e−v − 1 + v)− vt, the minimizer for g(v) is v∗ = − log(1− t
λ
). Thus we have

P (W − λ < −t) ≤ eλ(e−v
∗−1+v∗)−v∗t = e(t−λ) log(1− t

λ
)−t,

since when 0 < t ≤ λ

(t− λ) log(1− t

λ
)− t ≤ − t

4
log(1 +

t

2λ
),

we have

P (W − λ < −t) ≤ exp(− t
4

log(1 +
t

2λ
)).

Note that in this case if t > λ the inequality above is always true.

Combining these two one-sided results together we get the complete proof for Lemma

10.

Returning to the proof of Lemma 8, we have

P (|n
T

(yi − T (ADθ∗)i)| >
√

32n log n

T
) = P (|yi − T

p∑
j=1

Aijf
∗
j | >

√
32T log n

n
)

≤ 2 exp(−1

4

√
32T log n

n
log(1 +

√
32T logn

n

2T
n

))

= 2 exp(−1

4

√
32T log n

n
log(1 +

1

2

√
32n log n

T
)).

The second inequality follows from Lemma 10 and T
2n
≤ T (Af ∗)i ≤ T

n
from Lemma 4. By

using Assumption 2.3 and fact that log(1 + x) > x
2

for x ∈ (0, 1),

P (|n
T

(yi − T (ADθ∗)i)| >
√

32n log n

T
) ≤ 2 exp(−32 log n

16
) = 2 exp(−2 log n).

Then

P ( max
1≤i≤n

|n
T

(yi − T (ADθ∗)i)| >
√

32n log n

T
) ≤ 2n. exp(−2 log n) =

2

n
.

This completes the proof for Lemma 8.
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