Stat 609: Mathematical Statistics I (Fall Semester, 2016) **Introduction**

Course information

4 0 8

 Ω

Textbook

Homework Assignments

- In each lecture, there are 2-4 homework problems selected from the textbook.
- Problems are assigned in groups with a specified due date.
- beamer-tu-logo Some or all problems are graded by the TA and a solution will be provided.

Exam Schedule (may be changed)

Course Grades

Course Material

Covered topics, schedules, homework assignments, and lecture slides $\|\cdot\|$ can be found in my website http://www.stat.wi[sc.](#page-1-0)[ed](#page-3-0)[u](#page-1-0)[/˜](#page-2-0)[s](#page-3-0)[ha](#page-0-0)[o/](#page-16-0)

UW-Madison (Statistics) [Stat 609 Lecture 1](#page-0-0) 2015 3/17

Required Mathematics

Linear algebra

- Vectors $\boldsymbol{c} = (c_1,...,c_k)$, row or column, transpose \boldsymbol{c}'
- Matrices *A*, its dimension, transpose *A* 0
- Vector/matrix addition and multiplications: *c* ⁰*A*, *A*+*B*, *AB*, ...
- **•** Positive and non-negative definite matrices and their simple properties.

Calculus, advanced calculus or mathematical analysis

- Functions (univariate or multivariate), domain and range
- Limits (as $n \to \infty$ or as $x \to x_0$), ε -*N* or ε - δ arguments
- Continuity and differentiability of functions
- Right-continuous, left-continuous
- **•** Right-derivative, left-derivative
- Integration with finite or infinite integral limits
- Existence of [a](#page-4-0)n integral: e.g., $\int_{-\infty}^{\infty} |g(x)| dx = \infty$ $\int_{-\infty}^{\infty} |g(x)| dx = \infty$ $\int_{-\infty}^{\infty} |g(x)| dx = \infty$ [or](#page-3-0) a [fi](#page-0-0)[nit](#page-16-0)[e](#page-0-0) [nu](#page-16-0)[m](#page-0-0)[be](#page-16-0)r?

Calculus, advanced calculus or mathematical analysis

- Series: when does $\sum_{n=1}^{\infty}a_n$ converge?
- **Geometric series:**

$$
\frac{1}{1-x}=\sum_{t=0}^\infty x^t\qquad |x|<1
$$

• Power series: $e^x = \sum^{\infty}$ $\sum_{t=0}$ *x t* $\frac{1}{t!}$ $|x| < \infty$

• Infinity

• For any real number $x, \infty + x = \infty$, $x \infty = \infty$ if $x > 0$, $x \infty = -\infty$ if $x < 0$, and $0 \infty = 0$;

$$
\bullet\; \infty + \infty = \infty;
$$

•
$$
\infty^a = \infty
$$
 for any $a > 0$;

•
$$
x/0 = \infty
$$
 if $x > 0$ and $x/0 = -\infty$ if $x < 0$;

 $\bullet \infty - \infty$ or ∞/∞ or 0/0 is not defined.

Mathematical induction

Prove a statement involving *n* is true for any fixed $n = 1, 2, 3, ...$ (but not $n \to \infty$)

UW-Madison (Statistics) and [Stat 609 Lecture 1](#page-0-0) 2015 5/17

Knowledge in probability and mathematical statistics

- **It is not required, but is very helpful if you took a course in** probability and statistics previously
- Sets, subsets and set operations

Purposes of Stat 609-610

- Learning statistical concepts and knowledge (together with Stat 601-602 or 671-672 sequence)
- **•** Training at the level of the Mater of Science in Statistics
	- Stat 609: Basic probability tools useful in statistics (Chapters 1-5) and data reduction principles (Chapter 6)
	- Stat 610: Basic topics in statistical inference (Chapters 7-11)
- Training in derivations and simple proofs
- Preparation for a PhD level study in statistics

 Ω

4 ロト 4 何 ト 4 重 ト

Suggestions for studying

- Take class notes wisely.
- Do not be afraid of asking questions to the instructor and TA, either during or after the class.
- Read the relevant part of the textbook carefully after each lecture.
- Do the related homework problems after each lecture. Do not delay the work until the due date or the day before the due date.
- Do homework problems independently. Group discussions are encouraged, but you should do your own work.
- **If you have time, try to do more problems from the textbook, which** contains many good problems but I don't want to assign all.
- Study the graded problems from the TA, and the solution. It is a good idea to study a different solution to a (complicated) problem.
- beamer-tu-logo • Review the material before each exam (there will be a review class prior to each exam) and carefully prepare the one sheet notes for each exam.
- Menage the time wisely in the exam.

UW-Madison (Statistics) [Stat 609 Lecture 1](#page-0-0) 2015 7/17

Chapters 1-3: Probability and Random Variable Lecture 1: Sample space and probability

Random experiment

An experiment (in a general sense) that results in one of more than one outcomes with uncertainty in which outcome will be the realization

Examples of random experiments

- **Tomorrow's weather: Sunny, Cloudy, Rainy**
- Tomorrow's temperature: (−*M*,*M*)
- Number of car accidents in a city: $0, 1, 2, 3, \ldots$
- The life time of a television set: $(0, \infty)$
- **•** Toss a coin: Heads or Tails?

Statistical inference

- **•** Treat data from the experiment as a sample from some population
- Make inference about the population
- Find things having regular patterns, not a[pp](#page-6-0)[ea](#page-8-0)[r](#page-6-0) [by](#page-7-0) [ch](#page-0-0)[an](#page-16-0)[c](#page-0-0)[e](#page-16-0)

UW-Madison (Statistics) and [Stat 609 Lecture 1](#page-0-0) 2015 8/17

Probability theory

A basic tool for statistics, which explains a random experiment in terms of frequencies and their characteristics

For example, some past observations (data) may tell us that tomorrow's weather is sunny with 80%, cloudy with 15%, and rainy with 5%.

To study statistical inference, we must have a very good knowledge in probability theory.

Definition 1.1.1. Sample space (or outcome space)

The set *S* containing all possible outcomes is called the sample space

Example

 $S = \{Heads, \text{Tails}\}, = \{0, 1\}, = \{0, 1, 2, 3, ...\}, = (-M, M), = \mathcal{R}$ (all real numbers), $= (0, \infty)$

Discrete sample space: *S* contains integers (finitely or infinitely many)

Continuous sample space: e[.](#page-8-0)g., $S = [0,1]$, \mathscr{R} \mathscr{R} \mathscr{R} , [or](#page-7-0) \mathscr{R}^2 .

Subsets or sets

In probability and statistics, we are interested in subsets of a given sample space *S* (sometime called sets for simplicity).

A ⊂ *S*: *A* is a subset of *S*.

Example: the life time of a television set is between 0 and 100 is a subset $A = (0, 100]$ of the sample space $S = (0, \infty)$.

Two very special subsets:

- Empty set: /0 is the subset of *S* containing no element.
- The sample space *S* itself is a subset of *S* (the notation *A* ⊂ *S* allows the special case of $A = S$).

Expressions of subsets

A subset is expressed in words or math formulas inside of $\{\}$.

Example:

 $A = \{x : x \text{ satisfies some condition}\}$

$$
A = \{x : x \in \mathcal{R} \text{ and } x \geq 0\} = [0, \infty)
$$

Relationship

- *A* ⊂ *B*: *x* ∈ *A* ⇒ *x* ∈ *B*
- *A* = *B*: *A* ⊂ *B* and *B* ⊂ *A*

Disjoint: *A* and *B* have no common elements

Example

 $A = \{$ all even integers $\}$ $B = [2, \infty)$

Obviously, for any $x \in A$, $x > 2$ and thus $x \in B$. Hence $A \subset B$.

A more complicated example

Let
$$
A = \{x \in \mathcal{R}^k : x'x \leq c\}
$$

where $c > 0$ is a given constant, x' is the transpose of x , and $a'b$ is the usual vector product, and

$$
B = \left\{ x \in \mathcal{R}^k : (y'x)^2 \le cy'y \text{ for all } y \in \mathcal{R}^k \right\}
$$

We want to show $A = B$.

A more complicated example

First, we show $A \subset B$. For any $x \in A$, $x'x \leq c$ and by the Cauchy-Schwartz inequality,

 $(y'x)^2 \leq x'xy'y \leq c(y'y)$

for all $y \in \mathcal{R}^k$. This means $x \in B$ and thus $A \subset B$. Next, we show $B \subset A$. If $x \in B$, $(y'x)^2 \le cy'y$ for all $y \in \mathscr{R}^k$

In particular, $y = x$ should satisfy this inequality, which means

$$
(x'x)^2 \le cx'x \quad \Rightarrow \quad x'x \le c
$$

This means $x \in A$ and thus $B \subset A$.

beamer-tu-logo

∽≏∩

Set operation

Venn Diagram

- \bullet The union of *A* and *B*: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- **•** The intersection of *A* and *B*: $A \cap B = \{x : x \in A \text{ and } x \in B\}$ Disjoint *A* and *B*: $A \cap B = \emptyset$ (the empty set)
- The complement of *A*: $\mathcal{A}^c = \{ \mathsf{x} : \mathsf{x} \not\in \mathcal{A} \}, \ \mathcal{S}^c = \emptyset$
- Difference of *A* and *B*: *A*−*B* = *A*∩*B c*

 $\ddot{}$

 $A - R$

 $A \cup B$ $A \cap B$

Properties

- \bullet $A \cap \emptyset = \emptyset$
- *A*∪ /0 = *A*
- *A*∩*S* = *A*
- *A*∪*S* = *S*
- /0 ⊂ *A*∩*B* ⊂ *A* or *B* ⊂ *A*∪*B* ⊂ *S*
- *A* ⊂ *B* ⇒ *A*∪*B* = *B* and *A*∩*B* = *A*
- *A*−*B* = *A*−*A*∩*B*
- $A = (A ∩ B) ∪ (A ∩ B^c)$
- *A*∪*B* = *A*∪(*B* −*A*) = *A*∪(*B* −*A*∩*B*)
- ∪ ∞ *ⁱ*=1*Aⁱ* = *A*¹ ∪*A*² ∪··· = {*x* : *x* ∈ *Aⁱ* for some *i* }
- $\bigcap_{i=1}^{\infty} A_i = A_1 \cap A_2 \cap \cdots = \{x : x \in A_i \text{ for all } i \}$
- $B \cap (\cup_{i=1}^{\infty} A_i) = \cup_{i=1}^{\infty} (B \cap A_i)$
- $B \cup (\cap_{i=1}^{\infty} A_i) = \cap_{i=1}^{\infty} (B \cup A_i)$
- $\textsf{DeMorgan's laws: } \left(\cup_{i=1}^{\infty} A_i\right)^c = \cap_{i=1}^{\infty} A_i^c \text{ and } \left(\cap_{i=1}^{\infty} A_i\right)^c = \cup_{i=1}^{\infty} A_i^c$ $\textsf{DeMorgan's laws: } \left(\cup_{i=1}^{\infty} A_i\right)^c = \cap_{i=1}^{\infty} A_i^c \text{ and } \left(\cap_{i=1}^{\infty} A_i\right)^c = \cup_{i=1}^{\infty} A_i^c$ $\textsf{DeMorgan's laws: } \left(\cup_{i=1}^{\infty} A_i\right)^c = \cap_{i=1}^{\infty} A_i^c \text{ and } \left(\cap_{i=1}^{\infty} A_i\right)^c = \cup_{i=1}^{\infty} A_i^c$ $\textsf{DeMorgan's laws: } \left(\cup_{i=1}^{\infty} A_i\right)^c = \cap_{i=1}^{\infty} A_i^c \text{ and } \left(\cap_{i=1}^{\infty} A_i\right)^c = \cup_{i=1}^{\infty} A_i^c$ $\textsf{DeMorgan's laws: } \left(\cup_{i=1}^{\infty} A_i\right)^c = \cap_{i=1}^{\infty} A_i^c \text{ and } \left(\cap_{i=1}^{\infty} A_i\right)^c = \cup_{i=1}^{\infty} A_i^c$ $\textsf{DeMorgan's laws: } \left(\cup_{i=1}^{\infty} A_i\right)^c = \cap_{i=1}^{\infty} A_i^c \text{ and } \left(\cap_{i=1}^{\infty} A_i\right)^c = \cup_{i=1}^{\infty} A_i^c$ $\textsf{DeMorgan's laws: } \left(\cup_{i=1}^{\infty} A_i\right)^c = \cap_{i=1}^{\infty} A_i^c \text{ and } \left(\cap_{i=1}^{\infty} A_i\right)^c = \cup_{i=1}^{\infty} A_i^c$ $\textsf{DeMorgan's laws: } \left(\cup_{i=1}^{\infty} A_i\right)^c = \cap_{i=1}^{\infty} A_i^c \text{ and } \left(\cap_{i=1}^{\infty} A_i\right)^c = \cup_{i=1}^{\infty} A_i^c$ $\textsf{DeMorgan's laws: } \left(\cup_{i=1}^{\infty} A_i\right)^c = \cap_{i=1}^{\infty} A_i^c \text{ and } \left(\cap_{i=1}^{\infty} A_i\right)^c = \cup_{i=1}^{\infty} A_i^c$

Subset occurrence

If *x* in a subset *A* is the realization of an experiment, then we say that *A* occurs.

Let *A*, *B*, *C* be 3 subsets.

Their occurrence can be expressed by the following subsets:

- *A* occurs: *A*
- All subsets occur: *A*∩*B* ∩*C*
- At least one subset occurs: *A*∪*B* ∪*C*
- Only *A* occurs: *A*∩*B ^c* ∩*C c*
- Exactly one subset occurs: $(A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C)$
- None occurs: $\mathsf{A}^c \cap \mathsf{B}^c \cap \mathsf{C}^c$
- Not all subsets occur: *A ^c* ∪*B ^c* ∪*C c*
- At least two subsets occur: (*A*∩*B*)∪(*A*∩*C*)∪(*B* ∩*C*)
- **At most one subset occurs:** $(A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A^c \cap B^c \cap C^c)$ $(A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A^c \cap B^c \cap C^c)$ $(A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A^c \cap B^c \cap C^c)$ $(A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A^c \cap B^c \cap C^c)$ $(A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A^c \cap B^c \cap C^c)$ $(A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A^c \cap B^c \cap C^c)$ $(A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A^c \cap B^c \cap C^c)$ $(A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A^c \cap B^c \cap C^c)$ $(A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A^c \cap B^c \cap C^c)$ $(A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A^c \cap B^c \cap C^c)$ $(A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A^c \cap B^c \cap C^c)$ $(A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A^c \cap B^c \cap C^c)$

Definition 1.2.1

A collection $\mathscr F$ of subsets of a sample space S is called a σ -field (or σ -algebra) iff it has the following properties: (i) The empty set $\emptyset \in \mathscr{F}$; (ii) If $A \in \mathscr{F}$, then the complement $A^c \in \mathscr{F}$;

- (iii) If $A_i \in \mathcal{F}$, $i = 1, 2, \dots$, then their union $\cup A_i \in \mathcal{F}$.
	- If $A \in \mathscr{F}$, then A is called an event.
	- Why do we need to consider σ -fields? When *S* is continuous, there are some "bad" subsets for which a logical definition of measure or probability is not possible.
	- $\bullet \mathscr{F}$ contains good subsets we deal with, but they have to satisfy (i) - (iii) .
	- **If S** is discrete, we do not need this concept, i.e., $\mathscr{F} =$ all subsets of *S*.
	- line), we consider ${\mathscr{F}}$ to be the smallest σ -field containing all open $\|\;\;$ In $\mathscr{R}^k,$ the *k-*dimensional Euclidean space ($\mathscr{R}^1=\mathscr{R}$ is the real sets, and sets in $\mathscr F$ are called Borel sets.

UW-Madison (Statistics) and [Stat 609 Lecture 1](#page-0-0) 2015 16/17

How to define the probability of an event *A*?

- **•** Intuitive definition: the rate or percentage of the occurrence of A
- Statistical definition: if we repeat the same experiment *M* times, the probability of $A =$ (the number of times A occurs)/M when M is sufficiently large.
- Mathematical definition: probability is a special measure.
- A measure is an abstract extension of length, area, volume, ...

Definition 1.2.4

A set function *v* defined on a σ -field $\mathscr F$ is called a *measure* iff it has the following properties.

\n- (i)
$$
0 \le v(A) \le \infty
$$
 for any $A \in \mathcal{F}$.
\n- (ii) $v(\emptyset) = 0$.
\n- (iii) If $A_i \in \mathcal{F}$, $i = 1, 2, \ldots$, and A_i 's are disjoint, i.e., $A_i \cap A_j = \emptyset$ for any $i \neq j$, then
\n

$$
v\left(\bigcup_{i=1}^{\infty} A_i\right)=\sum_{i=1}^{\infty} v(A_i).
$$

I[f](#page-16-0) $v(S) = 1$, then v is a probability and we use [no](#page-15-0)[ta](#page-16-0)[ti](#page-15-0)[on](#page-16-0) [P](#page-0-0) [in](#page-16-0)[ste](#page-0-0)[a](#page-16-0)[d o](#page-0-0)f v.