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Lecture 4: Expectations
The expected value, also called the expectation or mean, of a random
variable is its average value weighted by its probability distribution.

Definition 2.2.1.
The expected value or mean of a random variable g(X ) is

E [g(X )] =


∫

∞

−∞

g(x)fX (x)dx if X has pdf fX

∑
x

g(x)fX (x) if X has pmf fX

provided that the integral or the sum exists (is finite); otherwise we say
that the expected value of g(X ) does not exist.

The expected value is a number that summarizes a typical, middle,
or expected value of an observation of the random variable.
If g(X )≥0, then E [g(X )] is always defined except that it may be ∞.
For any g(X ), its expected value exists iff E |g(X )|< ∞.
The expectation is associated with the distribution of X , not with X .
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Example
X has distribution

x −2 −1 0 1 2 3
fX (x) 0.1 0.2 0.1 0.2 0.3 0.1

E(X ) = ∑xfX (x) =−2×0.1−0.2+0.2+2×0.3+3×0.1 = 0.7

E(X 2) = ∑x2fX (x) = 4×0.1+0.2+0.2+4×0.3+9×0.1 = 2.9

Y = g(X ) = X 2 has distribution
y 0 1 4 9

fY (y) 0.1 0.4 0.4 0.1

E(Y ) = E(X 2) = ∑yfY (y) = 0.4+4×0.4+9×0.1 = 2.9

Example 2.2.2.

Suppose X ≥ 0 has pdf fX (x) = λ−1e−x/λ , where λ > 0 is a constant.
Then

E(X ) =
∫

∞

0
λ
−1xe−x/λ dx =−xe−x/λ

∣∣∣∣∞
0
+
∫

∞

0
e−x/λ dx = λ

UW-Madison (Statistics) Stat 609 Lecture 4 2015 2 / 17



beamer-tu-logo

In some cases, the calculation of the expectation requires some
derivation.

Example 2.2.3.
Let X be a discrete random variable with pmf

fX (x) =
(

n
x

)
px(1−p)n−x , x = 0,1, ...,n,

where n is a fixed integer and 0 < p < 1 is a fixed constant.
For any n and p, n

∑
x=0

(
n
x

)
px(1−p)n−x = 1.

By definition and the fact that x
(n

x

)
= n
(n−1

x−1

)
, we obtain

E(X ) =
n

∑
x=0

x
(

n
x

)
px(1−p)n−x =

n

∑
x=1

x
(

n
x

)
px(1−p)n−x

=
n

∑
x=1

n
(

n−1
x−1

)
px(1−p)n−x = np

n−1

∑
y=0

(
n−1

y

)
py (1−p)n−1−y

= np
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Example 2.2.4 (Nonexistence of expectation)
Suppose that X has the following pdf:

fX (x) =
1

π(1+x2)
, x ∈R

Note that

E |X | =
∫

∞

−∞

|x |
π(1+x2)

dx =
2
π

∫
∞

0

x
1+x2 dx

=
2
π

lim
M→∞

∫ M

0

x
1+x2 dx =

2
π

lim
M→∞

∫ M

0

1
1+x2 d(x2/2)

=
2
π

lim
M→∞

log(1+x2)

2

∣∣∣∣M
0
=

2
π

lim
M→∞

log(1+M2)

2
= ∞

Thus, neither X nor |X | has an expectation.
We should not wrongly think

E(X ) =
∫

∞

−∞

x
π(1+x2)

dx = lim
M→∞

∫ M

−M

x
π(1+x2)

dx = lim
M→∞

0 = 0
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Linear operation
Taking expectation is a linear operation in the sense that
E(c) = c for any constant c;
E(aX ) = aE(X ) for any constant a and random variable X ;
E(X +Y ) = E(X )+E(Y ) for any random variables X and Y .
These are special cases of the following theorem.

Theorem 2.2.5
Let X and Y be random variables whose expectations exist, and let a,
b, and c be constants.
a. E(aX +bY +c) = aE(X )+bE(Y )+c.
b. If X ≥ Y , then E(X )≥ E(Y ).

Proof.
The proof of Theorem 2.2.5 is easy if X = g1(Z ) and Y = g2(Z ) for a
random variable Z and some functions g1 and g2, and Z has a pdf or
pmf.

In general, the proof of property a is not simple (a topic in stat 709).
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Example 2.2.6 (Minimizing distance)
The mean of a random variable X is a good guess (predict) of X .
Suppose that we measure the distance between X and a constant b
by (X −b)2.
The closer b is to X , the smaller this quantity is.
We want to find a value b that minimizes the average E(X −b)2.
If µ = E(X ), then

E(X −µ)2 = min
b∈R

E(X −b)2

To show this, note that

E(X −b)2 = E [(X −µ)+(µ−b))]2
= E [(X −µ)2]+E [(µ−b)2]+E [2(X −µ)(µ−b)]
= E(X −µ)2 +(µ−b)2 +2(µ−b)E(X −µ)

= E(X −µ)2 +(µ−b)2

≥ E(X −µ)2.

There is an alternative proof using E(X −b)2 = E(X 2)−2bE(X )+b2.
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Nonlinear functions
When calculating expectations of nonlinear functions of X , we can
proceed in one of two ways.

Using the distribution of X , we can calculate

E [g(X )] =
∫

∞

−∞

g(x)fX (x)dx or ∑
x

g(x)fX (x)

We can find the pdf or pmf of Y = g(X ), fY , and then use

E [g(X )] = E(Y ) =
∫

∞

−∞

yfY (y)dy or ∑
y

yfY (y)

Example 2.2.7.
Suppose that X has a uniform pdf on (0,1),

fX (x) =
{

1 0 < x < 1
0 otherwise

Consider g(X ) =− logX .

E [g(X )] =
∫ 1

0
− log(x)dx = (x −x logx)

∣∣∣∣1
0
= 1
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On the other hand, we can use Theorem 2.1.5 to obtain the pdf of
Y =− logX :

fY (y) = fX (e−y )|e−y |= e−y , y > 0
Then

E [g(X )] = E(Y ) =
∫

∞

−∞

yfY (y)dy =
∫

∞

0
ye−ydy = 1

Example
Suppose that X has the standard normal pdf

fX (x) =
1√
2π

e−x2/2, x ∈R

Consider g(X ) = X 2.
By Example 2.1.9, Y = X 2 has the chi-square pdf

fY (y) =
1√
2πy

e−y/2, y > 0

Then

E(X 2) = E(Y ) =
∫

∞

0
yfY (y)dy =

1√
2π

∫
∞

0

√
ye−y/2dy = 1
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Theorem
Let F be the cdf of a random variable X . Then

E |X |=
∫

∞

0
[1−F (x)]dx +

∫ 0

−∞

F (x)dx

and E |X |< ∞ iff both integrals are finite. In the case where E |X |< ∞,

E(X ) =
∫

∞

0
[1−F (x)]dx −

∫ 0

−∞

F (x)dx

Proof.
We only consider the case where X has a pdf or pmf, and give a proof
when X has a pdf (the proof for the case where X has a pmf is similar).

When X has a pdf f ,∫
∞

0
[1−F (x)]dx =

∫
∞

0

∫
∞

x
f (t)dtdx =

∫
∞

0

∫ t

0
f (t)dxdt =

∫
∞

0
tf (t)dt∫

∞

0
F (x)dx =

∫ 0

−∞

∫ x

−∞

f (t)dtdx =
∫ 0

−∞

∫ 0

t
f (t)dxdt =

∫ 0

−∞

−tf (t)dt

These calculations are valid regardless of whether the integrals are
finite or not.
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By definition,

E |X | =
∫

∞

−∞

|t |f (t)dt =
∫

∞

0
tf (t)dt +

∫ 0

−∞

−tf (t)dt

=
∫

∞

0
[1−F (x)]dx +

∫ 0

−∞

F (x)dx

Since both integrals ≥ 0, E |X |< ∞ iff both integrals are finite.
If E |X |< ∞, then both integrals are finite and

E(X ) =
∫

∞

−∞

tf (t)dt =
∫

∞

0
tf (t)dt +

∫ 0

−∞

tf (t)dt

=
∫

∞

0
[1−F (x)]dx −

∫ 0

−∞

F (x)dx

Property
For any random variable X ,

∞

∑
n=1

P(|X | ≥ n)≤ E |X | ≤ 1+
∞

∑
n=1

P(|X | ≥ n).

Then E |X |< ∞ iff the sum is finite.
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Using the previous theorem, we can prove this result regardless of
whether X has a pdf (pmf) or not:

E |X | =
∫

∞

0
[1−F (x)]dx +

∫ 0

−∞

F (x)dx =
∫

∞

0
[1−F (x)]dx +

∫
∞

0
F (−x)dx

=
∫

∞

0
[1−F (x)+F (−x)]dx =

∫
∞

0
[P(X > x)+P(X ≤−x)]dx

≤
∫

∞

0
[P(X ≥ x)+P(X ≤−x)]dx =

∫
∞

0
P(|X | ≥ x)dx

=
∞

∑
n=0

∫ n+1

n
P(|X | ≥ x)dx ≤

∞

∑
n=0

∫ n+1

n
P(|X | ≥ n)dx

=
∞

∑
n=0

P(|X | ≥ n) = 1+
∞

∑
n=1

P(|X | ≥ n)

Similarly,

E |X | ≥
∫

∞

0
[P(X > x)+P(X <−x)]dx =

∫
∞

0
P(|X |> x)dx

=
∞

∑
n=0

∫ n+1

n
P(|X |> x)dx ≥

∞

∑
n=0

P(|X | ≥ n+1) =
∞

∑
n=1

P(|X | ≥ n)
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Moments
The various moments of a random variable are an important class of
expectations.

Definition 2.3.1.
For each positive integer n, the nth moment of a random variable
X (or FX ) is E(X n).
For each positive integer n, the nth central moment of X is
E(X −µ)n, where µ = E(X ).
For each constant p > 0, the pth absolute moment of X is E(|X |p).

Property.
For p > 0 and any random variable X ,

E |X |p < ∞ iff
∞

∑
n=1

np−1P(|X | ≥ n)< ∞

A consequence is, if the pth absolute moment (moment or central
moment) exists and q < p, then the pth absolute moment (moment or
central moment) also exists.
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Proof.
From the discussion in the last lecture,

E |X |p ≤
∫

∞

0
P(|X |p ≥ x)dx = p

∫
∞

0
P(|X |p ≥ yp)yp−1dy

= p
∞

∑
n=0

∫ n+1

n
P(|X |p ≥ yp)yp−1dy ≤ p

∞

∑
n=0

(n+1)p−1P(|X | ≥ n)

≤ p+2p−1p
∞

∑
n=1

np−1P(|X | ≥ n)

where the first equality is from changing variable x = yp.

Similarly,

E |X |p ≥
∫

∞

0
P(|X |p > x)dx = p

∞

∑
n=0

∫ n+1

n
P(|X |p > yp)yp−1dy

≥ p
∞

∑
n=0

np−1P(|X | ≥ n+1) = p
∞

∑
n=2

(n−1)p−1P(|X | ≥ n)

≥ p2−p
∞

∑
n=2

np−1P(|X | ≥ n)
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Definition 2.3.2.
The second central moment of a random variable X is called its
variance and denoted by Var(X ) = E(X −µ)2.
The standard deviation of X is defined as

√
Var(X ).

Sometime the following result is useful:
Var(X ) = E(X 2)− [E(X )]2

Measures of spread
The variance gives a measure of the degree of spread of a
distribution around its mean (center).
A large variance means X is more variable.
The unit on the variance is the square of the original unit.
The standard deviation has the same qualitative interpretation as
the variance, but its unit is the same as the original unit.
If Var(X ) = 0, then P(X = E(X )) = 1.
This is actually a special case of the following result:

If g(X )≥ 0 and E [g(X )] = 0, then P(g(X ) = 0) = 1.
UW-Madison (Statistics) Stat 609 Lecture 4 2015 14 / 17



beamer-tu-logo

The result can be proved in general, but we only consider the case
where X has a pdf or pmf.

Since g(X )≥ 0 and E [g(X )] = 0, X cannot have a pdf unless g(x) = 0
for all x .

If X is discrete and have positive probabilities pj ’s to take two values
xj ’s, then

0 = E [g(X )] = ∑
k

g(xk )pk ≥ g(xj)pj

implies that g(xj) = 0 for all j , i.e., P(g(X ) = 0) = 1.

Theorem 2.3.4.
If X has a finite variance, then for any constants a and b,

Var(aX +b) = a2Var(X ).

Proof.
By definition,

Var(aX +b) = E [(aX +b)−E(aX +b)]2 = E [aX −aE(X )]2

= a2E [X −E(X )]2 = a2Var(X )
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Example 2.3.3 (the exponential distribution)
Suppose that X has the following pdf:

fX (x) =

{
1
λ

e−x/λ x ≥ 0

0 x < 0

where λ > 0 is a constant.

µ = E(X ) =
∫

∞

0

1
λ

xe−x/λ dx =−xe−x/λ

∣∣∣∣∞
0
+
∫

∞

0
e−x/λ dx = λ

Var(X ) = E(X −λ )2 = E(X 2)−λ
2 =

∫
∞

0

x2

λ
e−x/λ dx −λ

2

= −x2e−x/λ

∣∣∣∣∞
0
+
∫

∞

0
2xe−x/λ dx −λ

2

= 2λ

∫
∞

0

1
λ

xe−x/λ dx −λ
2

= 2λ
2−λ

2 = λ
2
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Example 2.3.5 (binomial distribution)
Suppose that X is discrete with pmf

fX (x) =
(

n
x

)
px(1−p)n−x , x = 0,1, ...,n,

where n is a fixed positive integer and 0 < p < 1 is a fixed constant.
We have obtained that E(X ) = np.
Using the identity

x2
(

n
x

)
= x

n!
(x −1)!(n−x)!

= xn
(

n−1
x −1

)
we obtain

E(X 2) =
n

∑
x=0

x2
(

n
x

)
px(1−p)n−p = n

n

∑
x=1

x
(

n−1
x−1

)
px(1−p)n−x

= np
n−1

∑
y=0

(y +1)
(

n−1
y

)
py (1−p)n−1−y

= np[(n−1)p+1] = n(n−1)p2 +np

Var(X ) = E(X 2)− (EX )2 = n(n−1)p2 +np− (np)2 = np(1−p).
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