Lecture 4: Expectations

The expected value, also called the expectation or mean, of a random
variable is its average value weighted by its probability distribution

Definition 2.2.1

|

The expected value or mean of a random variable g(X) is

/Do g(x)fx(x)dx if X has pdf fx

E[g(X)] = Zg )fx(X) if X has pmf fx

provided that the integral or the sum exists (is finite); otherwise we say
that the expected value of g(X) does not exist.

v

@ The expected value is a number that summarizes a typical, middle
or expected value of an observation of the random variable.

@ If g(X)>0, then E[g(X)] is always defined except that it may be co.

@ For any g(X), its expected value exists iff E|g(X)| < .

@ The expectation is associated with the distribution of X, not with X.
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X has distribution
X -2 -1 0 1 2 3

fx(x) 01 02 01 02 03 0.1

E(X)=Y xfx(x)=-2x0.1-02+02+2x0.3+3x0.1=0.7
E(X?) =Y X*fx(x)=4x0.1+02+02+4x0.3+9x0.1=29

Y = g(X) = X2 has distribution
y 0 1 4 9
fy(y) 01 04 0.4 0.1

E(Y)=E(X?)=Y yfy(y)=04+4x04+9x0.1=29

Example 2.2.2.

Suppose X > 0 has pdf fy(x) = A~ 'e */* where A > 0 is a constant.
Then

E(X) = / T2 Txe ¥ dx = —xe X/
0

+/We’x/ldx:l
0 0

UW-Madison (Statistics) Stat 609 Lecture 4 2015 2/17



In some cases, the calculation of the expectation requires some

derivation.

Example 2.2.3
Let X be a discrete random variable with pmf

fx(x) = (:>px(1 —p)"x, x=0,1,...,n,

where nis a fixed integer and 0 < p < 1 is a fixed constant.
For any nand p, n /n
pr(1=p)"=1.

)(;O (X>
By definition and the fact that x(}) =

n(3
f00 = £ x(D)ort-or = £ x(D)orr-or

x=0

~1), we obtain

- Eo(y)ea-prremE (7, )pra-pr
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Example 2.2.4 (Nonexistence of expectation)
Suppose that X has the following pdf:

1
fx(X):m7

XEXR
Note that

*° | x| 2/°° X
EX = S N = — —_
I /mn(1—|—x2)dx 0 1+x2dx

— Zlim /M X ax=20m (M a2
o T M=o Jo 1+X2 T M—o /o 1+X2

2 2
_ z im log(1+ x<) im Iog(1+M):
M—o 2

T M—oo 2 0

Thus, neither X nor | X| has an expectation.
We should not wrongly think
M

e X X .
E(X)_/ 210 X T w22 X im0 =0

v
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Linear operation

Taking expectation is a linear operation in the sense that
E(c) = c for any constant c;

E(aX) = aE(X) for any constant a and random variable X;
E(X+Y)=E(X)+ E(Y) for any random variables X and Y.

These are special cases of the following theorem.

Theorem 2.2.5

Let X and Y be random variables whose expectations exist, and let a,
b, and c¢ be constants.

a. E(aX+bY+c)=aE(X)+bE(Y)+c.

b. If X > Y, then E(X) > E(Y).

Proof.

The proof of Theorem 2.2.5 is easy if X = g¢(Z) and Y = g»(Z) for a
random variable Z and some functions gy and g», and Z has a pdf or
pmf.

|

In general, the proof of property a is not simple (a topic in stat 709).

v
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Example 2.2.6 (Minimizing distance)

The mean of a random variable X is a good guess (predict) of X.
Suppose that we measure the distance between X and a constant b
by (X — b)2.

The closer b is to X, the smaller this quantity is.

We want to find a value b that minimizes the average E(X — b)2.

If 1 = E(X), th
w=EQOthen by = min £(X — b)?
To show this, note that

E(X-by = E[(X—u)+(u—Db))2
— E[(X — )]+ El(1 — b)2] + E[2(X — 1)(tt — b)]
= E(X—p)?+ (1 — by +2(u—b)E(X — )
(
(

= E
> E

m

X —u)?+(u—by
X —u)?.

There is an alternative proof using E(X — b)? = E(X?) — 2bE(X) + b?.
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Nonlinear functions

When calculating expectations of nonlinear functions of X, we can
proceed in one of two ways.

@ Using the distribution of X, we can calculate
ElgX)1= [ _gx)ix(xax  or L g0hk(x)
- X
@ We can find the pdf or pmf of Y = g(X), fy, and then use

ElgX)1=E() = [ yivindy or  Tyfny)
- y

Example 2.2.7.
Suppose that X has a uniform pdf on (0,1),
1 O<x<1
Ix(x) = { 0  otherwise
Consider g(X) = —log X.

1

Elg(X)] = [ ~log(x)ok = (x - xlog) =
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On the other hand, we can use Theorem 2.1.5 to obtain the pdf of

Y =—log X:
- fr(y)=fx(e¥)le¥|=e, y>0

Then - -
Elg00) = E(V) = [ y(y)dy = [ ye¥ay=1

|

Example
Suppose that X has the standard normal pdf

fx(x)= —e X2 xex

Consider g(X) = X2.
By Example 2.1.9, Y = X? has the chi-square pdf

fy(y) = 1 o2 yso

\/2my

Then

EOE) = EV) = [Tyt )oy == [ vye 7oy —1
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Let F be the cdf of a random variable X. Then

E|X| :/:“ —F(x)]dx+/_(;F X)dx

and E|X| < « iff both integrals are finite. In the case where E|X| < o,

/[1— X)]dx — /O F(x)dx
Proof

We only consider the case where X has a pdf or pmf, and give a proof
when X has a pdf (the proof for the case where X has a pmf is similar).

When X has a pdf f,

/[1f X)]dx = //f ) dtax — //f )dxdt — /tf
/0 X)ax = / / (t)dltdx = / / t)dxdlt = 1 —th(t)et

These calculations are valid regardless of whether the integrals are
finite or not.
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By definition,
oo oo 0
E\X|:/ |t|f(t)dt:/ tf(t)dt+/ _t(t)dt

— [ -F ]dx+/ F(x)dx

Since both integrals > 0, E|X| < « iff both integrals are finite.
If E|X| < oo, then both integrals are finite and

E(X) = /_th(t)dt_/Owtf(t)dtJr/_itf(t)dt
_ /m[1 —F(x)]dx—/o F(x)dx

o
|
8

Property
For any random variable X,

Y P(XI=n) <EIX| <1+ ) P(IX| 2 n).
n=1 n=1
Then E|X| < o iff the sum is finite.
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Using the previous theorem, we can prove this result regardless of
whether X has a pdf (pmf) or not:

E|X| = /[1— ]dx+/ F(x)dx = /[1— ]dx+/ —X)dx
_/ H-F X)]dx = /[PX>X)+P(X< —x)]dx

g/ [Psz)JrP(Xg—x)]dx:/o P(1X| > x)dx
(IX| > x)d (IX
nzo/ P(|X] > x) X<Z/ P(|X| > n)dx
_Z \X|>n_1+ZP1X|>n)

Similarly,

E|X]

AV

/N[P(X>x)+P(X< —x)]dx = /P(|X\>x)dx

:Z/ ]X\>xdx>ZP]X\>n+1)—ZP\X]>n)
n=0

UW-Madison (Statistics) Stat 609 Lecture 4 2015 11/17




The various moments of a random variable are an important class of
expectations.

Definition 2.3.1

@ For each positive integer n, the nth moment of a random variable
X (or Fx) is E(X").

@ For each positive integer n, the nth central moment of X is
E(X —pu)", where u = E(X).

@ For each constant p > 0, the pth absolute moment of X is E(|X|P)

v

Property.
For p > 0 and any random variable X,

EIX|P <o iff Y nP'P(IX|>n) <o
n=1
A consequence is, if the pth absolute moment (moment or central
moment) exists and g < p, then the pth absolute moment (moment or
central moment) also exists.

v
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Proof
From the discussion in the last lecture,

EIXP < [ POXIP=x)dx=p [ P(IXIP = yP)y*'dy

—pz/ P(XP 2 yP)yPldy <p Y (n+1)P~ P(X| 2 1)
n=0

<p+2°'p Y PP 1P(IX| > n)
n=1
where the first equality is from changing variable x = yP.
Similarly,

oo € n+1
EIXIP > [ POXP>X)dx=p Y. [ PIXP>yP)y" " dy
0 n=0 n

oo

>pY P P(X|>n+1)=p Y (n—1)PP(1X| > n)
n=0 n=2

> p2 P Y 0P P(1X| > n)
n=2
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Definition 2.3.2.
The second central moment of a random variable X is called its

variance and denoted by Var(X) = E(X — u)?.
The standard deviation of X is defined as /Var(X).

Sometime the following result is useful:
Var(X) = E(X?) — [E(X)]?

Measures of spread

@ The variance gives a measure of the degree of spread of a
distribution around its mean (center).

@ A large variance means X is more variable.
@ The unit on the variance is the square of the original unit.
@ The standard deviation has the same qualitative interpretation as
the variance, but its unit is the same as the original unit.
@ If Var(X) =0, then P(X = E(X))=1.
This is actually a special case of the following result:
If g(X) > 0and E[g(X)] =0, then P(g(X)=0) =1.
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The result can be proved in general, but we only consider the case
where X has a pdf or pmf.

Since g(X) > 0 and E[g(X)] =0, X cannot have a pdf unless g(x) =0
for all x.

If X is discrete and have positive probabilities p;’s to take two values
x's, then
0= E[g(X)] = Y 9(x)Px > 9(x))p;
K

implies that g(x;) =0 for all j, i.e., P(g(X) =0) =1.

Theorem 2.3.4.
If X has a finite variance, then for any constants a and b,

Var(aX + b) = @ Var(X).

By definition,
Var(aX +b) = E[(aX+b)— E(aX+b)]? = E[aX —aE(X)]?
= &E[X - E(X)]? = &Var(X)
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Example 2.3.3 (the exponential distribution)
Suppose that X has the following pdf:

fx(x) reh x20
X)=
X 0 X <0

where A > 0 is a constant.

p=EX)= [ Jxedx=—xe ¥/
0

+/we’x/’1dx:l
0 0

o 2
Var(X) = E(X—)L)Z:E(XZ)—AZ:/O %e—x/ldx—)ﬁ

—  _x2g—x/

+ / oxe /% dx — 2.2
0 0

= 27L/m1xe"/1dx—)t2
o A
— 2122212
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Example 2.3.5 (binomial distribution)
Suppose that X is discrete with pmf

fx(x) = <Z>px(1 -p)" ¥, x=0,1,....n,

where nis a fixed positive integer and 0 < p < 1 is a fixed constant.
We have obtained that E(X) = np.
Using the identity

Xz@“( it X”Cj)
we obtain

£ = Re()erti-pre = Lx(( 7] -

x=1

— an(y+1)< ;1 p’(1—p)" '

y=0
= np[(n—1)p+1]=n(n—1)p? +np

Var(X) = E(X?) — (EX)? = n(n—1)p® + np— (np)* = np(1 — p).
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