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Lecture 5: Moment generating functions
Definition 2.3.6.
The moment generating function (mgf) of a random variable X is

MX (t) = E(etX ) =

{
∑x etx fX (x) if X has a pmf∫

∞

−∞
etx fX (x)dx if X has a pdf

provided that E(etX ) exists. (Note that MX (0) = E(e0X ) = 1 always
exists.) Otherwise, we say that the mgf MX (t) does not exist at t .

Theorem 2.3.15.
For any constants a and b, the mgf of the random variable aX + b is

MaX+b(t) = ebtMX (at)

Proof.
By definition,

MaX+b(t) = E(et(aX+b)) = E(etaX ebt ) = ebtE(e(ta)X ) = ebtMX (at)
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The main use of mgf
It can be used to generate moments.
It helps to characterize a distribution.

Theorem 2.3.7.
If MX (t) exists at ±t , then E(X n) exists for any positive integer n and

E(X n) = M(n)
X (0) =

dn

dtn MX (t)
∣∣∣∣
t=0

i.e., the nth moment is the nth derivative of MX (t) evaluated at t = 0.

Proof.
Assuming that we can exchange the differentiation and integration
(which will be justified later),
dn

dtn MX (t) =
dn

dtn

∫
∞

−∞

etx fX (x)dx =
∫

∞

−∞

dnetx

dtn fX (x)dx =
∫

∞

−∞

xnetx fX (x)dx

Hence
dn

dtn MX (t)
∣∣∣∣
t=0

=
∫

∞

−∞

xne0x fX (x)dx =
∫

∞

−∞

xnfX (x)dx = E(X n)
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The condition that MX (t) exists at ±t is in fact used to ensure the
validity of the exchange of differentiation and integration.

Besides this, we also need to argue that E |X |n < ∞ for any positive
integer n under the condition that MX (t) exists at ±t .

We first show that, if MX (t) exists at ±t , then for any s ∈ (−t , t), MX (s)
exists:

MX (s) = E(esX ) = E [esX I(X > 0)] + E [esX I(X ≤ 0)]

≤ E [etX I(X > 0)] + E [e−tX I(X ≤ 0)]≤ E(etX ) + E(e−tX )

= MX (t) + MX (−t) < ∞

where I(X > 0) is the indicator of X > 0.

Next, we show that, for any positive p > 0, E |X |p < ∞ under the
condition MX (t) exists at ±t .

For a given p > 0, choose s such that 0 < ps < t .

Because s|X | ≤ es|X |, we have sp|X |p ≤ eps|X | ≤ epsX + e−psX and

E |X |p ≤ s−pE(epsX + e−psX ) = s−pMX (ps) + MX (−ps) < ∞
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In fact, the condition that MX (t) exists at ±t ensures that MX (s) has
the power series expansion

MX (s) =
∞

∑
k=0

E(X k )sk

k !
− t < s < t

If the distribution of X is symmetric (about 0), i.e., X and −X have the
same distribution, then

MX (t) = E(etX ) = E(et(−X)) = E(e−tX ) = MX (−t)
i.e., MX (t) is an even function and MX (t) exists at ±t is the same as
MX (t) exists at a t > 0.

Example 2.3.8 (Gamma mgf)
Let X have the gamma pdf

fX (x) =
1

Γ(α)β α
xα−1e−x/β , x > 0,

where α > 0 and β > 0 are two constants and

Γ(α) =
∫

∞

0
xα−1e−xdx α > 0

is the so-called gamma function.
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If t < 1/β ,

MX (t) = E(etX ) =
1

Γ(α)β α

∫
∞

0
etxxα−1e−x/β dx

=
1

Γ(α)β α

∫
∞

0
xα−1e−x/( β

1−β t )dx

=
( β

1−β t )α

Γ(α)β α

∫
∞

0
sα−1e−sds =

1
(1−β t)α

If t ≥ 1/β , then E(etX ) = ∞.

We can obtain

E(X ) =
d
dt

MX (t)
∣∣∣∣
t=0

=
αβ

(1−β t)α+1

∣∣∣∣
t=0

= αβ

For any integer n > 1,

E(X n) =
dn

dtn MX (t)
∣∣∣∣
t=0

=
α(α + 1) · · ·(α + n−1)β n

(1−β t)α+n

∣∣∣∣
t=0

= α(α + 1) · · ·(α + n−1)β
n
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Can the moments determine a distribution?
Can two random variables with different distributions have the same
moments of any order?

Example 2.3.10.

X1 has pdf f1(x) = 1√
2πx

e−(logx)2/2, x ≥ 0

X2 has pdf f2(x) = f1(x)[1 + sin(2π logx)], x ≥ 0

For any positive integer n,

E(X n
1 ) =

1√
2π

∫
∞

0
xn−1e−(logx)2/2dx

=
1√
2π

∫
∞

−∞

eny−y2/2dy y = logx

=
en2/2
√

2π

∫
∞

−∞

e−(y−n)2/2dy

= en2/2 using the property of a normal distribution
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E(X n
2 ) =

∫
∞

0
xnf1(x)[1 + sin(2π logx)]dx

= E(X n
1 ) +

1√
2π

∫
∞

0
xn−1e−(logx)2/2 sin(2π logx)dx

= E(X n
1 ) +

1√
2π

∫
∞

−∞

enye−y2/2 sin(2πy)dy

= E(X n
1 ) +

en2/2
√

2π

∫
∞

−∞

e−(y−n)2/2 sin(2πy)dy

= E(X n
1 ) +

en2/2
√

2π

∫
∞

−∞

e−s2/2 sin(2π(s + n))ds

= E(X n
1 ) +

en2/2
√

2π

∫
∞

−∞

e−s2/2 sin(2πs)ds

= E(X n
1 )

since e−s2/2 sin(2πs) is an odd function.
This shows that X1 and X2 have the same moments of order
n = 1,2, ..., but they have different distributions.
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In some cases, moments determine the distributions.
The mgf, if it exists, determines a distribution.

Theorem 2.3.11
Let X and Y be random variables with cdfs FX and FY , respectively.

a. If X and Y are bounded, then FX (u) = FY (u) for all u iff
E(X r ) = E(Y r ) for all r = 1,2, ...

b. If mgf’s exist in a neighborhood of 0 and MX (t) = MY (t) for all t ,
then FX (u) = FY (u) for all u.

The key idea of the proof can be explained as follows.
Note that

MX (t) =
∫

∞

−∞

etx fX (x)dx

is the Laplace transformation of fX (x).
From the uniqueness of the Laplace transformation, there is a
one-to-one correspondence between the mgf and the pdf.
We will give a proof of this result in Chapter 4 for the multivariate case,
after we introduce the characteristic functions.
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From the power series result in the last lecture, if the mgf of X exists in
a neighborhood of 0, then it has a power series expansion which is
determined by moments E(X n), n = 1,2, ....
Therefore, knowing the mgf and knowing moments of all order are the
same, but this is under the condition that the mgf exists in a
neighborhood of 0.
Once we establish part (b), the proof of part (a) is easy: if X and Y are
bounded, then their mgf’s exist for all t and thus their cdf’s are the
same iff their moments are the same for any order.
The condition that the mgf exists in a neighborhood of 0 is important.
There are random variables with finite moments of any order, but their
mgf’s do not exist.

Example
The pdf

fX (x) =
1√
2πx

e−(logx)2/2, x ≥ 0

is called the log-normal distribution or density, because if X has pdf fX ,
then logX has a normal pdf.
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In Example 2.3.10, we have shown that the log-normal distribution has
finite moments of any order.
For t > 0,

MX (t) =
∫

∞

0

etx
√

2πx
e−(logx)2/2dx = ∞

because, when t > 0,

lim
x→∞

etx
√

2πx
e−(logx)2/2 = ∞

When t < 0,

MX (t) =
∫

∞

0

etx
√

2πx
e−(logx)2/2dx ≤

∫
∞

0

1√
2πx

e−(logx)2/2dx = 1

and, hence, MX (t) exists for all t < 0.
How do we find a distribution for which all moments exist and the mgf
does not exists for any t 6= 0?
Consider the pdf

fY (x) =

{
fX (x)/2 x > 0
fX (−x)/2 x < 0
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For this pdf,

E(|Y |n) =
∫

∞

0
xn fX (x)

2
dx +

∫ 0

−∞

(−x)n fX (−x)

2
dx =

∫
∞

0
xnfX (x)dx = E(X n)

which has been derived for any n = 1,2, ...
On the other hand,

E(etY ) =
∫

∞

0
etx fX (x)

2
dx +

∫ 0

−∞

etx fX (−x)

2
dx

=
∫

∞

0
etx fX (x)

2
dx +

∫
∞

0
e−tx fX (x)

2
dx

and we have shown that one of these integrals is ∞ (depending on
whether t > 0 or < 0).

Theorem.
If a random variable X has finite moment an = E(X n) for any
n = 1,2, ..., and the series

∞

∑
n=0

|an||t |n

n!
< ∞ with |t |> 0

then the cdf of X is determined by an, n = 1,2...
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Example.
Suppose that an = n! is the nth moment of a random variable X .
Since ∞

∑
n=0

|an||t |n

n!
=

∞

∑
n=0
|t |n =

1
1−|t |

|t |< 1

and this function is the mgf of Gamma(1,1) at |t |, we conclude that
X ∼Gamma(1,1).

Suppose that the nth moment of a random variable Y is

an =

{
n!/(n/2)! if n is even
0 if n is odd

Then
∞

∑
n=0

|an||t |n

n!
= ∑

n is even

n!(t2)n/2

n!(n/2)!
=

∞

∑
k=0

t2k

k !
= et2

t ∈R

Later, we show that this is the mgf of N(0,
√

2), hence X ∼ N(0,
√

2).

For a log-normal distributed random variable X discussed in the
beginning of this lecture, E(X n) = en2/2 and ∑

∞

n=0 en2/2|t |n/n! = ∞ for
any |t |> 0 and, hence, the theorem is not applicable.
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In applications we often need to approximate a cdf by a sequence of
cdf’s.
The next theorem gives a sufficient condition for the convergence of
cdf’s and moments of random variables in terms of the convergence of
mgf’s.

Theorem 2.3.12
Suppose that X1,X2, ... is a sequence of random variables with mgf’s
MXn (t), and

lim
n→∞

MXn (t) = MX (t) < ∞ for all t in a neighborhood of 0

where MX (t) is the mgf of a random variable X .
Then, for all x at which FX (x) is continuous,

lim
n→∞

FXn (x) = FX (x).

Furthermore, for any p > 0, we have

lim
n→∞

E |Xn|p = E |X |p and lim
n→∞

E |Xn−X |p = 0

UW-Madison (Statistics) Stat 609 Lecture 5 2015 13 / 16



beamer-tu-logo

Example 2.3.13 (Poisson approximation)
The cdf of the binomial pmf,

fX (x) =

(
n
x

)
px (1−p)n−x , x = 0,1, ...,n,

where n is a positive integer and 0 < p < 1, may not be easy to
calculate when n is very large.
It is often approximated by the cdf of the Poisson pmf,

fY (x) =
e−λ λ x

x!
, x = 0,1,2, ...

where λ > 0 is a constant.
For this purpose, we first compute the mgf’s for the binomial and
Poisson distributions.

Example 2.3.9 (binomial mgf)
Using the binomial formula

n

∑
x=0

(
n
x

)
uxvn−x = (u + v)n
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we obtain

MX (t) = E(etX ) =
n

∑
x=0

etx
(

n
x

)
px (1−p)n−x

=
n

∑
x=0

(
n
x

)
(pet )x (1−p)n−x

= (pet + 1−p)n

Note that

E(X ) =
d
dt

MX (t)
∣∣∣∣
t=0

= n(pet + 1−p)n−1pet
∣∣∣∣
t=0

= np

E(X 2) =
d2

dt2 MX (t)
∣∣∣∣
t=0

= [n(n−1)(pet + 1−p)n−1(pet )2 + n(pet + 1−p)n−1pet ]

∣∣∣∣
t=0

= n(n−1)p2 + np

We got the same results previously, but the calculation here is simpler.
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Example 2.3.13 (continued)
If Y has the Poisson pmf, then

MY (t) =
∞

∑
x=0

etx e−λ λ x

x!
= e−λ

∞

∑
x=0

(etλ )x

x!
= e−λ eet λ = eλ(et−1)

which is finite for any t ∈R.
Let Xn have the binomial distribution with n and p.
Suppose that limn→∞ np = λ > 0 (that means p also depends on n and
p→ 0 when n→ ∞).
Then, for any t , as n→ ∞,

MXn (t) = (pet + 1−p)n =

[
1 +

(np)(et −1)

n

]n

→ eλ(et−1) = MY (t)

using the fact that, for any sequence of numbers an converges to a,

lim
n→∞

(
1 +

an

n

)n
= ea

With this result and Theorem 2.3.12, we can approximate P(Xn ≤ u) by
P(Y ≤ u) when n is large and np is approximately a constant.
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