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Lecture 6: Characteristic functions and inequalities
The mgf’s are useful, but they sometimes are not finite.
Another function that can characterise a distribution is the so-called
characteristic function, which is always well defined but it is a complex
function.

Definition (characteristic functions).
The characteristic function (chf) of the distribution of a random variable
X is defined as

φX (t) = E(eı̇tX ) = E [cos(tX )]+ ı̇E [sin(tX )], t ∈R

where ı̇ =
√
−1 and eı̇s = cos(s)+ ı̇sin(s).

If the mgf MX (t) of X is finite in a neighborhood of 0, then the chf
of X is φX (t) = MX (ı̇t), t ∈R.
If Y = aX +b for constants a and b, then the chf of Y in terms of
the chf φX (t) of X is φY (t) = eı̇btφX (at), t ∈R.
A chf is uniformly continuous in R.
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Example.
Let X be a random variable with pdf

fX (x) =
1

π(1+x2)
, x ∈R.

When t > 0,

φX (t) = E [cos(tX )]+ ı̇E [sin(tX )]

=
∫

∞

−∞

cos(tx)
π(1+x2)

dx + ı̇
∫

∞

−∞

sin(tx)
π(1+x2)

dx

=
2
π

∫
∞

0

cos(tx)
1+x2 dx = e−t

since sin(s) is an odd function and cos(s) is an even function, where
the last equality follows from the Fourier transformation.
For t < 0,

φX (t) = E [cos(tX )]+ ı̇E [sin(tX )] = E [cos(−tX )] = et = e−|t |

When t = 0, φX (0) = 1 for any chf, and hence we obtain that

φX (t) = e−|t | t ∈R
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Theorem C1.
If a random variable X has finite E |X |r for a positive integer r , then

d r φX (t)
dt r

∣∣∣∣
t=0

= ı̇r E(X r )

The proof will be given in the next lecture.
Thus, like the mgf, the chf can be used to calculate the moments,
but we have to first know the existence of moments.
For the Cauchy distribution, the chf is e−|t |.
Note that this chf is not differentiable at t = 0 and previously we
showed that the expectation of X does not exist.

Uniqueness and inversion
Similar to the mgf, the chf characterizes the distribution in the sense
that there is a one-to-one correspondence between chf and cdf.
We state some inversion formulas.
The proof of the following theorem is omitted.
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Theorem C2
Let X be a random variable with cdf F and chf φ .
For any real numbers y < u,

P(y < X < u)+
P(X = y)+P(X = u)

2
= lim

T→∞

∫ T

−T

e−ı̇ty −e−ı̇tu

2π ı̇t
φ(t)dt

Theorem C3.
Let F be a cdf with chf φ .

(i) If F is continuous at y and u with y < u, then

F (u)−F (y) = lim
T→∞

∫ T

−T

e−ı̇ty −e−ı̇tu

2π ı̇t
φ(t)dt

(ii) If F is continuous at x , then

F (u) = lim
y→−∞

lim
T→∞

∫ T

−T

e−ı̇ty −e−ı̇tu

2π ı̇t
φ(t)dt

(iii) There is a one-to-one correspondence between cdf and chf.
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Proof.
(i) follows from Theorem 2C.
(ii)-(iii) follow from the fact that any cdf can only have countably many
discontinuous points and, hence, it is determined by the F values at
continuity points of F .

If a cdf is continuous, then Theorem 3C(ii) gives an inversion formula.
For a discrete cdf, we have the following result whose proof is similar
to that of Theorem 2C and is omitted.

Theorem C4.
Let F be a discrete cdf with chf φ .

(i) If F has a jump at x , then

F (x)−F (x−) = lim
T→∞

1
2T

∫ T

−T
e−ı̇tx

φ(t)dt

(ii) If D is the set of all discontinuous points of F , then

∑
x∈D

[F (x)−F (x−)] = lim
T→∞

1
2T

∫ T

−T
|φ(t)|2dt
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Theorem 4C(ii) gives a sufficient and necessary condition for a cdf to
be continuous.
We know that e−|t | is a chf, and∫ T

−T
(e−|t |)2dt ≤

∫
∞

−∞

e−2|t |dt = 2
∫

∞

0
e−2tdt = 1 T > 0

Hence, the corresponding cdf must be continuous.
In fact, in this case we know that the cdf corresponding to e−|t | has a
pdf.

Theorem C5.
Suppose that X1,X2, ... is a sequence of random variables with chf’s
φXn(t), and limn→∞ φXn(t) = φ(t), t ∈R, where φ(t) is continuous in t .
Then φ must be the chf of a random variable X and for all x at which
FX (x) is continuous,

lim
n→∞

FXn(x) = FX (x)

The proof is omitted.
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Symmetric random variables
A random variable X is symmetric about 0 if −X has the same
distribution as X .

Theorem C6.
A random variable X is symmetric about 0 iff its chf φX is real-valued
function.

Proof.
If X and −X have the same distribution, then φX (t) = φ−X (t).
But φ−X (t) = φX (−t).
Then φX (t) = φX (−t).
Note that sin(−tX ) =−sin(tX ) and cos(tX ) = cos(−tX ).
Hence E [sin(tX )] = 0 and, thus, φX is real-valued.
If φX is real-valued, then φX (t) = E [cos(tX )] and
φ−X (t) = φX (−t) = φX (t).
By Theorem C3, X and −X must have the same distribution.
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Inequalities
Inequalities are useful for statistical theory.

Theorem 3.6.1 (Chebychev’s inequality)
Let X be a random variable and let g(x) be a nonnegative function.
For any r > 0,

P(g(X )≥ r)≤ E [g(X )]

r

Proof.
Assuming that X has a pdf (if X has a pmf, we replace integral by
summation), we have

E [g(X )] =
∫

∞

−∞

g(x)fX (x)dx ≥
∫

∞

−∞

I({g(x)≥ r})g(x)fX (x)dx

≥ r
∫

∞

−∞

I({g(x)≥ r})fX (x)dx = r
∫
{g(x)≥r}

fX (x)dx

= rP(g(X )≥ r)

where I(A) is the indicator function of the set A.
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Different forms of Chebychev’s inequality
If g is nondecreasing, then another form of Chebychev’s inequality
is, for ε > 0,

P(X ≥ ε)≤ E [g(X )]

g(ε)
Suppose that X has expectation µ and variance σ2.
For g(x) = (x−µ)2/σ2, we have

P(|X −µ| ≥ tσ) = P
(
(X −µ)2

σ2 ≥ t2
)
≤ 1

t2 E
(X −µ)2

σ2 =
1
t2

If X has a finite k th moment with an integer k , then, for t > 0,

P(|X −µ| ≥ t)≤ E |X −µ|k

tk

If X has a finite mgf MX (t) for t ∈ (−h,h), then, for r > 0 and t > 0,

P(X ≥ r)≤ E(etX )

etr =
MX (t)

etr , P(X ≤−r)≤ E(e−tX )

etr =
MX (−t)

etr

P(|X | ≥ r)≤ MX (t)+MX (−t)
etr

UW-Madison (Statistics) Stat 609 Lecture 6 2015 9 / 17



beamer-tu-logo

Chebychev’s inequality is useful, but sometimes it is too loose because
it does not require much from the distribution of X except some
moment conditions.
More useful probability inequality can be derived when we know
something about the distribution of X .

Cauchy-Schwartz’s inequality
This is another simple but very useful inequality.
If X and Y are random variables with E(X 2)< ∞ and E(Y 2)< ∞, then
the following Cauchy-Schwartz’s inequality holds:

[E(XY )]2 ≤ E(X 2)E(Y 2)

with equality holds iff P(X = cY ) = 1 for a constant c.
In fact, we also have

[E |XY |]2 ≤ E(X 2)E(Y 2)
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Proof of Cauchy-Schwartz’s inequality

Let a2 = E(X 2)< ∞ and b2 = E(Y 2)< ∞.
For any t > 0 and s > 0,

2
√

st ≤ s+ t because (
√

s−
√

t)2 ≥ 0

Letting s = X 2/a2 and t = Y 2/b2, we obtain

|XY |
ab
≤ X 2

2a2 +
Y 2

2b2 hence
E |XY |

ab
≤ E(X 2)

2a2 +
E(Y 2)

2b2 = 1

which means
[E |XY |]2 ≤ a2b2 = E(X 2)E(Y 2)

The other inequality follows since

[E(XY )]2 ≤ [E |XY |]2 ≤ E(X 2)E(Y 2)

We next consider what happens if the equality holds.
If [E |XY |]2 = E(X 2)E(Y 2), then

E |XY |
ab

=
E(X 2)

2a2 +
E(Y 2)

2b2 i.e., E
(
|X |
a
− |Y |

b

)2

= 0
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It follows from a result established previously that

P
(
|X |
a
− |Y |

b
= 0
)
= 1 i.e., P

(
|X |= a

b
|Y |
)
= 1

Finally, consider the situation where [E(XY )]2 = E(X 2)E(Y 2).
Since [E(XY )]2 ≤ [E |XY |]2, this implies

[E(XY )]2 = [E |XY |]2 = E(X 2)E(Y 2)

and, by the early proof, P(|X |= a
b |Y |) = 1.

From [E(XY )]2 = [E |XY |]2, we must have ±E(XY ) = E |XY |.
Suppose E(XY ) = E |XY | (the proof for −E(XY ) = E |XY | is similar).
Since |XY |−XY ≥ 0, E |XY |−E(XY ) = 0 implies P(|XY |= XY ) = 1.
Combining this with the early result, we must have P(X = a

b Y ) = 1.

Cauchy-Schwartz’s inequality is a special case of the following result.
Hölder’s inequality: If p and q are positive constants satisfying
p > 1 and p−1 +q−1 = 1 and X and Y are random variables, then

E |XY | ≤ (E |X |p)1/p(E |Y |q)1/q
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Using Hölder’s inequality, we can obtain the following two inequalities.
Liapounov’s inequality: If r and s are constants satisfying
1≤ r ≤ s and X is a random variable, then

(E |X |r )1/r ≤ (E |X |s)1/s

Minkowski’s inequality: If p ≥ 1 is a constant and X and Y are
random variables, then

(E |X +Y |p)1/p ≤ (E |X |p)1/p +(E |Y |p)1/p

Convex set and function
A set A⊂Rk is convex iff x ∈ A, y ∈ A, and t ∈ (0,1) imply

tx +(1− t)y ∈ A

A function g from a convex A⊂Rk to R is convex iff x ∈ A, y ∈ A,
and t ∈ (0,1) imply

g(tx +(1− t)y)≤ t g(x)+(1− t)g(y)

and g is strictly convex iff the previous inequality holds with ≤
replaced by <.
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If g is twice differentiable on a convex A, then a necessary and
sufficient condition for g to be convex (or strictly convex) is that the
k ×k second order partial derivative matrix ∂ 2g/∂x∂x ′ is
nonnegative definite (or positive definite).
If g is convex, then −g is concave.
The following is a very useful inequality in statistics.
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Jensen’s inequality
If g is a convex function on a convex A⊂R and X is a random variable
with P(X ∈ A) = 1, then

g(E(X ))≤ E [g(X )]

provided that the expectations exist. If g is strictly convex, then ≤ in
the previous inequality can be replaced by < unless P(g(X ) = c) = 1
for a constant c.

Jensen’s inequality also holds for a convex g defined on A⊂Rk and a
random vector X defined on Rk introduced in Chapter 4.

Proof of Jensen’s inequality
Let l(x) = a+bx be the tangent line to g(x) at g(E(X )) (see the figure).
Since g is convex, g(x)≥ a+bx for all x and, hence,

E [g(X )]≥ E(a+bX ) = a+bE(X ) = l(E(X )) = g(E(X )).

If E [g(X )] = g(E(X )), then P(g(X ) = a+bX ) = 1, which cannot occur
if g is strictly convex and g(X ) is not a constant.
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Examples

The function g(x) = x−1 is strictly convex. Hence,

(EX )−1 < E(X−1)

unless P(X = c) = 1 for a constant c.
The function g(x) =− logx is strictly convex (logx is strictly
concave). Then

− log(EX )<−E(logX ) i.e., E(logX )< log(EX )

unless P(X = c) = 1 for a constant c.
Let f and g be positive functions satisfying
0 <

∫
∞

−∞
g(x)dx ≤

∫
∞

−∞
f (x)dx = 1. We want to show that∫

∞

−∞

f (x) log
g(x)
f (x)

dx ≤ 0

Note that f is a pdf.
Let X ∼ f and Y = g(X)

f (X) .

UW-Madison (Statistics) Stat 609 Lecture 6 2015 16 / 17



beamer-tu-logo

By Jensen’s inequality,∫
∞

−∞

f (x) log
g(x)
f (x)

dx = E
(

log
g(X )

f (X )

)
= E(logY )

≤ log(EY ) = log
(

E
g(X )

f (X )

)
= log

(∫
∞

−∞

g(x)
f (x)

f (x)dx
)
= log

(∫
∞

−∞

g(x)dx
)

≤ log
(∫

∞

−∞

f (x)dx
)
= log(1)

= 0

where the last inequality follows from the fact that logx is increasing.
Also, the strict < holds unless P(f (X ) = g(X )) = 1.
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