Lecture 9: Exponential and location-scale families

Families of Distributions

In statistics we are interested in some families of distributions, i.e., some collections of distributions.

For example, the family of binomial distributions with $p \in (0,1)$ and a fixed *n*; the family of normal distributions with $\mu \in \mathcal{R}$ and $\sigma > 0$.

Exponential families

A family of pdfs or pmfs indexed by θ is called an exponential family iff it can be expressed as

$$
f_{\theta}(x) = h(x)c(\theta) \exp \left(\sum_{i=1}^k w_i(\theta) t_i(x) \right), \quad \theta \in \Theta,
$$

beamer-tu-logo where $\mathsf{exp}(x) = e^x$, Θ is the set of all values of θ (parameter space), $h(x) \geq 0$ and $t_1(x),..., t_k(x)$ are functions of *x* (not depending on θ), and $c(\theta) > 0$ and $w_1(\theta), ..., w_k(\theta)$ are functions of the possibly vector-valued θ (not depending on *x*).

Note that the expression for *f* may not be uniq[ue](#page-0-0).

UW-Madison (Statistics) Stat 609 Lecture 9 2015 1/19

Example 3.4.1.

To show that a family of pdf's or pmf's is an exponential family, we must identify the functions $h(x)$, $t_i(x)$, $c(\theta)$, and $w_i(\theta)$ and show that the pdf or pmf has the given form.

The *binomial*(n, p) distribution with $p \in (0, 1)$ and a fixed *n* has pmf

$$
\binom{n}{x} p^x (1-p)^{n-x} = \binom{n}{x} (1-p)^n \exp\left(\log\left(\frac{p}{1-p}\right)x\right), \quad x = 0, 1, ..., n.
$$

Let $\theta = \rho$, $c(\theta) = (1-\rho)^n$, $w_1(\theta) = \log(\frac{\rho}{1-\rho})$ $\frac{p}{1-p}$), $t_1(x) = x$, and $h(x) = {n \choose x}$ *x* for $x = 0, 1, \ldots, n$ and $= 0$ otherwise.

Then, the binomial family with $p \in (0,1)$ and a fixed *n* is an exponential family $(k = 1)$.

(Note that $p = 0$ and $p = 1$ are not included in the family.)

Other examples: Poisson, negative binomial, normal, gamma, beta,...

Exponential families have many nice properties.

The following result is useful since we can replace integration or summation by differentiation.

UW-Madison (Statistics) [Stat 609 Lecture 9](#page-0-0) 2015 2/19

Theorem 3.4.2.

If X has a pdf or pmf from an exponential family and $w_i(\theta)$'s are differentiable functions, then

$$
E\left(\sum_{i=1}^k \frac{\partial w_i(\theta)}{\partial \theta_j}t_i(X)\right) = -\frac{\partial \log c(\theta)}{\partial \theta_j}
$$

where θ_j is the *j*th component of $\theta,$ and

$$
\text{Var}\left(\sum_{i=1}^k \frac{\partial w_i(\theta)}{\partial \theta_j} t_i(X)\right) = -\frac{\partial^2 \log c(\theta)}{\partial \theta_j^2} - \mathcal{E}\left(\sum_{i=1}^k \frac{\partial^2 w_i(\theta)}{\partial \theta_j^2} t_i(X)\right)
$$

Proof.

From the exponential family expression for $f_{\theta}(x)$,

$$
\log f_{\theta}(X) = \log h(X) + \log c(\theta) + \sum_{i=1}^{k} w_i(\theta) t_i(X)
$$

Differentiating this expression leads to

$$
\frac{\partial \log f_{\theta}(X)}{\partial \theta_j} = \frac{\partial \log c(\theta)}{\partial \theta_j} + \sum_{i=1}^k \frac{\partial w_i(\theta)}{\partial \theta_j} t_i(X)
$$

UW-Madison (Statistics) and Statistics [Stat 609 Lecture 9](#page-0-0) 2015 2015 2015 3/19

Taking expectation, we obtain

$$
E\left(\frac{\partial \log f_{\theta}(X)}{\partial \theta_{j}}\right)=\frac{\partial \log c(\theta)}{\partial \theta_{j}}+E\left(\sum_{i=1}^{k} \frac{\partial w_{i}(\theta)}{\partial \theta_{j}}t_{i}(X)\right)
$$

If $f_{\theta}(x)$ is a pdf (the proof for pmf is similar), then the left side of the previous expression is

$$
\int_{-\infty}^{\infty} \frac{\partial \log f_{\theta}(x)}{\partial \theta_{j}} f_{\theta}(x) dx = \int_{-\infty}^{\infty} \frac{\partial f_{\theta}(x)}{\partial \theta_{j}} dx = \frac{\partial}{\partial \theta_{j}} \int_{-\infty}^{\infty} f_{\theta}(x) dx = \frac{\partial 1}{\partial \theta_{j}} = 0
$$

We interchanged the differentiation and integration, which is justified under the exponential family assumption. This proves the first result.

Note that

$$
\frac{\partial^2 \log f_{\theta}(X)}{\partial \theta_j^2} = \frac{\partial}{\partial \theta_j} \left[\frac{\frac{\partial f_{\theta}(X)}{\partial \theta_j}}{f_{\theta}(X)} \right] = \frac{\frac{\partial^2 f_{\theta}(X)}{\partial \theta_j^2}}{f_{\theta}(X)} - \left[\frac{\frac{\partial f_{\theta}(X)}{\partial \theta_j}}{f_{\theta}(X)} \right]^2
$$

Then

$$
E\left(\frac{\partial^2 \log f_{\theta}(X)}{\partial \theta_i^2}\right) = \int_{-\infty}^{\infty} \left\{ \frac{\frac{\partial^2 f_{\theta}(X)}{\partial \theta_i^2}}{f_{\theta}(X)} - \left[\frac{\frac{\partial f_{\theta}(X)}{\partial \theta_i}}{f_{\theta}(X)}\right]^2 f_{\theta}(x) \right\} dx
$$

$$
= \int_{-\infty}^{\infty} \frac{\partial^2 f_{\theta}(X)}{\partial \theta_i^2} dx - \int_{-\infty}^{\infty} \left[\frac{\partial \log f_{\theta}(X)}{\partial \theta_i}\right]^2 f_{\theta}(x) dx
$$

$$
= -\int_{-\infty}^{\infty} \left[\frac{\partial \log c(\theta)}{\partial \theta_i} + \sum_{i=1}^k \frac{\partial w_i(\theta)}{\partial \theta_i} t_i(X)\right]^2 f_{\theta}(x) dx
$$

$$
= -\text{Var}\left(\sum_{i=1}^k \frac{\partial w_i(\theta)}{\partial \theta_i} t_i(X)\right)
$$

which follows from the first result. Then the second result follows from

$$
\frac{\partial^2 \log f_{\theta}(X)}{\partial \theta_j^2} = \frac{\partial^2 \log c(\theta)}{\partial \theta_j^2} + \sum_{i=1}^k \frac{\partial^2 w_i(\theta)}{\partial \theta_j^2} t_i(X)
$$

UW-Madison (Statistics) [Stat 609 Lecture 9](#page-0-0) 2015 5/19

Example 3.4.4.

If $X \sim N(\mu, \sigma^2)$, then $\theta = (\mu, \sigma)$ and $f_{\theta}(x) = \frac{1}{\sqrt{2x}}$ 2πσ $\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ $2\sigma^2$ $= \frac{1}{\sqrt{2}}$ 2πσ $\exp\left(-\frac{\mu^2}{2\sigma^2}\right)$ $2\sigma^2$ $\exp\left(\frac{\mu x}{2}\right)$ $rac{\mu x}{\sigma^2} - \frac{x^2}{2\sigma^2}$ $2\sigma^2$ λ Let $h(x) = 1$, $c(\theta) = \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi\sigma}$ exp $\left(-\frac{\mu^2}{2\sigma^2}\right)$ $\frac{\mu^2}{2\sigma^2}$), $w_1(\theta) = 1/\sigma^2$, $w_2(\theta) = \mu/\sigma^2$, $t_1(x) = -x^2/2$, and $t_2(x) = x$. Then this normal family is an exponential family with $k = 2$. Applying Theorem 3.4.2, we obtain $E(X) = \mu$ from equation

$$
-\frac{\partial \log c(\theta)}{\partial \mu} = \frac{\mu}{\sigma^2} = E\left(\sum_{i=1}^2 \frac{\partial w_i(\theta)}{\partial \mu} t_i(X)\right) = E\left(\frac{X}{\sigma^2}\right)
$$

Also,

$$
-\frac{\partial \log c(\theta)}{\partial \sigma} = \frac{\mu^2}{\sigma^3} + \frac{1}{\sigma} = E\left(\sum_{i=1}^2 \frac{\partial w_i(\theta)}{\partial \sigma} t_i(X)\right) = E\left(\frac{X^2}{\sigma^3} - \frac{2\mu X}{\sigma^3}\right)
$$

Using $E(X) = \mu$, we obtain from this equation that $\textsf{Var}(X) = \sigma^2.$

Ε

イロト 不優 トメ 差 トメ 差 トー

beamer-tu-logo

 Ω

Beta distribution *beta*(α, β)

For constants $\alpha > 0$ and $\beta > 0$, the *beta*(α, β) distribution has pdf

$$
f(x) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}
$$

This is a pdf because

$$
\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

UW-Madison (Statistics) [Stat 609 Lecture 9](#page-0-0) 2015 7/19

- \bullet Since $\Gamma(2) = \Gamma(1) = 1$, *beta*(1,1) is the same as *uniform*(0,1).
- \bullet If *X* ∼ *beta*(α, β), then 1 − *X* ∼ *beta*(β, α).
- **•** The pdf of *beta*(α, β) can be increasing ($\alpha > 1, \beta = 1$), decreasing $(\alpha = 1, \beta > 1)$, U-shaped $(\alpha < 1, \beta < 1)$, or unimodal $(\alpha > 1, \beta > 1)$.
- If $\alpha = \beta$, then the pdf of *beta*(α, β) is symmetric about $\frac{1}{2}$.
- \bullet For any *r* > 0, if *X* ∼ *beta*(α , β), then

$$
E(X^r) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_0^1 x^{r+\alpha-1} (1-x)^{\beta-1} dx = \frac{\Gamma(\alpha+\beta)\Gamma(r+\alpha)}{\Gamma(\alpha)\Gamma(r+\alpha+\beta)}
$$

In particular,

$$
E(X) = \frac{\alpha}{\alpha + \beta}, \qquad E(X^2) = \frac{\alpha(\alpha + 1)}{(\alpha + \beta)(\alpha + \beta + 1)}
$$

Then

$$
\text{Var}(X) = \frac{\alpha(\alpha+1)}{(\alpha+\beta)(\alpha+\beta+1)} - \frac{\alpha^2}{(\alpha+\beta)^2} = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}
$$

The [f](#page-8-0)[a](#page-0-0)[mil](#page-0-1)y of *be[t](#page-6-0)a* (α, β) distributi[on](#page-6-0)s is an expon[en](#page-8-0)t[ial](#page-7-0) famil[y.](#page-0-0)

Natural exponential family

If $\eta_i = w_i(\theta)$, $i = 1, ..., k$, and $\eta = (\eta_1, ..., \eta_k)$, the form of f_θ in the exponential family becomes

$$
f_{\eta}^*(x) = h(x)c^*(\eta) \exp\left(\sum_{i=1}^k \eta_i t_i(x)\right)
$$

 η is called the natural parameter.

The set of η 's for which $f^*_\eta(x)$ is a well-defined pdf is called the natural parameter space.

Full or curved exponential families

In an exponential family, if the dimension of θ is k (there is an open set $\subset \Theta$), then the family is a full exponential family. Otherwise the family is a curved exponential family.

beamer-tu-logo An example of a full exponential family is $\mathcal{N}(\mu, \sigma^2), \, \mu \in \mathscr{R}, \, \sigma > 0.$ An example of a curved exponential family is $\mathsf{N}(\mu, \mu^2),\, \mu \in \mathscr{R}.$

 Ω

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ …

How to show a family is not an exponential family

It may be difficult to show that a family is not an exponential family. We cannot say "we are not able to express $f_{\theta}(x)$ in the form of an exponential family".

If f_{θ} , $\theta \in \Theta$ is an exponential family, then

$$
\{x: f_{\theta}(x) > 0\} = \{x: h(x) > 0\}
$$

which does not depend on θ values.

This fact can be used to show a family is non-exponential, i.e., if ${x : f_{\theta}(x) > 0}$ depends on θ , then f_{θ} , $\theta \in \Theta$, is not an exponential family.

Consider the family of two parameters exponential distributions with pdf's

$$
f_{\theta}(x) = \begin{cases} \lambda^{-1} e^{-(x-\mu)/\lambda} & x > \mu \\ 0 & x \leq \mu \end{cases} \quad \mu \in \mathcal{R}, \ \lambda > 0
$$

It is not an exponential family because

$$
\{x: f_{\theta}(x) > 0\} = \{x: x > \mu\}
$$

Definition 3.5.2 (location family)

Let $f(x)$ be a given pdf. The family of pdf's, $f(x - \mu)$, $\mu \in \mathcal{R}$, is called a location family with location parameter μ .

- Examples of location families are normal and Cauchy with location parameter $\mu \in \mathcal{R}$ and the other parameter σ fixed. Other examples are given later.
- The pdf $f(x \mu)$ is obtained by shifting the entire curve $f(x)$ by an amount μ (see the figure) without changing the structure of $f(x)$.
- \bullet It can be shown that *X* ∼ *f*(*x* − µ) iff *X* = *Z* + μ with *Z* ∼ *f*(*x*).

Definition 3.5.4 (scale family)

Let $f(x)$ be a given pdf. The family of pdf's, $\sigma^{-1}f(x/\sigma),\,\sigma>0,$ is called a scale family with scale parameter σ .

- Examples of scale families are normal and Cauchy with scale parameter $\sigma > 0$ and μ fixed, *gamma*(α, β) with $\beta > 0$ and α fixed. Other examples are given later.
- The pdf $\sigma^{-1}f(x/\sigma)$ is obtained by stretching (σ $>$ 1) or contracting $(\sigma < 1)$ the curve $f(x)$ while still maintaining the same shape.
- It can be shown that *X* ∼ σ −1 *f*(*x*/σ) iff *X* = σ*Z* with *Z* ∼ *f*(*x*).

Figure 3.5.3. Members of the same scale family

Definition 3.5.5 (location-scale family)

Let $f(x)$ be a given pdf. The family of pdf's, $\sigma^{-1}f((x-\mu)/\sigma),\,\mu\in\mathscr{R},$ σ > 0, is called a location-scale family with location parameter μ and scale parameter σ .

A location-scale family is a combination of a location family and a scale family: it contains a sub-family that is a location family with any fixed σ , and a sub-family that is a scale family with any fixed μ .

Figure 3.5.4. Members of the same location-scale family

- Examples of location-scale families are normal, double exponential, Cauchy, logistic, and two-parameter exponential distributions with location parameter $\mu \in \mathcal{R}$ and scale parameter σ > 0. Except for the two-parameter exponential distribution, all others are symmetric about μ .
- If $f(x)$ is symmetric about 0, then $\sigma^{-1}f((x-\mu)/\sigma)$ is symmetric about μ and μ is the median of $X\,{\sim}\,\sigma^{-1}f((x\,{-}\,\mu)/\sigma);$ furthermore, if the expectation of $f(x)$ exists, then μ is the expectation of $\sigma^{-1}f((x-\mu)/\sigma).$
- lt can be shown that $X\,{\sim}\,\sigma^{-1}$ $f((x\,{-}\,\mu)/\sigma)$ iff $X\,{=}\,\sigma Z\,{+}\,\mu$ with $Z\sim f(x)$; furthermore, if $E(Z^2)<\infty$, then $E(X)=\sigma E(Z)+\mu$ and $Var(X) = \sigma^2 Var(Z)$.
- The pdf $f(x)$ in a location-scale family is standard iff the expectation $\int_{-\infty}^{\infty} xf(x)dx = 0$ and the variance $\int_{-\infty}^{\infty} x^2 f(x)dx = 1$.
- beamer-tu-logo Typically, we choose a standard *f*(*x*) to generate a location-scale family, in which case μ and σ^2 are the expectation and variance of $\sigma^{-1} f((x - \mu)/\sigma)$, respectively.

Two parameter exponential distribution *exponential*(µ,β)

If *X* ∼ *exponential*(β) and $\mu \in \mathcal{R}$ is a constant, then the distribution of $Y = X + \mu$ is called the two parameter exponential distribution and denoted by *exponential*(µ,β).

Its pdf and cdf are (by transformation)

$$
f(x) = \begin{cases} \frac{1}{\beta} e^{-(x-\mu)/\beta} & x \ge \mu \\ 0 & x < \mu \end{cases} \qquad F(x) = \begin{cases} 1 - e^{-(x-\mu)/\beta} & x \ge \mu \\ 0 & x < \mu \end{cases}
$$

and, if $Y \sim$ *exponential*(μ , β).

$$
E(Y)=\mu+\beta, \ \ \text{Var}(Y)=\beta^2, \ \ M_Y(t)=\frac{e^{\mu t}}{1-\beta t}, \ t<\frac{1}{\beta}, \ \phi_Y(t)=\frac{e^{i\mu t}}{1-i\beta t}, \ t\in\mathcal{R}
$$

Double exponential distribution *double*-*exponential*(µ,σ)

By reflecting the pdf of *exponential*(μ , σ) around μ , we obtain the *double-exponential*(μ , σ) pdf that is symmetric about μ :

$$
f(x) = \begin{cases} \frac{1}{2\sigma} e^{-(x-\mu)/\sigma} & x \ge \mu \\ \frac{1}{2\sigma} e^{(x-\mu)/\sigma} & x < \mu \end{cases} = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma}, \quad x \in \mathcal{R}
$$

UW-Madison (Statistics) and [Stat 609 Lecture 9](#page-0-0) 2015 15/19

This pdf is not bell-shaped; in fact, it has a peak (a non-differentiable point) at $x = \mu$.

o Its cdf is $F(x) = \begin{cases} 1 - \frac{1}{2} \\ 1 - \frac{1}{2} \end{cases}$ $\frac{1}{2}e^{-(x-\mu)/σ}$ *x* ≥ μ 1 $\frac{1}{2}$ e^{(x−μ)/σ} *x* < μ

• If $X \sim$ *double-exponential*(μ, σ), then $Z = (X - \mu)/\sigma \sim$ *double-exponential*(0,1). $I = \frac{I}{I}$ if *Z* = $(X – μ)/σ ∼ double-exponential(0, 1)$, then $E(Z) = \frac{1}{2}$ \int^{∞} *xe*−|*x*|*dx* = 0

because *xe*−|*x*[|] is an odd function, and

Var(Z) =
$$
E(Z^2) = \frac{1}{2} \int_{-\infty}^{\infty} x^2 e^{-|x|} dx = \int_{0}^{\infty} x^2 e^{-x} dx = \Gamma(3) = 2
$$

−∞

beamer-tu-logo **•** If $X \sim$ *double-exponential*(μ, σ), then $X = \sigma Z + \mu$, $Z = (X - \mu)/\sigma \sim$ *double-exponential*(0,1), and $E(X) = E(\sigma Z + \mu) = \mu$ $E(X) = E(\sigma Z + \mu) = \mu$, $Var(X) = Var(\sigma Z + \mu) = \sigma^2 Var(Z) = 2\sigma^2$ $Var(X) = Var(\sigma Z + \mu) = \sigma^2 Var(Z) = 2\sigma^2$ $Var(X) = Var(\sigma Z + \mu) = \sigma^2 Var(Z) = 2\sigma^2$ $Var(X) = Var(\sigma Z + \mu) = \sigma^2 Var(Z) = 2\sigma^2$ $Var(X) = Var(\sigma Z + \mu) = \sigma^2 Var(Z) = 2\sigma^2$ $Var(X) = Var(\sigma Z + \mu) = \sigma^2 Var(Z) = 2\sigma^2$ $Var(X) = Var(\sigma Z + \mu) = \sigma^2 Var(Z) = 2\sigma^2$ UW-Madison (Statistics) [Stat 609 Lecture 9](#page-0-0) 2015 16/19

Logistic distribution *logistic*(µ,σ)

For constants $\mu \in \mathcal{R}$ and $\sigma > 0$, the *logistic*(μ, σ) distribution has pdf

$$
f(x)=\frac{e^{-(x-\mu)/\sigma}}{\sigma[1+e^{-(x-\mu)/\sigma}]^2}, \quad x\in\mathscr{R}
$$

- This pdf is again bell-shaped and symmetric about μ .
- The cdf of *logistic*(μ, σ) has a close form:

$$
F(x) = \int_{-\infty}^{x} f(t) dt = \frac{1}{1 + e^{-(x-\mu)/\sigma}}, \quad x \in \mathcal{R}
$$

- \bullet By symmetry, $E(X) = \mu$ if *X* ∼ *logistic*(μ, σ).
- The variance of *X* ∼ *logistic*(µ,σ) is not easy to obtain, but we give the result here: $\textsf{Var}(X) = \sigma^2 \pi^2/3.$

Pareto distribution *pareto*(α,β)

For constants $\alpha > 0$ and $\beta > 0$, the *pareto*(α, σ) distribution has pdf

$$
f(x) = \begin{cases} \alpha \beta^{\alpha} x^{-(\alpha+1)} & x > \beta \\ 0 & x \le \beta \end{cases}
$$

UW-Madison (Statistics) and [Stat 609 Lecture 9](#page-0-0) 2015 17/19

• First, *f* is indeed a pdf, because

$$
\int_{-\infty}^{\infty} f(x) dx = \alpha \beta^{\alpha} \int_{\beta}^{\infty} x^{-(\alpha+1)} dx = \beta^{\alpha} x^{-\alpha} \Big|_{\infty}^{\beta} = \beta^{\alpha} \beta^{-\alpha} = 1
$$

 \bullet Using a similar argument, we can obtain the cdf of *pareto*(α, β) as

$$
F(x) = \begin{cases} 1 - \left(\frac{\beta}{x}\right)^{\alpha} & x > \beta \\ 0 & x \le \beta \end{cases}
$$

Since the integral $\int_{\beta}^{\infty} x^{-t} dx$ is finite iff $t > 1$, $E(X) = \infty$ if $\alpha \leq 1$ when $X \sim$ *pareto*(α, β); if $\alpha > 1$, then

$$
E(X) = \alpha \beta^{\alpha} \int_{\beta}^{\infty} x^{-\alpha} dx = \frac{\alpha \beta^{\alpha}}{\alpha - 1} x^{-(\alpha - 1)} \bigg|_{\infty}^{\beta} = \frac{\alpha \beta^{\alpha}}{\alpha - 1} \beta^{-(\alpha - 1)} = \frac{\alpha \beta}{\alpha - 1}
$$

• Similarly, $Var(X) = \infty$ if $\alpha \leq 2$; and if $\alpha > 2$,

$$
E(X^{2}) = \alpha \beta^{\alpha} \int_{\beta}^{\infty} x^{-\alpha+1} dx = \frac{\alpha \beta^{\alpha}}{\alpha - 2} x^{-\alpha+2} \Big|_{\infty}^{\beta} = \frac{\alpha \beta^{\alpha}}{\alpha - 2} \beta^{-\alpha+2} = \frac{\alpha \beta^{2}}{\alpha - 2}
$$

$$
\text{Var}(X) = E(X^2) - [E(X)]^2 = \frac{\alpha \beta^2}{\alpha - 2} - \frac{\alpha^2 \beta^2}{(\alpha - 1)^2} = \frac{\alpha \beta^2}{(\alpha - 1)^2(\alpha - 2)}
$$

Weibull distribution *Weibull*(γ,β)

For constants $\gamma > 0$ and $\beta > 0$, if $X \sim$ *exponential*(β), then *Y* = $X^{1/\gamma}$ \sim *Weibull*(γ , β) with pdf

$$
f(x) = \begin{cases} \frac{\gamma}{\beta} x^{\gamma - 1} e^{-x^{\gamma}/\beta} & x > 0 \\ 0 & x \le 0 \end{cases}
$$

An example of *Y* ∼ *Weibull*(γ,β) is lifetime or failure time. If *Y* ∼ *Weibull*(γ,β), then *X* = *Y* ^γ ∼ *exponential*(β) and

$$
E(Y) = E(X^{1/\gamma}) = \frac{1}{\beta} \int_0^{\infty} x^{1/\gamma} e^{-x/\beta} dx
$$

$$
= \beta^{1/\gamma} \int_0^{\infty} u^{1/\gamma} e^u du = \beta^{1/\gamma} \Gamma\left(\frac{1}{\gamma} + 1\right)
$$

Similarly, we can obtain that

$$
\text{Var}(Y) = \beta^{2/\gamma} \left\{ \Gamma\left(\frac{2}{\gamma}+1\right) - \left[\Gamma\left(\frac{1}{\gamma}+1\right) \right]^2 \right\}
$$