Lecture 9: Exponential and location-scale families

Families of Distributions

In statistics we are interested in some families of distributions, i.e.,
some collections of distributions.

For example, the family of binomial distributions with p € (0,1) and a
fixed n; the family of normal distributions with u € #Z and ¢ > 0.

Exponential families

A family of pdfs or pmfs indexed by 6 is called an exponential family iff
it can be expressed as

I

k
fo(X) = h(x)c(6) exp ( w,-(e)t,-(x)> . 6co,

=1
where exp(x) = €%, © is the set of all values of 6 (parameter space),
h(x) >0 and t(x), ..., i(x) are functions of x (not depending on 6),
and ¢(6) >0 and wy(0),...,wk(6) are functions of the possibly
vector-valued 6 (not depending on x).

Note that the expression for f may not be unique.
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Example 3.4.1.

To show that a family of pdf’s or pmf’s is an exponential family, we must
identify the functions h(x), ti(x), ¢(8), and w;(6) and show that the pdf
or pmf has the given form.

The binomial(n, p) distribution with p € (0,1) and a fixed n has pmf

<Z>px(1_p)ﬂ_<x)(1‘ exp( ( )) X=0,1,..n

Let 6 =p, c(6) = (1—p)", wi(8) =log(725), t(x) = x, and h(x) = (J)
for x=0,1,...,n and = 0 otherwise.

Then, the binomial family with p € (0,1) and a fixed n is an exponential
family (k =1).

(Note that p =0 and p =1 are not included in the family.)

Other examples: Poisson, negative binomial, normal, gamma, beta,...

Exponential families have many nice properties.
The following result is useful since we can replace integration or
summation by differentiation.
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Theorem 3.4.2.

If X has a pdf or pmf from an exponential family and w;(6)’s are
differentiable functions, then

aw;(6 __dlogc(6)
(,; a9] " >_ 89]'

where 6; is the jth component of 8, and

ow;(6 _ 9%logc() K 92wi(0)
(Z 36, t’(X)>__89]? —E<_Z 562 T/(X)>

From the exponential family expression for fy(x),
log fa(X) = log h(X) +log c(6) + Z w;(8)ti(X

Differentiating this expression leads to

dlogfy(X) dloge(8) & aw;i(6)
= —— (X
96 96 +,.; 96 i(X)
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Taking expectation, we obtain

dlogfy(X)\ dlogc(6 aw;(6
= X
E( 96 96 Z 96 t’( )
If fo(x) is a pdf (the proof for pmf is similar), then the left side of the
previous expression is

= dlogfy(x) /°° dfg(X) d / a1
Z290\A) = = f
/m og, P = | T =g ) eI =55 =0
We interchanged the differentiation and integration, which is justified
under the exponential family assumption.
This proves the first result.

Note that

Aty (X 92fy(X) (X)) 7 2
Plogh(X) o |5 | oo e
262 96 | Kh(X) | T R(X) | %W(X)
Then
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[~ |dlogc(8) & awi(6),
__/oo[ 96; +’; 26, ti(X)| fo(x)ax

aw;(6
= X)
<Z 89/ t’( )
which follows from the first result.
Then the second result follows from

9%logfy(X) 9d2%logc(0) & 92w;(6)
062 76?2 ,; 962 iX)
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Example 3.4.4.
If X ~ N(u,0?), then 6 = (u,0) and

_ Cx—p?y _t G px o x*
fo(Xx) = \/Eanp< 552 = \/szexp 552 exp 52 252
Let h(x) =1, ¢(8) = —L_exp(— £3), w1 (6) =1/02, wa(8) = u/0?,

ti(x) = —x2/2, and b(x) = x.
Then this normal family is an exponential family with k = 2.
Applying Theorem 3.4.2, we obtain E(X) = u from equation

dloge(6) u 2, dw;(e), (X
~rlegetd) _GZ_E(I; = t,(X)) _E<62>

2

Using E(X) = u, we obtain from this equation that Var(X) = o=.

UW-Madison (Statistics) Stat 609 Lecture 9 2015 6/19



Beta distribution beta(o, 8)
For constants a > 0 and 8 > 0, the beta(c, ) distribution has pdf

ath) ya—1(1—x)f~1  0<x<1
f(x)=

r(a)r(B)
0 otherwise

This is a pdf because

L - (o)l (B)
/Ox 1 —x)fdx = Taih)

o 2 4 -6 8 1

Figure 3.3.3. Beta densities
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@ Since I'(2) =T (1) =1, beta(1,1) is the same as uniform(0,1).

o If X ~ beta(a, ), then 1 — X ~ beta(f, a).

@ The pdf of beta(c, ) can be increasing (o > 1,3 = 1), decreasing
(a=1,B>1), U-shaped (o < 1,8 < 1), or unimodal (& > 1,8 > 1).

e If a =, then the pdf of beta(a, B) is symmetric about 3.

@ Forany r >0, if X ~ beta(a, ), then

N Te+B) (1 o 1, Ha+p)i(r+a)
B0 = Far@ b <O = R e
In particular,
o« B o(a+1)
Q0= I UGS e ey
Then
Var(X) = alotl) o op

(@+B)atB+1) (a+B)Z (atPR(atp+1)

The family of beta(c, B) distributions is an exponential family.
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Natural exponential family

If ni=w;(6),i=1,...k,and 1 = (11, ...,Mk), the form of fy in the
exponential family becomes

k
fo(x) = h(x)c*(n) exp <Z mh(X))

i=1
n is called the natural parameter.
The set of n’s for which £;(x) is a well-defined pdf is called the natural
parameter space.

|

Full or curved exponential families

In an exponential family, if the dimension of 6 is k (there is an open set
C ©), then the family is a full exponential family. Otherwise the family is
a curved exponential family.

v

An example of a full exponential family is N(u,c?), u € Z, ¢ > 0.
An example of a curved exponential family is N(u, u?), u € %.

v
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How to show a family is not an exponential family

It may be difficult to show that a family is not an exponential family.
We cannot say “we are not able to express fy(x) in the form of an
exponential family".

If fy, 6 € © is an exponential family, then
{x:fo(x) >0} ={x:h(x)>0}
which does not depend on 6 values.
This fact can be used to show a family is non-exponential, i.e., if
{x : fy(x) > 0} depends on 0, then fy, 6 € ©, is not an exponential
family.
Consider the family of two parameters exponential distributions with
pdf’s
}[]*1 e*()(*#)ﬁL X >
fo(X) = Bonez a>o
0 X< pu
It is not an exponential family because

{Xx:fo(x)>0}={x:x>pu}
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Definition 3.5.2 (location family)

Let f(x) be a given pdf. The family of pdf’s, f(x —u), u € %, is called a
location family with location parameter .

v

@ Examples of location families are normal and Cauchy with location
parameter u € # and the other parameter o fixed.
Other examples are given later.

@ The pdf f(x — ) is obtained by shifting the entire curve f(x) by an
amount u (see the figure) without changing the structure of f(x).

@ It can be shown that X ~ f(x — u) iff X = Z+ u with Z ~ f(x).

i

|
|
i
i
1
|
i\ !
I
!

! Lo L] L e x
3 2 -1 0 1 2 3 4 §° o 1 2 3 4 5 6 7 8 9 10

Figure 3.5.1. Two members of the same location family: means ot 0 and 2 Figure 3.5.2. Eaponential location densities
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Definition 3.5.4 (scale family)

Let f(x) be a given pdf. The family of pdf's, c~'f(x/c), o > 0, is called
a scale family with scale parameter c.

<

@ Examples of scale families are normal and Cauchy with scale
parameter o > 0 and u fixed, gamma(a, B) with § > 0 and o fixed.
Other examples are given later.

@ The pdf 6~ 'f(x/o) is obtained by stretching (¢ > 1) or contracting
(o < 1) the curve f(x) while still maintaining the same shape.

@ It can be shown that X ~ o~ 'f(x/0o) iff X = 6Z with Z ~ f(x).

-6 -4 -2 o 2 4 6

Figure 3.5.3. Members of the same scale famnily
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Definition 3.5.5 (location-scale family)

Let f(x) be a given pdf. The family of pdf's, 6~ 'f((x —u)/0), u € %,
o > 0, is called a location-scale family with location parameter u and
scale parameter o.

@ A location-scale family is a combination of a location family and a
scale family: it contains a sub-family that is a location family with
any fixed o, and a sub-family that is a scale family with any fixed

u. )

x

4 6

Figure 3.5.4. Members of the same location-scale family
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@ Examples of location-scale families are normal, double
exponential, Cauchy, logistic, and two-parameter exponential
distributions with location parameter u € % and scale parameter
o > 0. Except for the two-parameter exponential distribution, all
others are symmetric about u.

o If f(x) is symmetric about 0, then o' f((x — 1) /o) is symmetric
about u and u is the median of X ~ o~ 'f((x — u)/o); furthermore,
if the expectation of f(x) exists, then u is the expectation of
o MH((x—p)/o).

@ It can be shown that X ~ o~ 'f((x — u)/o) iff X = 6Z + p with
Z ~ f(x); furthermore, if E(Z?) < o, then E(X) = 6 E(Z)+ u and
Var(X) = o2Var(2).

@ The pdf f(x) in a location-scale family is standard iff the
expectation [ xf(x)dx = 0 and the variance [~ x2f(x)dx = 1.

@ Typically, we choose a standard f(x) to generate a location-scale
family, in which case u and o2 are the expectation and variance of
o 'f((x — u)/o), respectively.
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Two parameter exponential distribution exponential(u,3)

If X ~ exponential(p) and u € Z is a constant, then the distribution of
Y = X+ u is called the two parameter exponential distribution and
denoted by exponential(u, ).

Its pdf and cdf are (by transformation)

f(x):{ gem(omib x> p F(X):{ 1—e=m/B  x>p
0 X< U 0 X< U
and, if Y ~ exponential(u, ),

o ettt 1 gitit
E(Y)=u+pB, Var(Y)=p%, MY(t):?ﬁt’ t< B ¢Y(t):1—7iﬁt’ tez

v

Double exponential distribution double-exponential(, o)

By reflecting the pdf of exponential(u, o) around u, we obtain the
double-exponential(u, o) pdf that is symmetric about u:

{ 2%_9_()(_.“)/0' X > U 1

f(x) = =_—e X Hio xez

Lewlo  xop 20
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@ This pdf is not bell-shaped; in fact, it has a peak (a
non-differentiable point) at x = p.

@ lts cdfis Fo 1—Jet-mic x>y
X)=
%e(xfu)/c X<u

@ If X ~ double-exponential(u, o), then
Z = (X—pu)/o ~ double-exponential(0,1).
e If Z=(X—pu)/o ~ double-exponential(0,1), then

E(Z) = ;/_i xe X dx =0

because xe *I is an odd function, and

Var(Z) = E(Z?) = ;/w x?e Xldx = /wXQe‘de =r(3)=2
oo 0

@ If X ~ double-exponential(u,c), then X = cZ + p,
Z = (X—u)/o ~ double-exponential(0,1), and

E(X)=E(cZ+u)=u, Var(X) = Var(6Z + i) = 6% Var(Z) = 262
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Logistic distribution logistic(u, o)
For constants u € # and o > 0, the logistic(u, o) distribution has pdf
e (x-w)/o

f(x)26[1+e—(X—#)/0']27 XEXR

@ This pdf is again bell-shaped and symmetric about p.
@ The cdf of logistic(u,c) has a close form:

/f t)dt = e(x e XER

@ By symmetry, E(X)=p if X ~ log/st/c(u,o).

@ The variance of X ~ logistic(i, o) is not easy to obtain, but we
give the result here: Var(X) = 6°#?/3.

Pareto distribution pareto(a, )

For constants o > 0 and 8 > 0, the pareto(o, o) distribution has pdf
aﬁax—(a+1) X > [3
0 X<p
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@ First, f is indeed a pdf, because
B
/ dX Otﬁ / —(a+1) dX :Baﬁia:1

@ Using a similar argument, we can obtain the cdf of pareto(c, ) as

F(X){ (5" x>
0

x<p

@ Since the integral fl‘;’x—fdx is finite iff t > 1, E(X) = if & <1
when X ~ pareto(a, B); if o« > 1, then

(oo} ﬁ
_ o —a _ O‘Ba —(a—1)| _ aﬁ (a—1) _ aB
X)=ap /ﬁx dx_ia_1x Ny B i
@ Similarly, Var(X) =« if @ <2; and if o > 2,
B 2
2 —o+1 B —a+2 _ 0613 a+2 _ Otﬁ
E(X?) = aB® / ax = ==
2 2p2 2
Var(X) = E(X?) — [EQp = 22— _ @b oP

o—2 (—1)2 (a—1)%(ax—2)
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Weibull distribution Weibull(y, B)

For constants y > 0 and 8 > 0, if X ~ exponential(f), then
Y = X7 ~ Weibull(y, B) with pdf
Ixr1eX/B x>0
fx)=4{ °
xX<0

@ An example of Y ~ Weibull(y,B) is lifetime or failure time.

o If Y ~ Weibull(y,B), then X = Y¥ ~ exponential() and

E(Y) = E(X”V):;/O x1/7e~x/B gx
ﬁ1/7/mu1/7’euduzﬁ1/7r <1+1>
0 Y

Similarly, we can obtain that

win=srfe(30) o)

4
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