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Chapter 4: Multiple Random Variables
Lecture 10: Joint and conditional distributions

So far we focus on the distribution of a single random variable.
In applications we need to consider a set of random variables jointly.
In some cases we study relationships among random variables.

Definition 4.1.1.
For an integer n, X = (X1, ...,Xn) is called an n-dimensional random
vector iff each Xi is a random variable.

Joint cdf’s
The joint cdf of an n-dimensional random vector X is a function FX in
Rn such that

FX (x1, ...,xn) = P

(
n⋂

i=1

{Xi ≤ xi}

)
xi ∈R

= P(X1 ≤ x1, ...,Xn ≤ xn) i = 1, ...,n
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Properties of cdf’s
FX is nondecreasing and right-continuous in any of its n
arguments.
For any i = 1, ...,n and fixed x1, ...,xi−1,xi+1, ...,xn,

lim
xi→−∞

F (x1, ...,xi−1,xi ,xi+1, ...,xn) = 0

lim
xi→∞, i=1,...,n

F (x1, ...,xn) = 1

Marginal cdf’s
For a random vector X = (X1, ...,Xn) and any i , the cdf of Xi is called
the marginal cdf of Xi and is equal to

FXi (xi) = lim
xj→∞, j=1,...,i−1,i+1,...,n

FX (x1, ...,xn)

Knowing the joint cdf FX we can obtain n marginal cdf’s, but in general,
knowing FX1 , ...,FXn is not enough to determine the joint cdf FX .

Similar to the univariate case, we mainly consider two types of random
vectors, discrete random vectors and continuous random vectors.

UW-Madison (Statistics) Stat 609 Lecture 10 2015 2 / 18



beamer-tu-logo

Definition 4.1.3 (Discrete joint pmf)
A random vector X = (X1, ...,Xn) is discrete iff each Xi is discrete.
The joint pmf of X is

fX (x1, ...,xn) = P(X1 = x1, ...,Xn = xn),

which is positive only for countably many (x1, ...,xn) ∈Rn.

For any event A⊂Rn,

P(X ∈ A) = ∑
(x1,...,xn)∈A

fX (x1, ...,xn)

For any i , the marginal pmf of Xi is

fXi (xi) = ∑
x1,...,xi−1,xi+1,...,xn

fX (x1, ...,xn)

For any function g(x1, ...,xn), the expected value of g(X1, ...,Xn) is

E [g(X1, ...,Xn)] = ∑
x1,...,xn

g(x1, ...,xn)fX (x1, ...,xn)

If n = 2 and each Xi takes finitely many values, then the joint and
marginal pmf’s can be listed in a 2×2 table.

UW-Madison (Statistics) Stat 609 Lecture 10 2015 3 / 18



beamer-tu-logo

Values and joint and marginal pmf’s of a 2-dimensional random vector

value x21 x22 · · · x2c marginal
x11 p11 p12 · · · p1c p1·
x12 p21 p22 · · · p2c p2·
· · · · · · · · · · · · · · · · · ·
x1r pr1 pr2 · · · prc pr ·

marginal p·1 p·2 · · · p·c 1

pij = P(X1 = i ,X2 = j), pi · = P(X1 = i), p·j(X2 = j).

Example: Multinomial distribution
An experiment has r possible outcomes A1, ...,Ar with P(Ai) = pi ,
i = 1, ..., r , p1 + · · ·+ pr = 1.
We independently repeat the experiment n times.
If Xi is the number of times Ai is the result in n experiments, i = 1, ..., r ,
then X = (X1, ...,Xr ) has joint pmf

P(X1 = x1, ...,Xr = xr ) =
n!

x1! · · ·xr !
px1

1 · · ·p
xr
r 0≤ xj ,

r

∑
i=1

xi = n
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Multivariate hypergeometric distribution
A bag contains N balls with r different colors.
Ni = the number of balls for color i , N1 + · · ·+ Nr = N.
We randomly select n balls from the bag.
If Xi is the number of selected balls having color i , i = 1, ..., r , then
X = (X1, ...,Xr ) has joint pmf

P(X1 = x1, ...,Xr = xr ) =

(N1
x1

)
· · ·
(Nr

xr

)(N
n

) 0≤ xj ,
r

∑
i=1

xi = n

What are the marginal pmf’s for the multinomial and multivariate
hypergeometric distributions?

Definition 4.1.10 (continuous pdf)
A random vector X = (X1, ...,Xn) has a continuous joint pdf if there
exists a nonnegative function fX on Rn such that

P(X ∈ A) =
∫
· · ·
∫

(x1,...,xn)∈A
fX (x1, ...,xn)dx1 · · ·dxn
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If X = (X1, ...,Xn) has joint pdf fX , a short notation is

P(X ∈ A) =
∫

A
fX (x)dx x = (x1, ...,xn)

If the joint pdf fX exists, then

FX (x1, ...,xn) =
∫ x1

−∞

· · ·
∫ xn

−∞

fX (t1, ..., tn)dt1 · · ·dtn

If the joint cdf FX is differentiable, then the joint fX exists and

fX (x1, ...,xn) =
∂ nFX (x1, ...,xn)

∂x1 · · ·∂xn
, (x1, ...,xn) ∈Rn

If the joint pdf fX exists, then the i th margianl pdf fXi exists and

fXi (xi) =
∫

∞

−∞

· · ·
∫

∞

−∞

fX (x1, ...,xn)dx1 · · ·dxi−1dxi+1 · · ·dxn

If the joint pdf fX exists, then for any function g(x1, ...,xn), the
expected value of g(X1, ...,Xn) is

E [g(X1, ...,Xn)] =
∫

∞

−∞

· · ·
∫

∞

−∞

g(x1, ...,xn)fX (x1, ...,xn)dx1 · · ·dxn
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Example
Suppose that a 2-dimensional random vector (X ,Y ) has pdf

f (x ,y) =

{
Ce−(2x+3y) x ≥ 0,y ≥ 0
0 otherwise

What should C be? Since∫
∞

−∞

∫
∞

−∞

f (x ,y)dxdy =
∫

∞

0

∫
∞

0
Ce−(2x+3y)dxdy

= C
∫

∞

0
e−2xdx

∫
∞

0
e−3ydy

= C

(
e−2x

2

∣∣∣∣0
∞

e−3y

3

∣∣∣∣0
∞

)
=

C
6

must be 1, we obtain that C = 6.
The joint cdf of (X ,Y ) is

F (x ,y) =

{
(1−e−2x )(1−e−3y ) x ≥ 0,y ≥ 0
0 otherwise
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This is because, for x > 0 and y > 0,

F (x ,y) =
∫

∞

0

∫
∞

0
6e−(2x+3y)dxdy = 6

∫
∞

0
e−2xdx

∫
∞

0
6e−3ydy

= (1−e−2x )(1−e−3y )

Calculate P(2X + 3Y ≤ 6).
It is not convenient to use the joint cdf.
Using the joint pdf, we obtain

P(2X + 3Y ≤ 6) =
∫

2x+3y≤6
f (x ,y)dxdy
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= 6
∫ 3

0

[∫ (6−2x)/3

0
e−(2x+3y)dy

]
dx = 6

∫ 3

0
e−2x

[
−e−3y

3

∣∣∣∣(6−2x)/3

0

]
dx

= 6
∫ 3

0
e−2x

[
1
3
− e−(6−2x)

3

]
dx = 2

∫ 3

0
(e−2x −e−6)dx

= −e−2x
∣∣∣∣3
0
−2e−6×3 = 1−e−6−6e−6

= 1−7e−6

Example 4.1.12.
Suppose that a 2-dimensional random vector (X ,Y ) has pdf

f (x ,y) =

{
e−y 0 < x < y
0 otherwise

We want to calculate P(X + Y ≥ 1).
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Note that

P(X + Y < 1) =
∫

x+y<1
f (x ,y)dxdy =

∫ 1/2

0

(∫ 1−x

x
e−ydy

)
dx

=
∫ 1/2

0
(e−x −e−(1−x))dx = 1−e−1/2−e−1/2 + e−1

= 1 + e−1−2e−1/2

Hence,

P(X + Y ≥ 1) = 1−P(X + Y < 1) = 2e−1/2−e−1
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Example
Let

f (x ,y) =

{
xα−1(y−x)β−1e−y

Γ(α)Γ(β) 0 < x < y
0 otherwise

where α > 0 and β > 0 are constants.
We want to show this is a pdf and find its two marginal pdf’s.
For x > 0, consider

fX (x) =
∫

∞

−∞

f (x ,y)dy =
∫

∞

x

xα−1(y −x)β−1e−y

Γ(α)Γ(β )
dy

=
xα−1

Γ(α)Γ(β )

∫
∞

0
uβ−1e−(u+x)du y −x = u

=
xα−1

Γ(α)
e−x

This is the pdf of Gamma(α,1), which also shows that f (x ,y) is a pdf.
The other marginal pdf is, for y > 0,
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fY (y) =
∫

∞

−∞

f (x ,y)dx =
∫ y

0

xα−1(y −x)β−1e−y

Γ(α)Γ(β )
dx

=
e−y

Γ(α)Γ(β )

∫ 1

0
(ty)α−1(y − ty)β−1ydt x = ty

=
yα+β−1e−y

Γ(α)Γ(β )

∫ 1

0
tα−1(1− t)β−1dt =

yα+β−1e−y

Γ(α + β )

which is the pdf of Gamma(α + β ,1).

Definition 4.2.1 (conditional pmf)
Let (X1, ...,Xn) be a discrete random vector with joint pmf f (x) and k be
an integer satisfying 1≤ k ≤ n−1. The conditional pmf of (Xk+1, ...,Xn)
given that (X1, ...,Xk ) = (x1, ...,xk ) with P(X1 = x1, ...,Xk = xk ) > 0 is

f (xk+1, ...,xn|x1, ...,xk ) = P(Xk+1 = xk+1, ...,Xn = xn|X1 = x1, ...,Xk = xk )

=
f (x1, ...,xn)

∑
(yk+1,...,yn)∈Nk

f (x1, ...,xk ,yk+1, ...,yn)

where Nk = {(yk+1, ...,yn) : P(Xk+1 = yk+1, ...Xn = yn) > 0}.
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It can be easily verified that f (xk+1, ...,xn|x1, ...,xk ) is a pmf for any
(x1, ...,xk ) with P(X1 = x1, ...,Xk = xk ) > 0.
The conditional pmf f (xk+1, ...,xn|x1, ...,xk ) vary with x1, ...,xk .
For any event A⊂Rn−k ,

P((Xk+1, ...,Xn) ∈ A|X1 = x1, ...,Xk = xk )

= ∑
(xk+1,...,xn)∈A

f (xk+1, ...,xn|x1, ...,xk )

Definition 4.2.3 (conditional pdf)
Let (X1, ...,Xn) be a random vector with joint pdf f (x) and k be an
integer satisfying 1≤ k ≤ n−1. The conditional pdf of (Xk+1, ...,Xn)
given that (X1, ...,Xk ) = (x1, ...,xk ) is

f (xk+1, ...,xn|x1, ...,xk ) =
f (x1, ...,xn)∫

Rn−k
f (x1, ...,xk ,yk+1, ...,yn)dyk+1 · · ·dyn

assuming that the denominator is not 0.
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It can be easily verified that f (xk+1, ...,xn|x1, ...,xk ) is a pdf and for any
event A⊂Rn−k ,

P((Xk+1, ...,Xn) ∈ A|X1 = x1, ...,Xk = xk )

=
∫

A
f (xk+1, ...,xn|x1, ...,xk )dxk+1 · · ·dxn

In general, for random vectors X and Y (discrete or conditions), we
use the notation Y |X = x or Y |X to denote the conditional distribution
Y given X = x or given X .

Example 4.2.4.
Suppose that a 2-dimensional random vector (X ,Y ) has pdf

f (x ,y) =

{
e−y 0 < x < y
0 otherwise

The marginal pdf of X is

fX (x) =
∫

∞

−∞

f (x ,y)dy =
∫

∞

x
e−ydy = e−x

if x > 0; fX (x) = 0 if x ≤ 0; i.e., X ∼ exponential(0,1).
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For each x > 0,

f (y |x) =
f (x ,y)

fX (x)
=

{ e−y

e−x = e−(y−x) y > x
0 y ≤ x

i.e., f (y |x) is the pdf of exponential(x ,1) for x > 0.
Thus, Y |X = x ∼ exponential(x ,1) or Y |X ∼ exponential(X ,1).

Conditional expectations
Let (X1, ...,Xn) be a random vector with joint pmf or pdf f (x), k be an
integer satisfying 1≤ k ≤ n−1, and g be a function on Rn−k . The
conditional expectation of g(Xk+1, ...,Xn) given (X1, ...,Xk ) = (x1, ...,xk )
is

E [g(Xk+1, ...,Xn)|X1 = x1, ...,Xk = xk ]

= ∑
xk+1,...,xn

g(xk+1, ...,xn)f (xk+1, ...,xn|x1, ...,xk )

when f is a pmf and

=
∫

Rn−k
g(xk+1, ...,xn)f (xk+1, ...,xn|x1, ...,xk )dxk+1 · · ·dxn

when f is a pdf.
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The condition expectation E [g(Xk+1, ...,Xn)|X1 = x1, ...,Xk = xk ] is
a function of x1, ...,xk .
It is an expectation of the conditional distribution.
Let h(x1, ...,xk ) = E [g(Xk+1, ...,Xn)|X1 = x1, ...,Xk = xk ].
Then h(X1, ...,Xk ) is a random variable and is denoted by
E [g(Xk+1, ...,Xn)|X1, ...,Xk ].

Example 4.2.4.
Since Y |X ∼ exponential(X ,1), the conditional expectation of Y given
X is E(Y |X ) = 1 + X , and the conditional expectation of [Y −E(Y |X )]2

given X is

E{[Y −E(Y |X )]2|X} =
∫

∞

X
[y − (1 + X )]2e−ydy

=
∫

∞

X
y2e−ydy − (1 + X )2

= 1 + (1 + X )2− (1 + X )2 = 1

Note that the function g may depend on X (treated as a constant).
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Properties of conditional expectations
Conditional expectations have the following useful properties.
Let X , Y , and Z be random variables.

1 If P(Y = c) = 1 for a constant c, then E(Y |X ) = c.
2 If Y ≤ Z , then E(Y |X )≤ E(Z |X ).
3 For constants a and b, E(aY + bZ |X ) = aE(Y |X ) + bE(Z |X ).
4 E [E(Y |X )] = E(Y ) (Theorem 4.4.3). This can be interpreted as:

the average of averages is the overall average.
5 Var(Y ) = E [Var(Y |X )] + Var(E(Y |X )) (Theorem 4.4.7), where

Var(Y |X ) is the variance of the conditional distribution Y |X .
6 For any function g(X ), E [Yg(X )|X ] = g(X )E(Y |X ).

Except for property 2, all properties can be extended to random vectors
X , Y , and Z with appropriate modifications on vector multiplications.

Proof of Theorem 4.4.3.
Consider the continuous case where (X ,Y ) has pdf f (x ,y).

E(Y ) =
∫

∞

−∞

yfY (y)dy =
∫

∞

−∞

y
[∫

∞

−∞

f (x ,y)dx
]

dy
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=
∫

∞

−∞

[∫
∞

−∞

yf (x ,y)dy
]

dx =
∫

∞

−∞

[∫
∞

−∞

y
f (x ,y)

fX (x)
dy
]

fX (x)dx

=
∫

∞

−∞

[∫
∞

−∞

yf (y |x)dy
]

fX (x)dx =
∫

∞

−∞

E(Y |X = x)fX (x)dx

= E [E(Y |X )]

Proof of Theorem 4.4.7.
Using properties 1, 3, 4, and 6, we obtain

Var(Y ) = E [Y −E(Y )]2 = E
(

E{[Y −E(Y )]2|X}
)

= E
(

E{[Y −E(Y |X ) + E(Y |X )−E(Y )]2|X}
)

= E
(

E{[Y −E(Y |X )]2|X}
)

+ E
(

E{[E(Y |X )−E(Y )]2|X}
)

+2E (E{[Y −E(Y |X )][E(Y |X )−E(Y )]|X})

= E (Var(Y |X )) + E
(

[E(Y |X )−E(Y )]2
)

+2E ([E(Y |X )−E(Y )]E{[Y −E(Y |X )]|X})
= E [Var(Y |X )] + Var(E(Y |X ))
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