Chapter 4: Multiple Random Variables Lecture 10: Joint and conditional distributions

So far we focus on the distribution of a single random variable. In applications we need to consider a set of random variables jointly. In some cases we study relationships among random variables.

Definition 4.1.1.

For an integer $n, X = (X_1, ..., X_n)$ is called an *n*-dimensional random vector iff each X_i is a random variable.

Joint cdf's

The joint cdf of an *n*-dimensional random vector X is a function F_X in \mathscr{R}^n such that

$$F_X(x_1,...,x_n) = P\left(\bigcap_{i=1}^n \{X_i \le x_i\}\right) \qquad x_i \in \mathscr{R}$$
$$= P(X_1 \le x_1,...,X_n \le x_n) \qquad i = 1,...,n$$

Properties of cdf's

- *F_X* is nondecreasing and right-continuous in any of its *n* arguments.
- For any i = 1, ..., n and fixed $x_1, ..., x_{i-1}, x_{i+1}, ..., x_n$,

$$\lim_{x_i \to -\infty} F(x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n) = 0$$

$$\lim_{x_i\to\infty,\ i=1,\dots,n}F(x_1,\dots,x_n)=1$$

Marginal cdf's

For a random vector $X = (X_1, ..., X_n)$ and any *i*, the cdf of X_i is called the marginal cdf of X_i and is equal to

$$F_{X_i}(x_i) = \lim_{x_j \to \infty, \ j=1,...,i-1,i+1,...,n} F_X(x_1,...,x_n)$$

Knowing the joint cdf F_X we can obtain *n* marginal cdf's, but in general, knowing $F_{X_1}, ..., F_{X_n}$ is not enough to determine the joint cdf F_X .

Similar to the univariate case, we mainly consider two types of random vectors, discrete random vectors and continuous random vectors.

UW-Madison (Statistics)

Stat 609 Lecture 10

Definition 4.1.3 (Discrete joint pmf)

A random vector $X = (X_1, ..., X_n)$ is discrete iff each X_i is discrete. The joint pmf of X is

$$f_X(x_1,...,x_n) = P(X_1 = x_1,...,X_n = x_n),$$

which is positive only for countably many $(x_1, ..., x_n) \in \mathscr{R}^n$.

• For any event $A \subset \mathscr{R}^n$,

$$P(X \in A) = \sum_{(x_1,...,x_n) \in A} f_X(x_1,...,x_n)$$

For any *i*, the marginal pmf of X_i is

$$f_{X_i}(x_i) = \sum_{x_1,...,x_{i-1},x_{i+1},...,x_n} f_X(x_1,...,x_n)$$

• For any function $g(x_1,...,x_n)$, the expected value of $g(X_1,...,X_n)$ is $E[g(X_1,...,X_n)] = \sum_{x_1,...,x_n} g(x_1,...,x_n) f_X(x_1,...,x_n)$

 If n = 2 and each X_i takes finitely many values, then the joint and marginal pmf's can be listed in a 2 × 2 table.

UW-Madison (Statistics)

Stat 609 Lecture 10

Values and joint and marginal pmf's of a 2-dimensional random vector

value	<i>x</i> ₂₁	<i>X</i> ₂₂	•••	<i>x</i> _{2c}	marginal
<i>X</i> ₁₁	p_{11}	<i>p</i> ₁₂	•••	p_{1c}	<i>p</i> ₁ .
<i>x</i> ₁₂	p_{21}	p ₂₂	•••	p_{2c}	р 2.
••••	•••	•••	•••		
<i>x</i> _{1<i>r</i>}	p_{r1}	p_{r2}	•••	p _{rc}	p _r .
marginal	<i>p</i> . ₁	р. ₂	•••	p.c	1

$$p_{ij} = P(X_1 = i, X_2 = j), p_{i.} = P(X_1 = i), p_{.j}(X_2 = j).$$

Example: Multinomial distribution

An experiment has *r* possible outcomes $A_1, ..., A_r$ with $P(A_i) = p_i$, $i = 1, ..., r, p_1 + \dots + p_r = 1$. We independently repeat the experiment *n* times. If X_i is the number of times A_i is the result in *n* experiments, i = 1, ..., r,

then $X = (X_1, ..., X_r)$ has joint pmf

$$P(X_1 = x_1, ..., X_r = x_r) = \frac{n!}{x_1! \cdots x_r!} p_1^{x_1} \cdots p_r^{x_r} \qquad 0 \le x_j, \ \sum_{i=1}^r x_i = n$$

Multivariate hypergeometric distribution

A bag contains *N* balls with *r* different colors. N_i = the number of balls for color *i*, $N_1 + \dots + N_r = N$. We randomly select *n* balls from the bag. If X_i is the number of selected balls having color *i*, *i* = 1,...,*r*, then $X = (X_1,...,X_r)$ has joint pmf

$$P(X_1 = x_1, ..., X_r = x_r) = \frac{\binom{N_1}{X_1} \cdots \binom{N_r}{X_r}}{\binom{N}{n}} \qquad 0 \le x_j, \ \sum_{i=1}^r x_i = n$$

What are the marginal pmf's for the multinomial and multivariate hypergeometric distributions?

Definition 4.1.10 (continuous pdf)

A random vector $X = (X_1, ..., X_n)$ has a continuous joint pdf if there exists a nonnegative function f_X on \mathscr{R}^n such that

$$P(X \in A) = \int \cdots \int_{(x_1,...,x_n) \in A} f_X(x_1,...,x_n) dx_1 \cdots dx_n$$

• If $X = (X_1, ..., X_n)$ has joint pdf f_X , a short notation is $P(X \in A) = \int_A f_X(x) dx$ $x = (x_1, ..., x_n)$

If the joint pdf f_X exists, then

$$F_X(x_1,...,x_n) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f_X(t_1,...,t_n) dt_1 \cdots dt_n$$

If the joint cdf F_X is differentiable, then the joint f_X exists and

$$f_X(x_1,...,x_n) = \frac{\partial^n F_X(x_1,...,x_n)}{\partial x_1 \cdots \partial x_n}, \qquad (x_1,...,x_n) \in \mathscr{R}^n$$

If the joint pdf f_X exists, then the *i*th margianl pdf f_{Xi} exists and

$$f_{X_i}(x_i) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_X(x_1, ..., x_n) dx_1 \cdots dx_{i-1} dx_{i+1} \cdots dx_n$$

If the joint pdf f_X exists, then for any function g(x₁,...,x_n), the expected value of g(X₁,...,X_n) is

$$E[g(X_1,...,X_n)] = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1,...,x_n) f_X(x_1,...,x_n) dx_1 \cdots dx_n$$

Example

Suppose that a 2-dimensional random vector (X, Y) has pdf

$$f(x,y) = \left\{ egin{array}{ll} Ce^{-(2x+3y)} & x \geq 0, y \geq 0 \\ 0 & ext{otherwise} \end{array}
ight.$$

What should C be? Since

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = \int_{0}^{\infty} \int_{0}^{\infty} C e^{-(2x+3y)} dx dy$$
$$= C \int_{0}^{\infty} e^{-2x} dx \int_{0}^{\infty} e^{-3y} dy$$
$$= C \left(\frac{e^{-2x}}{2} \Big|_{\infty}^{0} \frac{e^{-3y}}{3} \Big|_{\infty}^{0} \right) = \frac{C}{6}$$

must be 1, we obtain that C = 6.

• The joint cdf of (X, Y) is

$$F(x,y) = \begin{cases} (1 - e^{-2x})(1 - e^{-3y}) & x \ge 0, y \ge 0\\ 0 & \text{otherwise} \end{cases}$$

UW-Madison (Statistics)

This is because, for x > 0 and y > 0,

$$F(x,y) = \int_0^\infty \int_0^\infty 6e^{-(2x+3y)} dx dy = 6 \int_0^\infty e^{-2x} dx \int_0^\infty 6e^{-3y} dy$$

= $(1 - e^{-2x})(1 - e^{-3y})$

Calculate P(2X+3Y ≤ 6).
 It is not convenient to use the joint cdf.
 Using the joint pdf, we obtain

$$P(2X+3Y\leq 6) = \int_{2x+3y\leq 6} f(x,y)dxdy$$

$$= 6 \int_{0}^{3} \left[\int_{0}^{(6-2x)/3} e^{-(2x+3y)} dy \right] dx = 6 \int_{0}^{3} e^{-2x} \left[-\frac{e^{-3y}}{3} \Big|_{0}^{(6-2x)/3} \right] dx$$
$$= 6 \int_{0}^{3} e^{-2x} \left[\frac{1}{3} - \frac{e^{-(6-2x)}}{3} \right] dx = 2 \int_{0}^{3} (e^{-2x} - e^{-6}) dx$$
$$= -e^{-2x} \Big|_{0}^{3} - 2e^{-6} \times 3 = 1 - e^{-6} - 6e^{-6}$$
$$= 1 - 7e^{-6}$$

Example 4.1.12.

Suppose that a 2-dimensional random vector (X, Y) has pdf

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y \\ 0 & \text{otherwise} \end{cases}$$

We want to calculate $P(X + Y \ge 1)$.

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Note that

$$P(X+Y<1) = \int_{x+y<1} f(x,y) dx dy = \int_0^{1/2} \left(\int_x^{1-x} e^{-y} dy \right) dx$$

= $\int_0^{1/2} (e^{-x} - e^{-(1-x)}) dx = 1 - e^{-1/2} - e^{-1/2} + e^{-1}$
= $1 + e^{-1} - 2e^{-1/2}$

Hence,

$$P(X + Y \ge 1) = 1 - P(X + Y < 1) = 2e^{-1/2} - e^{-1}$$

Example

Let

$$f(x,y) = \begin{cases} \frac{x^{\alpha-1}(y-x)^{\beta-1}e^{-y}}{\Gamma(\alpha)\Gamma(\beta)} & 0 < x < y \\ 0 & \text{otherwise} \end{cases}$$

< y

where $\alpha > 0$ and $\beta > 0$ are constants.

We want to show this is a pdf and find its two marginal pdf's. For x > 0. consider

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_x^{\infty} \frac{x^{\alpha - 1} (y - x)^{\beta - 1} e^{-y}}{\Gamma(\alpha) \Gamma(\beta)} dy$$
$$= \frac{x^{\alpha - 1}}{\Gamma(\alpha) \Gamma(\beta)} \int_0^{\infty} u^{\beta - 1} e^{-(u + x)} du \qquad y - x = u$$
$$= \frac{x^{\alpha - 1}}{\Gamma(\alpha)} e^{-x}$$

This is the pdf of $Gamma(\alpha, 1)$, which also shows that f(x, y) is a pdf. The other marginal pdf is, for y > 0,

$$f_{Y}(y) = \int_{-\infty}^{\infty} f(x,y) dx = \int_{0}^{y} \frac{x^{\alpha-1}(y-x)^{\beta-1}e^{-y}}{\Gamma(\alpha)\Gamma(\beta)} dx$$

$$= \frac{e^{-y}}{\Gamma(\alpha)\Gamma(\beta)} \int_{0}^{1} (ty)^{\alpha-1} (y-ty)^{\beta-1} y dt \qquad x = ty$$

$$= \frac{y^{\alpha+\beta-1}e^{-y}}{\Gamma(\alpha)\Gamma(\beta)} \int_{0}^{1} t^{\alpha-1} (1-t)^{\beta-1} dt = \frac{y^{\alpha+\beta-1}e^{-y}}{\Gamma(\alpha+\beta)}$$

which is the pdf of $Gamma(\alpha + \beta, 1)$.

Definition 4.2.1 (conditional pmf)

Let $(X_1, ..., X_n)$ be a discrete random vector with joint pmf f(x) and k be an integer satisfying $1 \le k \le n-1$. The conditional pmf of $(X_{k+1}, ..., X_n)$ given that $(X_1, ..., X_k) = (x_1, ..., x_k)$ with $P(X_1 = x_1, ..., X_k = x_k) > 0$ is $f(x_{k+1}, ..., x_n | x_1, ..., x_k) = P(X_{k+1} = x_{k+1}, ..., X_n = x_n | X_1 = x_1, ..., X_k = x_k)$ $= \frac{f(x_1, ..., x_n)}{\sum_{\substack{(y_{k+1}, ..., y_n) \in \mathcal{N}_k}} f(x_1, ..., x_k, y_{k+1}, ..., y_n)}$ where $\mathcal{N}_k = \{(y_{k+1}, ..., y_n) : P(X_{k+1} = y_{k+1}, ..., X_n = y_n) > 0\}.$

- It can be easily verified that $f(x_{k+1},...,x_n|x_1,...,x_k)$ is a pmf for any $(x_1,...,x_k)$ with $P(X_1 = x_1,...,X_k = x_k) > 0$.
- The conditional pmf $f(x_{k+1},...,x_n|x_1,...,x_k)$ vary with $x_1,...,x_k$.

• For any event
$$A \subset \mathscr{R}^{n-k}$$
,

$$P((X_{k+1},...,X_n) \in A | X_1 = x_1,...,X_k = x_k) \\ = \sum_{(x_{k+1},...,x_n) \in A} f(x_{k+1},...,x_n | x_1,...,x_k)$$

Definition 4.2.3 (conditional pdf)

Let $(X_1, ..., X_n)$ be a random vector with joint pdf f(x) and k be an integer satisfying $1 \le k \le n-1$. The conditional pdf of $(X_{k+1}, ..., X_n)$ given that $(X_1, ..., X_k) = (x_1, ..., x_k)$ is

$$f(x_{k+1},...,x_n|x_1,...,x_k) = \frac{f(x_1,...,x_n)}{\int_{\mathscr{R}^{n-k}} f(x_1,...,x_k,y_{k+1},...,y_n) dy_{k+1} \cdots dy_n}$$

assuming that the denominator is not 0.

イロト イ理ト イヨト イヨト

It can be easily verified that $f(x_{k+1},...,x_n|x_1,...,x_k)$ is a pdf and for any event $A \subset \mathscr{R}^{n-k}$,

$$P((X_{k+1},...,X_n) \in A | X_1 = x_1,...,X_k = x_k)$$

= $\int_A f(x_{k+1},...,x_n | x_1,...,x_k) dx_{k+1} \cdots dx_n$

In general, for random vectors X and Y (discrete or conditions), we use the notation Y|X = x or Y|X to denote the conditional distribution Y given X = x or given X.

Example 4.2.4.

Suppose that a 2-dimensional random vector (X, Y) has pdf

$$f(x,y) = \left\{ egin{array}{cc} e^{-y} & 0 < x < y \ 0 & ext{otherwise} \end{array}
ight.$$

The marginal pdf of X is

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{x}^{\infty} e^{-y} dy = e^{-x}$$

if x > 0; $f_X(x) = 0$ if $x \le 0$; i.e., $X \sim exponential(0, 1)$.

For each x > 0,

$$f(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{e^{-y}}{e^{-x}} = e^{-(y-x)} & y > x\\ 0 & y \le x \end{cases}$$

i.e., f(y|x) is the pdf of *exponential*(x,1) for x > 0. Thus, $Y|X = x \sim exponential(x,1)$ or $Y|X \sim exponential(X,1)$.

Conditional expectations

Let $(X_1, ..., X_n)$ be a random vector with joint pmf or pdf f(x), k be an integer satisfying $1 \le k \le n-1$, and g be a function on \mathscr{R}^{n-k} . The conditional expectation of $g(X_{k+1}, ..., X_n)$ given $(X_1, ..., X_k) = (x_1, ..., x_k)$ is $E[g(X_{k+1}, ..., X_n)] = [x_1, ..., x_k]$

$$E[g(X_{k+1},...,X_n)|X_1 = x_1,...,X_k = x_k] = \sum_{x_{k+1},...,x_n} g(x_{k+1},...,x_n)f(x_{k+1},...,x_n|x_1,...,x_k)$$

when f is a pmf and

$$= \int_{\mathscr{R}^{n-k}} g(x_{k+1},...,x_n) f(x_{k+1},...,x_n | x_1,...,x_k) dx_{k+1} \cdots dx_n$$

when *f* is a pdf.

- The condition expectation *E*[*g*(*X*_{k+1},...,*X*_n)|*X*₁ = *x*₁,...,*X*_k = *x*_k] is a function of *x*₁,...,*x*_k.
- It is an expectation of the conditional distribution.
- Let $h(x_1,...,x_k) = E[g(X_{k+1},...,X_n)|X_1 = x_1,...,X_k = x_k]$. Then $h(X_1,...,X_k)$ is a random variable and is denoted by $E[g(X_{k+1},...,X_n)|X_1,...,X_k]$.

Example 4.2.4.

Since $Y|X \sim exponential(X, 1)$, the conditional expectation of Y given X is E(Y|X) = 1 + X, and the conditional expectation of $[Y - E(Y|X)]^2$ given X is

$$E\{[Y - E(Y|X)]^2 | X\} = \int_X^\infty [y - (1+X)]^2 e^{-y} dy$$

= $\int_X^\infty y^2 e^{-y} dy - (1+X)^2$
= $1 + (1+X)^2 - (1+X)^2 =$

Note that the function *g* may depend on *X* (treated as a constant).

Properties of conditional expectations

Conditional expectations have the following useful properties. Let X, Y, and Z be random variables.

- If P(Y = c) = 1 for a constant *c*, then E(Y|X) = c.
- If $Y \leq Z$, then $E(Y|X) \leq E(Z|X)$.
- So For constants *a* and *b*, E(aY+bZ|X) = aE(Y|X) + bE(Z|X).
- E[E(Y|X)] = E(Y) (Theorem 4.4.3). This can be interpreted as: the average of averages is the overall average.
- $\operatorname{Var}(Y) = E[\operatorname{Var}(Y|X)] + \operatorname{Var}(E(Y|X))$ (Theorem 4.4.7), where $\operatorname{Var}(Y|X)$ is the variance of the conditional distribution Y|X.
- So For any function g(X), E[Yg(X)|X] = g(X)E(Y|X).

Except for property 2, all properties can be extended to random vectors X, Y, and Z with appropriate modifications on vector multiplications.

Proof of Theorem 4.4.3.

Consider the continuous case where (X, Y) has pdf f(x, y).

$$E(Y) = \int_{-\infty}^{\infty} y f_Y(y) dy = \int_{-\infty}^{\infty} y \left[\int_{-\infty}^{\infty} f(x,y) dx \right] dy$$

UW-Madison (Statistics)

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} yf(x,y) dy \right] dx = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} y \frac{f(x,y)}{f_X(x)} dy \right] f_X(x) dx$$
$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} yf(y|x) dy \right] f_X(x) dx = \int_{-\infty}^{\infty} E(Y|X=x) f_X(x) dx$$
$$= E[E(Y|X)]$$

Proof of Theorem 4.4.7.

Using properties 1, 3, 4, and 6, we obtain

$$Var(Y) = E[Y - E(Y)]^2 = E(E\{[Y - E(Y)]^2 | X\})$$

$$= E\left(E\left\{\left[Y-E(Y|X)+E(Y|X)-E(Y)\right]^2|X\right\}\right)$$

$$= E\left(E\{[Y - E(Y|X)]^2|X\}\right) + E\left(E\{[E(Y|X) - E(Y)]^2|X\}\right) + 2E(E\{[Y - E(Y|X)][E(Y|X) - E(Y)]|X\})$$

$$= E(\operatorname{Var}(Y|X)) + E\left([E(Y|X) - E(Y)]^2\right)$$

$$+2E([E(Y|X)-E(Y)]E\{[Y-E(Y|X)]|X\})$$

$$= E[\operatorname{Var}(Y|X)] + \operatorname{Var}(E(Y|X))$$