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Lecture 14: Multivariate mgf’s and chf’s
Multivariate mgf and chf
For an n-dimensional random vector X , its mgf is defined as

MX (t) = E(et ′X ), t ∈Rn

and its chf is defined as
φX (t) = E(eı̇t ′X ), t ∈Rn

Simple properties of mgf’s and chf’s
MX (t) is either finite or ∞, and MX (0) = 1.
The chf φX (t) is a continuous function of t ∈Rn and φX (0) = 1.
For any fixed k ×n matrix A and vector b ∈Rk , the mgf and chf of
the random vector AX + b are, respectively,

MAX+b(t) = eb′tMX (A′t) and φAX+b(t) = eı̇b′t
φX (A′t), t ∈Rk

In particular, if Y is the first m components of X , m < n, then the
mgf and chf of Y are, respectively,
MY (s) = MX ((s,0)) and φY (s) = φX ((s,0)), s ∈Rm, 0∈Rn−m
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Calculation of moments
If X = (X1, ...,Xn) and MX (t) is finite in a neighborhood of 0, then
E(X r1

1 · · ·X
rn
n ) is finite for any nonnegative integers r1, ..., rn, and

E(X r1
1 · · ·X

rn
n ) =

∂ r1+···+rnMX (t)
∂ t r1

1 · · ·∂ t rn
n

∣∣∣∣
t=0

In particular,

∂MX (t)
∂ t

∣∣∣∣
t=0

= E(X ) =

 E(X1)
...

E(Xn)


and

∂ 2MX (t)
∂ t∂ t ′

∣∣∣∣
t=0

= E(XX ′) =


E(X 2

1 ) E(X1X2) · · · E(X1Xn)
E(X2X1) E(X 2

2 ) · · · E(X2Xn)
· · · · · · · · · · · ·

E(XnX1) E(XnX2) · · · E(X 2
n )


When the mgf is not finite in any neighborhood of 0, then we can use
the chf to calculate moments.
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Suppose that E |X r1
1 · · ·X

rn
k |< ∞ for some nonnegative integers r1, ..., rn

with r = r1 + · · ·+ rn.
Since ∣∣∣∣ ∂ r eı̇t ′X

∂ t r1
1 · · ·∂ t rn

k

∣∣∣∣=

∣∣∣∣ı̇r X r1
1 · · ·X

rn
k eı̇t ′X

∣∣∣∣≤ |X r1
1 · · ·X

rn
k |

which is integrable, we can switch integration and differentiation to get

∂ r φX (t)
∂ t r1

1 · · ·∂ t rn
k

= ı̇r E
(

X r1
1 · · ·X

rn
k eı̇t ′X

)
and

∂ r φX (t)
∂ t r1

1 · · ·∂ t rn
k

∣∣∣∣
t=0

= ı̇r E(X r1
1 · · ·X

rn
k ).

In particular,

∂φX (t)
∂ t

∣∣∣∣
t=0

= ı̇EX ,
∂ 2φX (t)
∂ t∂ tτ

∣∣∣∣
t=0

=−E(XX ′)

Theorem M1.
If the mgf MX (t) of an n-dimensional random vector X is finite in a
neighborhood of 0, then the chf of X is φX (t) = MX (ı̇t), t ∈Rn.
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Proof (we need a proof because MX (t) may not be finite for all t)
We first prove this for a univariate X .
If MX (t) is finite in a neighborhood of 0, (−δ ,δ ), 0 < δ < 1, then MX (t)
is differentiable of all order in (−δ ,δ ), E |X |r < ∞ for all r = 1,2..., and

MX (t) =
∞

∑
k=0

E(X k )tk

k !
, t ∈ (−δ ,δ )

Using the inequality∣∣∣∣eı̇sx

[
eı̇tx −

n

∑
k=0

(ı̇tx)k

k !

]∣∣∣∣≤ |tx |n+1

(n + 1)!
t ,s ∈R

we obtain that∣∣∣∣φX (s + t)−
n

∑
k=0

ı̇k tk

k !
E(X keı̇sX )

∣∣∣∣≤ |t |n+1E |X |n+1

(n + 1)!
, |t |< δ , s ∈R

which implies that

φX (s + t) =
∞

∑
k=0

φ
(k)
X (s)tk

k !
|t |< δ , s ∈R

where g(k)(s) = dkg(s)/dsk .
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Setting s = 0, we obtain that

φX (t) =
∞

∑
k=0

φ
(k)
X (0)tk

k !
=

∞

∑
k=0

ı̇kE(X k )tk

k !
=

∞

∑
k=0

E(X k )(ı̇t)k

k !
= MX (ı̇t) |t |< δ

For |t |< δ and |s|< δ ,

φX (s + t) =
∞

∑
k=0

φ
(k)
X (s)tk

k !
=

∞

∑
k=0

tk

k !

∞

∑
j=k

ı̇jE(X j)sj−k

(j−k)!

=
∞

∑
j=0

j

∑
k=0

ı̇jE(X j)
tksj−k

k !(j−k)!
=

∞

∑
j=0

ı̇jE(X j)(s + t)j

j!

This proves that
φX (s) = MX (ı̇s), |s|< 2δ

Continuing this process, we can show that φX (s) = MX (ı̇s) for |s|< 3δ ,
|s|< 4δ ,..., and hence, φX (t) = MX (ı̇t) for t ∈R.
Consider now an n-dimensional X .
From the proof result for the univariate case, we have

φX (t) = E(eı̇t ′X ) = φt ′X (1) = Mt ′X (ı̇) = MX (ı̇t), t ∈Rn.
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Theorem M2 (uniqueness)
(i) Random vectors X ∼ Y iff the chf’s φX (t) = φY (t) for t ∈Rn.
(ii) If the mgf’s of random vectors X and Y satisfy MX (t) = MY (t) < ∞

for t in a neighborhood of 0, then X ∼ Y .

Proof.
It is clear that the distribution of X determines its mgf and chf.
Part (i) follows from the following multivariate inversion formula: for any
A = (a1,b1)×·· ·× (an,bn) such that the distribution of X is continuous
at all points in the boundary of A,

P
(
X ∈ A

)
= lim

c→∞

∫ c

−c
· · ·
∫ c

−c

φX (t1, ..., tn)

ı̇n(2π)n

n

∏
i=1

e−ı̇ti ai −e−ı̇ti bi

ti
dti .

To establish (ii), we use the relationship between mgf and chf shown in
Theorem M1.
If the mgf’s MX (t) = MY (t) < ∞ for t in a neighborhood of 0, then

φX (t) = MX (ı̇t) = MY (ı̇t) = φY (t), t ∈Rn

Then by (i), X and Y have the same distribution.
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Similar to the univariate case, convergence of chf’s and cdf’s are
equivalent and convergence of mgf’s implies convergence of cdf’s.
We introduce the following result without giving proofs.

Theorem M3.
Suppose that X1,X2, ... is a sequence of k -dimensional random vectors
with mgf’s MXn (t) and chf’s φXn (t), t ∈Rk .

(i) If limn→∞ MXn (t) = MX (t) < ∞ for all t in a neighborhood of 0,
where MX (t) is the mgf of a k -dimensional random vector X , then
limn→∞ FXn (x) = FX (x) for all x where FX (x) is continuous.

(ii) A necessary and sufficient condition for the convergence of
FXn (x)’s in (i) is that limn→∞ φXn (t) = φX (t) for all t ∈Rk , where
φX (t) is the chf of a k -dimensional random vector X .

(iii) In (ii), if limn→∞ φXn (t) = g(t) for all t ∈Rk and g(t) is a continuous
function on Rk , then g(t) must be a chf of some k -dimensional
random vector X and the result in (ii) holds.

Note that Theorem M3(ii) gives a necessary and sufficient condition,
while the converse of Theorem M3(i) is not true in general.
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The next result concerns the relationship between independence and
chf’s and mgf’s.

Theorem M4.
Let X and Y be two random vectors with dimensions n and m,
respectively.

(i) X and Y are independent iff their joint and marginal chf’s satisfy
φ(X ,Y )(t) = φX (t1)φY (t2) for all t = (t1, t2), t1 ∈Rn, t2 ∈Rm.

(ii) If the mgf of (X ,Y ) is finite in a neighborhood of 0 ∈Rn+m, then X
and Y are independent iff their joint and marginal mgf’s satisfy
M(X ,Y )(t)=MX (t1)MY (t2) for all t =(t1, t2) in the neighborhood of 0.

Proof.
Because of Theorem M1, (ii) follows from (i).
The only if part of (i) follows from Theorem 4.2.12A.
It remains to show the if part of (i).
Let F (x ,y) be the cdf of (X ,Y ), FX (x) be the cdf of X , and FY (y) be
the cdf of Y , x ∈Rn, y ∈Rm.
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Define
F̃ (x ,y) = FX (x)FY (y), x ∈Rn, y ∈Rm

It can be easily shown that F̃ is a cdf on Rn+m.
There exist random vectors X̃ (n-dimensional) and Ỹ (m-dimensional)
such that the cdf of (X̃ , Ỹ ) is F̃ (x ,y).
From the form of F̃ , we know that X̃ and Ỹ are independent, X̃ ∼ FX
with chf φX , and Ỹ ∼ FY with chf φY .
Hence the chf of F̃ must be φX (t1)φY (t2), t1 ∈Rn, t2 ∈Rm.
If φ(X ,Y )(t) = φX (t1)φY (t2) for all t = (t1, t2), t1 ∈Rn, t2 ∈Rm, then, by
uniqueness, F (x ,y) = F̃ (x ,y) = FX (x)FY (y) for all x ∈Rn, y ∈Rm.
This proves that X and Y are independent.

As an example, we now consider the mgf’s in a family of multivariate
distributions that is an extension of the univariate normal distribution
family.

n-dimensional multivariate normal distribution
Let µ ∈Rn, Σ be a positive definite n×n matrix, and |Σ| be the
determinant of Σ.
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The following pdf on Rn,

f (x) =
1

(2π)n/2|Σ|1/2 exp
(
−(x −µ)′Σ−1(x −µ)

2

)
, x ∈Rn,

is called the n-dimensional normal pdf and the corresponding
distribution is called the n-dimensional normal distribution and denoted
by N(µ,Σ).

Using transformation, we can show that f (x) is indeed a pdf on Rn.
If X ∼ N(0,Σ), then, for any t ∈Rn,

MX (t) =
1

(2π)n/2|Σ|1/2

∫
Rn

et ′x exp
(
−x ′Σ−1x

2

)
dx

=
et ′Σt/2

(2π)n/2|Σ|1/2

∫
Rn

exp
(
−(x −Σt)′Σ−1(x −Σt)

2

)
dx

= et ′Σt/2

If X ∼ N(µ,Σ), an application of the property of mgf and the previous
result leads to

MX (t) = eµ ′t+t ′Σt/2 t ∈Rn
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From the property of mgf, we can differentiate MX (t) to get

E(X ) =
∂MX (t)

∂ t

∣∣∣∣
t=0

= (µ + Σt)eµ ′t+t ′Σt/2
∣∣∣∣
t=0

= µ

E(XX ′) =
∂ 2MX (t)

∂ t∂ t ′

∣∣∣∣
t=0

=
∂

∂ t
(µ + Σt)eµ ′t+t ′Σt/2

∣∣∣∣
t=0

=
[
Σeµ ′t+t ′Σt/2 + (µ + Σt)(µ + Σt)′eµ ′t+t ′Σt/2

]∣∣∣∣
t=0

= Σ + µµ
′

Therefore,
Var(X ) = E(XX ′)−E(X )E(X ′) = Σ

Like the univariate case, µ and Σ in N(µ,Σ) are respectively the
mean vector and covariance matrix of the distribution.
Another important consequence from the previous result is that
the components of X ∼N(µ,Σ) are independent iff Σ is a diagonal
matrix, i.e., components of X are uncorrelated.
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We now study properties of the multivariate normal distribution.
The bivariate normal distribution is a special case of the multivariate
normal distribution with n = 2.

Bivariate normal distributions
First, we want to show that the definition for the general multivariate
normal distribution with n = 2 is consistent with the early definition of
the bivariate normal distribution.
Let µ1 ∈R, µ2 ∈R, σ1 > 0, σ2 > 0, and −1 < ρ < 1 be constants, and

µ =

(
µ1
µ2

)
Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
x =

(
x1
x2

)
Then

|Σ|= σ
2
1 σ

2
2 −ρ

2
σ

2
1 σ

2
2 = σ

2
1 σ

2
2 (1−ρ

2)

Σ−1 =
1

σ2
1 σ2

2 (1−ρ2)

(
σ2

2 −ρσ1σ2
−ρσ1σ2 σ2

1

)

(x−µ)′Σ−1(x−µ) =
1
|Σ|

(
x1−µ1
x2−µ2

)′(
σ2

2 −ρσ1σ2
−ρσ1σ2 σ2

1

)(
x1−µ1
x2−µ2

)
UW-Madison (Statistics) Stat 609 Lecture 14 2015 12 / 17



beamer-tu-logo

=
1
|Σ|

(
x1−µ1
x2−µ2

)′(
σ2

2 (x1−µ1)−ρσ1σ2(x2−µ2)
−ρσ1σ2(x1−µ1) + σ2

1 (x2−µ2)

)
=

σ2
2 (x1−µ1)2−2ρσ1σ2(x1−µ1)(x2−µ2) + σ2

1 (x2−µ2)2

σ2
1 σ2

2 (1−ρ2)

=
(x1−µ1)2

σ2
1 (1−ρ2)

− 2ρ(x1−µ1)(x2−µ2)

σ1σ2(1−ρ2)
+

(x2−µ2)2

σ2
2 (1−ρ2)

Thus, when n = 2,

f (x) =
1

(2π)n/2|Σ|1/2 exp
(
−(x −µ)′Σ−1(x−µ)

2

)

=
exp

(
− (x1−µ1)2

2σ2
1 (1−ρ2)

+ ρ(x1−µ1)(x2−µ2)
σ1σ2(1−ρ2)

− (x2−µ2)2

2σ2
2 (1−ρ2)

)
2πσ1σ2

√
1−ρ2

which is the same as the bivariate normal pdf defined earlier.

Transformation and marginals
If X is an n-dimensional random vector ∼ N(µ,Σ) and Y = AX + b,
where A is a fixed k ×n matrix of rank k ≤ n and b is a fixed
k -dimensional vector, then Y ∼ N(Aµ + b,AΣA′).
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This can be proved by using multivariate transformation, or the mgf.
We showed that the mgf of X ∼ N(µ,Σ) is

MX (t) = eµ ′t+t ′Σt/2 t ∈Rn

From the properties of mgf, Y = AX + b has mgf

MY (t) = eb′tMX (A′t) = eb′teµ ′(A′t)+(A′t)′Σ(A′t)/2 = e(Aµ+b)′t+t ′(AΣA′)t/2,

which is exactly the mgf for N(Aµ + b,AΣA′), noting that (AΣA′)−1

exists since A has rank k ≤ n and Σ has rank n.
The result seems still hold even if AΣA′ is singular, but we have not
defined the normal distribution with a singular covariance matrix.
If we take A = (Ik 0), where Ik is the identity matrix of order k and 0 is
the k × (n−k) matrix of all 0’s, then AX is exactly the vector containing
the first k components of X and, therefore, we have shown that

If Y is multivariate normal, then any sub-vector of Y is also
normally distributed.

Is the converse true? That is, if both X and Y are normal, should the
joint pdf of (X ,Y ) be always normal?
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A counter-example
Consider

f (x ,y) =
1

2π
e−(x2+y2)/2[1 + g(x ,y)], (x ,y) ∈R2

where

g(x ,y) =

{
xy −1 < x < 1, −1 < y < 1
0 otherwise

Then f (x ,y)≥ 0. (Is it a pdf?)∫
∞

−∞

f (x ,y)dy =
1

2π

[∫
∞

−∞

e−(x2+y2)/2dy +
∫

∞

−∞

e−(x2+y2)/2g(x ,y)dy
]

=
1

2π
e−x2/2

[∫
∞

−∞

e−y2/2dy + xI(|x |< 1)
∫ 1

−1
ye−y2/2dy

]
=

1√
2π

e−x2/2

i.e., the marginal of X is N(0,1) (which also shows that f (x ,y) is a pdf).
Similarly, the pdf of Y is N(0,1).
However, this f (x ,y) is certainly not a bivariate normal pdf.

UW-Madison (Statistics) Stat 609 Lecture 14 2015 15 / 17



beamer-tu-logo

Other joint distributions may not have the property that the marginal
distributions are of the same type as the joint distribution.

Uniform distributions
A general n-dimensional uniform distribution on a set A⊂Rn has pdf

f (x) =

{
1/C x ∈ A
0 x 6∈ A

C =
∫

A
dx

For n = 1 and A = an interval, C is the length of the interval.
For n = 2, C is the area of the set A.
Consider for example n = 2 and A is the rectangle

A = [a,b]× [c,d ] = {(x ,y) ∈R2 : a≤ x ≤ b, c ≤ y ≤ d}

where a, b, c and d are constants.
In this case, the two marginal distributions are uniform distributions on
intervals [a,b] and [c,d ], since, when x ∈ [a,b],∫

∞

−∞

f (x ,y)dy =
1
C

∫ d

c
dy =

1
(b−a)(d −c)

∫ d

c
dy =

1
b−a

and
∫

∞

−∞
f (x ,y)dy = 0 when x 6∈ [a,b].
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However, if A is a disk

A = {(x ,y) ∈R2 : x2 + y2 ≤ 1}

then C = π and, when x ∈ [−1,1],∫
∞

−∞

f (x ,y)dy =
∫ √1−x2

−
√

1−x2

1
π

dy =
2
√

1−x2

π

and
∫

∞

−∞
f (x ,y)dy = 0 when x 6∈ [−1,1].

This shows that the marginal distributions are not uniform.
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