Chapter 5: Properties of a Random Sample Lecture 17: Population, random sample, and statistics

Populations, samples, and models

- One or a series of random experiments is performed.
- Some data from the experiment(s) are collected.
- Planning experiments and collecting data are not discussed in the textbook.
- Data analysis and inference: extract information from the data, interpret the results, and draw some conclusions.
- The data set is a realization of a random vector defined on a sample space.
- The distribution of the random vector is called the **population**. In some cases, a population may be a set of elements from which we draw a sample.
- The random vector that produces the data is called a **sample** from the population.
- The size of the data set is called the **sample size**.
- A population is **known** iff the distribution is completely known.
- In a statistical problem, the population is at least partially unknown.
- We would like to deduce some properties of the population based on the available sample.
- A **statistical model** is a set of assumptions on the population and is often postulated to make the analysis possible or easy.
- **•** Postulated models are often based on knowledge of the problem under consideration.
- A statistical model or population is parametric if it can be indexed by a vector of fixed dimension. Otherwise it is nonparametric.

Statistics and their distributions

- Our data set is a realization of a sample (random vector) *X* from an unknown population
- Statistic $T(X)$: A function *T* of *X*; $T(X)$ is a known value whenever *X* is known.

UW-Madison (Statistics) [Stat 609 Lecture 17](#page-0-0) 2015 2 / 1

- Statistical analysis and inference is based on various statistics, for various purposes.
- *X* itself is a statistic, but it is a trivial statistic.
- The range of a nontrivial statistic $T(X)$ is usually simpler than that of *X*, i.e., *T*(*X*) provides a "reduction".
- For example, X may be a random *n*-vector and $T(X)$ may be a random *m*-vector with an *m* much smaller than *n*.
- \bullet A statistic $T(X)$ is a random vector (element).
- \bullet If the distribution of X is unknown, then the distribution of T may also be unknown, although *T* is a known function.
- Finding the form of the distribution of *T* is one of the major problems in statistical inference.
- Since *T* is a transformation of *X*, tools we learn in Chapters 1-4 for transformations may be useful in finding the distribution or an approximation to the distribution of *T*(*X*).
- \mathbb{R}^n Approximations are often given in terms of limits, i.e., the sample size *n* increases to ∞.

Definition 5.1.1 (random sample)

We say that a set of random vectors X_1, \ldots, X_n is a random sample (of size *n*) from a population (a cdf *F*) iff (a) X_1, \ldots, X_n are independent and

(b) the cdf of X_i is F for all *i*. When (a) and (b) hold, we also say that $X_1, ..., X_n$ are iid (independent and identically distributed) or X_1, \ldots, X_n is an iid sample.

• The joint cdf of a random sample $X_1, ..., X_n$ with cdf *F* is

$$
F(x_1) \cdots F(x_n) = \prod_{i=1}^n F(x_i), \qquad x_i \in \mathcal{R}^k, \ i = 1, ..., n,
$$

where *k* is the dimension of *Xⁱ* .

- **If F** in the previous expression has a pdf or pmf f, then the same expression holds with *F* replaced by *f*.
- beamer-tu-logo A random sample is viewed as sampling from an infinite population or from a finite population with replacement so that *Xⁱ* 's are independently observed.

Sampling without replacement from a finite population

Sometimes we consider sampling without replacement from a finite population; e.g., a survey of *n* persons from a population of size *N*.

- If each person in the population has characteristic *x^j* (a *k*-dimensional vector), then a sample X_1, \ldots, X_n is *n* random vectors and the range of each X_i is $\{x_1,...,x_N\}$.
- **If sampling is without replacement, then** X_1, \ldots, X_n **can not be a** random sample because, if $X_1 = x_k$, then X_2 can not be x_k so that X_1 and X_2 are not independent.
- Is there a similar concept to "random sample"?
- \bullet X_1, \ldots, X_n is called a simple random sample of size *n* without replacement from population $\{x_1, ..., x_N\}$ iff

$$
P(X_1 = x_{i_1},..., X_n = x_{i_n}) = {N \choose n}^{-1}, \quad \text{for any } \{i_1,..., i_n\} \subset \{1,..., N\}
$$

- In a simple random sample, X_i 's have the same distribution; however, they are not independent.
- The dependence becomes weak when *N* [is](#page-3-0) [much larger than](#page-0-0) *[n](#page-0-0)*. UW-Madison (Statistics) and Statistics [Stat 609 Lecture 17](#page-0-0) **2015** 5/1

Example.

The simplest finite population is the population with *N* characteristics x_1, \ldots, x_N whose values are either 0 or 1 (binary).

In such a case the number of ones, *M*, or the proportion *M*/*N* is the only thing unknown in the population.

If X_1, \ldots, X_n is a simple random sample without replacement from this population and $Y = X_1 + \cdots + X_n$, then

$$
P(Y = y) = \begin{cases} \frac{\binom{M}{y}\binom{N-M}{n-y}}{\binom{N}{n}} & y = 0, 1, ..., n \\ 0 & \text{otherwise} \end{cases}
$$

assuming that $n < M$ and $n < N - M$.

But X_1 and X_2 are not independent, since

$$
P(X_2 = 1 | X_1 = 1) = \frac{M-1}{N-1} \neq \frac{M}{N} = P(X_2 = 1)
$$

Suppose now that sampling is with replacement so that after X_1 is sampled, it does not affect sampling $X_2, ..., X_n$.

Then, X_1, \ldots, X_n are *n* independent Bernoulli random variables In this case, *Y* follows the *binomial*(*n*,*M*/*N*) d[ist](#page-4-0)r[ibution.](#page-0-0)

UW-Madison (Statistics) [Stat 609 Lecture 17](#page-0-0) 2015 6 / 1

Some important statistics

As we have defined earlier, a statistic is a function (possibly vector-valued) of a sample $X_1, ..., X_n$ (not necessary a random sample or a simple random sample).

The following are some important statistics used in applications.

• The **sample mean** is the (simple) average of X_1, \ldots, X_n , and is denoted by

$$
\bar{X}=\frac{X_1+\cdots+X_n}{n}=\frac{1}{n}\sum_{i=1}^n X_i
$$

• When $n \geq 2$ and $k = 1$, the **sample variance** is defined as

$$
S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2
$$

The $\mathsf{sample}\ \mathsf{standard}\ \mathsf{deviation}\ \mathsf{is}\ \mathsf{defined}\ \mathsf{as}\ \mathsf{S}\!=\!$ √ *S*2. When $n > 2$ and $k > 2$, the **sample covariance matrix** is

$$
S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})(X_{i} - \bar{X})'
$$

The diagonal elements of *S* ² are sample variances and the off-diagonal elements are called **sample [co](#page-5-0)[variances](#page-0-0)**[.](#page-0-0)

UW-Madison (Statistics) [Stat 609 Lecture 17](#page-0-0) 2015 7/1

• When $k = 1$, the *j*th **sample moment** is defined as

$$
M_j = \frac{1}{n} \sum_{i=1}^n X_i^j
$$
, $k = 1, 2, ...$

and the *j*th **sample central moment** is defined as

$$
\tilde{M}_j = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^j
$$
, $k = 2, 3, ...$

• When $k = 1$, the **empirical cdf** is defined as

$$
F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \leq x) \qquad x \in \mathcal{R},
$$

where $I(X_i \leq x) = 1$ if $X_i \leq x$ and $= 0$ if $X_i > x$, the indicator function of the set $\{X_i \leq x\}$.

The empirical cdf is a discrete cdf, i.e., a step function with a jump of size *n*^{−1} at each *X_i*.

It can be used to estimate the unknown cdf *F*.

beamer-tu-logo For a fixed $x \in \mathcal{R}$, since each $I(X_i \leq x)$ is a Bernoulli random variable and $I(X_i \leq x)$, $i = 1, ..., n$, are independent and have the sample probability $P(I(X_i \le x) = 1) = P(X_i \le x) = F(x)$, the distribution of $nF_n(x)$ is *binomial*($n, F(x)$).

UW-Madison (Statistics) [Stat 609 Lecture 17](#page-0-0) 2015 8/1

Sums formed from a random sample are useful statistics. We now study their properties.

Lemma 5.2.5.

Let $X_1, ..., X_n$ be a random sample from a population and let $g(x)$ be a function such that $E[g(X_1)]$ and $Var(g(X_1))$ exist. Then,

$$
E\left[\sum_{i=1}^n g(X_i)\right] = nE[g(X_1)] \quad \text{and} \quad \text{Var}\left(\sum_{i=1}^n g(X_i)\right) = n\text{Var}(g(X_1))
$$

Proof.

The proof is simple and omitted.

Theorem 5.2.6.

beamer-tu-logo Let $X_1,...,X_n$ be a random sample from a population F on $\mathscr R$ with mean μ and variance $\sigma^2.$ Then a. $E(\bar{X}) = \mu$; b. $\textsf{Var}(\bar{X}) = \sigma^2/n;$ c. $E(S^2) = \sigma^2$.

Proof.

Letting $g(X_i) = X_i/n$, we can apply Lemma 5.2.5 to obtain

$$
E(\bar{X}) = E\left[\sum_{i=1}^{n} g(X_i)\right] = nE[g(X_1)] = nE(X_1/n) = E(X_1) = \mu
$$

$$
\operatorname{Var}(\bar{X}) = \operatorname{Var}\left[\sum_{i=1}^{n} g(X_i)\right] = n \operatorname{Var}(g(X_1)) = n \operatorname{Var}(X_1/n) = \frac{1}{n} \operatorname{Var}(X_1) = \frac{\sigma^2}{n}
$$

To show c, we use the formula (derived in the last lecture)

$$
(n-1)S^{2} = \sum_{i=1}^{n} [(X_{i} - \mu) - (\bar{X} - \mu)]^{2} = \sum_{i=1}^{n} (X_{i} - \mu)^{2} - n(\bar{X} - \mu)^{2}
$$

Applying Lemma 5.2.5 with $g(X_i) = (X_i - \mu)^2,$ we obtain

$$
(n-1)E(S^2) = E[(n-1)S^2] = E\left[\sum_{i=1}^n (X_i - \mu)^2\right] - E[n(\bar{X} - \mu)^2]
$$

= $nE[(X_1 - \mu)^2] - nE[(\bar{X} - \mu)^2] = n\text{Var}(X_1) - n\text{Var}(\bar{X})$
= $(n-1)\sigma^2$

The results in Theorem 5.2.6 are about the moments of \bar{X} and S^2 . Since the sample mean \overline{X} is a sum of independent random variable/vectors divided by a constant *n*, the results about a sum in Chapter 4 is useful to obtain the distribution of X.

Example 5.2.8.

- As a direct consequence of Theorem 4.2.14 (additivity of normal distributions), we know that, if $X_1, ..., X_n$ is a random sample from $N(\mu, \sigma^2)$, then $\bar{X} \sim N(\mu, \sigma^2/n)$.
- **•** From the additivity of gamma distributions, we know that, if X_1, \ldots, X_n is a random sample from *gamma*(α, β), then $\bar{X} \sim$ *gamma*($n\alpha$, β/n).
- **o** If $X_1, ..., X_n$ is a random sample from *Poisson*(λ), then $n\bar{X} \sim Poisson(n\lambda)$.
- \bullet If X_1, \ldots, X_n is a random sample from *binomial*(m, p), then $n\bar{X} \sim binomial(nm, p)$.
- **If** $X_1, ..., X_n$ is a random sample from *Cauchy*(μ, σ), then the sample mean $\bar{X} \sim$ *Cauchy*(μ , σ)!

UW-Madison (Statistics) and Statistics [Stat 609 Lecture 17](#page-0-0) **2015** 11 / 12015 11 / 12015 11 / 12015 11 / 12015 12015

The last result can be proved as follows.

Let $X_1,...,X_n$ be a random sample from a population with chf $\phi(t)$. Then the chf of the sample mean is

 $\phi_{\bar{X}}(t) = [\phi(t/n)]^n$.

Cauchy(μ , σ) has chf $\phi(t) = e^{i\mu t - \sigma|t|}$ and hence

 $\phi_{\bar{X}}(t) = [\phi(t/n)]^n = (e^{i\mu t/n - \sigma |t/n|})^n = e^{i\mu t - \sigma |t|} = \phi(t), \qquad t \in \mathcal{R}$

The additivity of $Cauchy(\mu,\sigma)$ and $\mathcal{N}(\mu,\sigma^2)$ distributions are in fact the special case of the following result.

Theorem.

Let $\alpha \in [1,2]$ be a fixed constant. The class of distributions $\mathsf{corresponding}$ to the class of chf's $e^{i\mu t - \sigma |t|^{\alpha}}, \, t \in \mathscr{R},$ which is indexed by $\mu \in \mathscr{R}$ and $\sigma > 0$, is additive.

beamer-tu-logo Note that the normal distribution family is the special case of $\alpha = 2$ and the Cauchy distribution family is the special case of $\alpha = 1$.

Location-scale families

Suppose that $X_1, ..., X_n$ is a random sample from a population in a location-scale family, i.e., the pdf of X_i is of the form $\sigma^{-1} f((x - \mu) / \sigma)$ with a known pdf *f* and parameters $\mu \in \mathcal{R}$ and $\sigma > 0$.

From the discussion in Chapter 3, there exist random variables *Z*₁,...,*Z*_{*n*} such that $X_i = σZ_i + μ$ and the pdf of each *Z_i* is *f*(*x*). Furthermore $Z_1, ..., Z_n$ are independent and, hence, $Z_1, ..., Z_n$ is a

random sample from the population with pdf *f*(*x*).

The sample mean \bar{X} and \bar{Z} are related by

$$
\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} \sum_{i=1}^{n} (\sigma Z_i + \mu) = \frac{\sigma}{n} \sum_{i=1}^{n} Z_i + \mu = \sigma \bar{Z} + \mu
$$

Therefore, if we find that $g(x)$ is the pdf of $\bar{Z},$ then $\sigma^{-1}g((x-\mu)/\sigma)$ is the pdf of \bar{X} .

This argument has been used in the discussion of a random sample from the Cauchy distribution family.

The pdf *g* may or may not be of a familiar pdf.

Exponential families

When the population of a random sample is in an exponential family, the joint distribution of some sums of functions of the sample can be derived.

Theorem 5.2.11.

Suppose that $X_1, ..., X_n$ is a random sample from a pdf or pmf

$$
f_{\theta}(x) = h(x)c(\theta) \exp \left(\sum_{j=1}^{k} w_j(\theta) t_j(x)\right)
$$

in an exponential family with parameter $\theta \in \Theta$. Define statistics

$$
T_j = \sum_{i=1}^n t_j(X_i), \qquad j = 1, ..., k
$$

If the set $\{(\textit{w}_1(\theta),...,\textit{w}_k(\theta)):\theta\in\Theta\}$ contains an open subset of $\mathscr{R}^k,$ then the distribution of $T = (T_1, ..., T_k)$ is in an exponential family with pdf

$$
g_{\theta}(t_1,...,t_k) = H(t_1,...,t_k)[c(\theta)]^n \exp\left(\sum_{j=1}^k w_j(\theta)t_j\right)
$$

Proof for the discrete case

The joint pmf of $X_1, ..., X_n$ is

$$
\prod_{i=1}^n f_{\theta}(x_i) = \prod_{i=1}^n \left[h(x_i) c(\theta) \exp \left(\sum_{j=1}^k w_j(\theta) t_j(x_i) \right) \right]
$$
\n
$$
= \prod_{i=1}^n h(x_i) [c(\theta)]^n \exp \left(\sum_{j=1}^k w_j(\theta) \sum_{i=1}^n t_j(x_i) \right)
$$

Then, the pmf of $T = (T_1, ..., T_k)$ is

$$
g_{\theta}(t_1,...,t_k) = P(T_1 = t_1,...,T_k = t_k) = \sum_{t_j = \sum_i t_j(x_i), j=1,...,k} \prod_{i=1}^n f_{\theta}(x_i)
$$

\n
$$
= \sum_{t_j = \sum_i t_j(x_i), j=1,...,k} \prod_{i=1}^n h(x_i) [c(\theta)]^n \exp \left(\sum_{j=1}^k w_j(\theta) \sum_{i=1}^n t_j(x_i) \right)
$$

\n
$$
= \left[\sum_{t_j = \sum_i t_j(x_i), j=1,...,k} \prod_{i=1}^n h(x_i) \right] [c(\theta)]^n \exp \left(\sum_{j=1}^k w_j(\theta) t_j \right)
$$

UW-Madison (Statistics) [Stat 609 Lecture 17](#page-0-0) 2015 15 / 1

Example 5.2.12

If X_1, \ldots, X_n is a random sample from Bernoulli trials, the joint pmf is

$$
\prod_{i=1}^{n} I(x_i = 1 \text{ or } 0)p^{x_i}(1-p)^{1-x_i}
$$
\n
$$
= \prod_{i=1}^{n} \left[I(x_i = 1 \text{ or } 0)(1-p) \exp\left(x_i \log \frac{p}{1-p}\right) \right]
$$
\n
$$
= \left[\prod_{i=1}^{n} I(x_i = 1 \text{ or } 0) \right] (1-p)^n \exp\left(\log \frac{p}{1-p} \sum_{i=1}^{n} x_i\right)
$$

$$
h(x_1,...,x_n) = \prod_{i=1}^n I(x_i = 1 \text{ or } 0), \qquad c(\theta) = (1-\rho), \qquad w(\theta) = \log \frac{\rho}{1-\rho}
$$

The sum $T = X_1 + \cdots + X_n$ has pmf

$$
P(T = t) = \sum_{x_1 + \dots + x_n = t} \prod_{i=1}^n I(x_i = 1 \text{ or } 0)(1-p)^n \exp\left(t \log \frac{p}{1-p}\right)
$$

We know that $T \sim binomial(n, p)$.