Lecture 18: Sampling distributions

In many applications, the population is one or several normal distributions (or approximately).

We now study properties of some important statistics based on a random sample from a normal distribution.

If $X_1,...,X_n$ is a random sample from $\mathcal{N}(\mu,\sigma^2),$ then the joint pdf is

$$
\frac{1}{(2\pi)^{n/2}\sigma^n}\exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2\right),\qquad x_i\in\mathcal{R}, i=1,...,n
$$

Theorem 5.3.1.

beamer-tu-logo Let $X_1,...,X_n$ be a random sample from $\mathsf{N}(\mu,\sigma^2)$ and let \bar{X} and S^2 be the sample mean and sample variance. Then a. \bar{X} and S^2 are independent random variables; b. $\bar{X} \sim N(\mu, \sigma^2/n);$ c. (*n*−1)*S* ²/σ ² has the chi-square distribution with *n*−1 degrees of freedom.

Proof.

We have already established property b (Chapter 4).

To prove property a, it is enough to show the independence of \bar{Z} and *S*²_z, the sample mean and variance based on $Z_i = (X_i - \mu)/\sigma \sim N(0,1)$, $i = 1, ..., n$, because we can apply Theorem 4.6.12 and

$$
\bar{X} = \sigma \bar{Z} - \mu
$$
 and $S^2 = \frac{\sigma^2}{n-1} \sum_{i=1}^n (Z_i - \bar{Z})^2 = \sigma^2 S_Z^2$

Consider the transformation

$$
Y_1 = \bar{Z}
$$
, $Y_i = Z_i - \bar{Z}$, $i = 2, ..., n$,

Then

$$
Z_1 = Y_1 - (Y_2 + \cdots + Y_n), \quad Z_i = Y_i + Y_1, \quad i = 2, ..., n,
$$

and 

$$
\left|\frac{\partial(Z_1,...,Z_n)}{\partial(Y_1,...,Y_n)}\right|=\frac{1}{n}
$$

Since the joint pdf of $Z_1, ..., Z_n$ is

$$
\frac{1}{(2\pi)^{n/2}}\exp\left(-\frac{1}{2}\sum_{i=1}^nz_i^2\right) \qquad z_i\in\mathscr{R}, i=1,...,n,
$$

UW-Madison (Statistics) [Stat 609 Lecture 18](#page-0-0) 2015 2/18 2015 2/18

the joint pdf of $(Y_1, ..., Y_n)$ is

$$
\frac{n}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}\left(y_1 - \sum_{i=2}^n y_i\right)^2\right) \exp\left(-\frac{1}{2}\sum_{i=2}^n (y_i + y_1)^2\right) \\
= \frac{n}{(2\pi)^{n/2}} \exp\left(-\frac{n}{2}y_1^2\right) \exp\left(-\frac{1}{2}\left[\sum_{i=2}^n y_i^2 + \left(\sum_{i=2}^n y_i\right)^2\right]\right) \qquad j \in \mathcal{R} \\
= 1, ..., n.
$$

Since the first exp factor involves y_1 only and the second exp factor involves $y_2, ..., y_n$, we conclude (Theorem 4.6.11) that Y_1 is independent of $(Y_2, ..., Y_n)$. **Since**

$$
Z_1 - \bar{Z} = -\sum_{i=2}^n (Z_i - \bar{Z}) = -\sum_{i=2}^n Y_i \text{ and } Z_i - \bar{Z} = Y_i, \quad i = 2, ..., n,
$$

we have

$$
S_Z^2 = \frac{1}{n-1} \sum_{i=1}^n (Z_i - \bar{Z})^2 = \frac{1}{n-1} \left(\sum_{i=2}^n Y_i \right)^2 + \frac{1}{n-1} \sum_{i=2}^n Y_i^2
$$

which is a function of $(Y_2, ..., Y_n)$. Hence, \bar{Z} and S_Z^2 are independent by Theorem 4.6.12. This proves a.

Finally, we prove c (the proof in the textbook can be simplified). Note that

$$
(n-1)S^{2} = \sum_{i=1}^{n}(X_{i}-\bar{X})^{2} = \sum_{i=1}^{n}(X_{i}-\mu+\mu-\bar{X})^{2} = \sum_{i=1}^{n}(X_{i}-\mu)^{2}+n(\mu-\bar{X})^{2}
$$

Then

$$
n\left(\frac{\bar{X}-\mu}{\sigma}\right)^2+\frac{(n-1)S^2}{\sigma^2}=\sum_{i=1}^n\left(\frac{X_i-\mu}{\sigma}\right)^2=\sum_{i=1}^n Z_i^2
$$

Since $Z_i \sim N(0,1)$ and $Z_1, ..., Z_n$ are independent, we have previously shown that

- each $Z_i^2 \sim$ chi-square with degree of freedom 1,
- the sum $\sum_{i=1}^n Z_i^2 \sim$ chi-square with degrees of freedom *n*, and its mgf is (1−2*t*) −*n*/2 , *t* < 1/2,
- beamer-tu-logo $√n(\bar{X}-\mu)/σ ~ N(0,1)$ and hence $n[(\bar{X}-\mu)/σ]^2 ~$ chi-square with degree of freedom 1.

The left hand side of the previous expression is a sum of two independent random variables and, hence, if *f*(*t*) is the mgf of $(n-1)S^2/\sigma^2$, then the mgf of the sum on the left hand side is $(1-2t)^{-1/2}f(t)$

Since the right hand side of the previous expression has mgf (1−2*t*) −*n*/2 , we must have

$$
f(t) = (1-2t)^{-n/2}/(1-2t)^{-1/2} = (1-2t)^{-(n-1)/2} \qquad t < 1/2
$$

This is the mgf of the chi-square with degrees of freedom *n* −1, and the result follows.

The independence of \bar{X} and S^2 can be established in other ways.

t-distribution

Let $X_1, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$.

Using the result in Chapter 4 about a ratio of independent normal and chi-square random variables, the ratio

$$
\frac{\bar{X} - \mu}{S/\sqrt{n}} = \frac{(\bar{X} - \mu)/(\sigma/\sqrt{n})}{\sqrt{[(n-1)S^2/\sigma^2]/(n-1)}}
$$

UW-Madison (Statistics) [Stat 609 Lecture 18](#page-0-0) 2015 5/18

has the central t-distribution with *n*−1 degrees of freedom.

What is the distribution of $\mathcal{T}_0 = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$ $\frac{\lambda-\mu_0}{S/\sqrt{n}}$ for a fixed known constant $\mu_0 \in \mathscr{R}$ which is not necessarily equal to μ ?

Note that *T* is not a statistic while T_0 is a statistic.

Since $\bar{X} - \mu_0 \sim \mathcal{N}(\mu - \mu_0, \sigma^2/\mathit{n})$, from the discussion in Chapter 4 we know that the distribution of T_0 is the noncentral t-distribution with degrees of freedom *n*−1 and noncentrality parameter $\delta = \sqrt{n}(\mu - \mu_0)/\sigma$.

F-distribution

beamer-tu-logo Let $X_1, ..., X_n$ be a random sample from $\mathcal{N}(\mu_X, \sigma_X^2), Y_1, ..., Y_m$ be a random sample from $N(\mu_{y}, \sigma_{y}^{2}), X_{i}$'s and Y_{i} 's be independent, and S_{x}^{2} and S^2_y be the sample variances based on X_i 's and Y_i 's, respectively. From the previous discussion, $(n\!-\!1)S_{\!X}^2/\sigma_{\!X}^2$ and $(m\!-\!1)S_{\!Y}^2/\sigma_{\!Y}^2$ are both chi-square distributed, and the ratio $\frac{S_\mathsf{x}^2/\sigma_\mathsf{x}^2}{S_\mathsf{y}^2/\sigma_\mathsf{y}^2}$ has the F-distribution with degrees of freedom $n-1$ and $m-1$ (denoted by $F_{n-1,m-1}$).

Theorem 5.3.8.

Let $F_{p,q}$ denote the F-distribution with degrees of freedom p and q . a. If *X* ∼ $F_{p,q}$, then $1/X \sim F_{q,p}$.

b. If *X* has the t-distribution with degrees of freedom *q*, then *X* ² ∼ *F*1,*q*. c. If *X* ∼ *F*_{*p*.*q*}, then $(p/q)X/[1+(p/q)X]$ ∼ *beta* $(p/2,q/2)$.

Proof.

We only need to prove c, since properties a and b follow directly from the definitions of F- and t-distributions.

Note that
$$
Z = (p/q)X
$$
 has pdf
\n
$$
\frac{\Gamma[(p+q)/2]}{\Gamma(p/2)\Gamma(q/2)} \frac{z^{p/2-1}}{(1+z)^{(p+q)/2}}, \qquad z > 0
$$
\nIf $u = z/(1+z)$, then $z = u/(1-u)$, $dz = (1-u)^{-2}du$, and the pdf of $U = Z/(1+Z)$ is
\n
$$
\frac{\Gamma[(p+q)/2]}{\Gamma(p/2)\Gamma(q/2)} \left(\frac{u}{1-u}\right)^{p/2-1} \frac{1}{(1-u)^{-(p+q)/2}} \frac{1}{(1-u)^2}
$$
\n
$$
= \frac{\Gamma[(p+q)/2]}{\Gamma(p/2)\Gamma(q/2)} u^{p/2-1} (1-u)^{q/2-1} \qquad u > 0
$$

UW-Madison (Statistics) [Stat 609 Lecture 18](#page-0-0) 2015 7/18

Definition 5.4.1 (Order statistics).

The order statistics of a random sample of univariate $X_1, ..., X_n$ are the sample values placed in a non-decreasing order, and they are denoted by *X*(1) ,...,*X*(*n*) .

Once $X_{(1)},...,X_{(n)}$ are given, the information left in the sample is the particular positions from which *X*(*i*) is observed, *i* = 1,...,*n*.

Functions of order statistics

Many useful statistics are functions of order statistics.

• Both sample mean and variance are functions of order statistics, because

$$
\sum_{i=1}^{n} X_i = \sum_{i=1}^{n} X_{(i)} \text{ and } \sum_{i=1}^{n} X_i^2 = \sum_{i=1}^{n} X_{(i)}^2
$$

in the sample and should reflect the dispersion in the population. $\|$ The $\mathsf{sample\ range}\ R = X_{(n)} - X_{(1)},$ the distance between the smallest and largest observations, is a measure of the dispersion

イロンス 何 メスランス ラン

 290

• For any fixed $p \in (0,1)$, the (100p)th **sample percentile** is the observation such that about *np* of the observations are less than this observation and *n*(1−*p*) of the observations are greater:

$X_{(1)}$	if $p \leq (2n)^{-1}$
$X_{(\{np\})}$	if $(2n)^{-1} < p < 0.5$
$X_{((n+1)/2)}$	if $p = 0.5$ and <i>n</i> is odd
$(X_{(n/2)} + X_{(n/2+1)})/2$	if $p = 0.5$ and <i>n</i> is even
$X_{(n+1-\{n(1-p)\})}$	if $0.5 < p < 1 - (2n)^{-1}$
$X_{(n)}$	if $p \geq 1 - (2n)^{-1}$

where {*b*} is the number *b* rounded to the nearest integer, i.e., if *k* is an integer and $k - 0.5 \le b < k + 0.5$, then $\{b\} = k$.

Other textbooks may define sample percentiles differently.

- The **sample median** is the 50th sample percentile. It is a measure of location, alternative to the sample mean.
- beamer-tu-logo The **sample lower quartile** is the 25th sample percentile and the **upper quartile** is the 75th sample percentile.

The **sample mid-ra[n](#page-0-0)ge** is defined as $V = (X_{(1)} + X_{(n)})/2$ $V = (X_{(1)} + X_{(n)})/2$ [.](#page-0-1)

UW-Madison (Statistics) [Stat 609 Lecture 18](#page-0-0) 2015 9/18 2015 9/18

If X_1, \ldots, X_n is a random sample of discrete random variables, then the calculation of probabilities for the order statistics is mainly a counting task.

Theorem 5.4.3.

Let $X_1, ..., X_n$ be a random sample from a discrete distribution with pmf $f(x_i) = p_i$, where $x_1 < x_2 < \cdots$ are the possible values of X_1 . Define

$$
P_0 = 0, P_1 = p_1, ..., P_i = p_1 + \cdots + p_i, ...
$$

Then, for the *j*th order statistic *X*(*j*) ,

$$
P(X_{(j)} \leq x_i) = \sum_{k=j}^{n} {n \choose k} P_i^{k} (1 - P_i)^{n-k}
$$

$$
P(X_{(j)} = x_i) = \sum_{k=j}^{n} {n \choose k} [P_i^k (1 - P_i)^{n-k} - P_{i-1}^k (1 - P_{i-1})^{n-k}]
$$

Proof.

beamer-tu-logo For any fixed *i*, let *Y* be the number of X_1, \ldots, X_n that are less than or equal to *xⁱ* .

UW-Madison (Statistics) [Stat 609 Lecture 18](#page-0-0) 2015 10/18

If the event $\{X_i \le x_i\}$ is a "success", then *Y* is the number of successes in *n* trials and is distributed as *binomial*(*n*,*Pi*). Then, the result follows from $\{X_{(i)} \leq x_i\} = \{Y \geq j\},\$

$$
P(X_{(j)} \le x_i) = P(Y \ge j) = \sum_{k=j}^{n} {n \choose k} P_i^{k} (1 - P_i)^{n-k}
$$

and $P(X_{(i)} = x_i) = P(X_{(i)} \le x_i) - P(X_{(i)} \le x_{i-1}).$

If X_1, \ldots, X_n is a random sample from a continuous population with pdf *f*(*x*), then $P(X_{(1)} < X_{(2)} < \cdots < X_{(n)}) = 1$

i.e., we do not need to worry about ties, and the joint pdf of $(X_{(1)},...,X_{(n)})$ is

$$
h(x_1,...,x_n) = \begin{cases} n!f(x_1)\cdots f(x_n) & x_1 < x_2 < \cdots < x_n \\ 0 & \text{otherwise} \end{cases}
$$

 \mathbf{b} The *n*! naturally comes into this formula because, for any set of values *x*1,...,*xn*, there are *n*! equally likely assignments for these values to X_1, \ldots, X_n that all yield the same values f[or](#page-9-0) the or[de](#page-11-0)[r](#page-9-0) [st](#page-10-0)[a](#page-11-0)[tis](#page-0-0)[tic](#page-0-1)[s.](#page-0-0)

Theorem 5.4.4.

Let $X_{(1)},...,X_{(n)}$ be the order statistics of a random sample $X_1,...,X_n$ from a continuous population with cdf *F* and pdf *f*. Then the pdf of $X_{(j)}$ is

$$
f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} [F(x)]^{j-1} [1 - F(x)]^{n-j} f(x) \qquad x \in \mathcal{R}
$$

Proof.

Let *Y* be the number of $X_1, ..., X_n$ less than or equal to *x*. Then, similar to the proof of Theorem 5.4.3, *Y* ∼ *binomial*(*n*,*F*(*x*)), ${X_{(i)} \le x} = {Y \ge j}$ and

$$
F_{X_{(j)}}(x) = P(X_{(j)} \le x) = P(Y \ge j) = \sum_{k=j}^{n} {n \choose k} [F(x)]^{k} [1 - F(x)]^{n-k}
$$

We now obtain the pdf of $X_{(j)}$ by differentiating the cdf $F_{X_{(j)}}$:

$$
f_{X_{(j)}}(x) = \frac{d}{dx} F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} \frac{d}{dx} [F(x)]^{k} [1 - F(x)]^{n-k}
$$

$$
\begin{split}\n&= \sum_{k=j}^{n} {n \choose k} \{k[F(x)]^{k-1} [1 - F(x)]^{n-k} - (n-k)[F(x)]^{k} [1 - F(x)]^{n-k-1}\} f(x) \\
&= {n \choose j} j[F(x)]^{j-1} [1 - F(x)]^{n-j} f(x) + \sum_{l=j+1}^{n} {n \choose l} l[F(x)]^{l-1} [1 - F(x)]^{n-l} f(x) \\
&- \sum_{k=j}^{n-1} {n \choose k} (n-k)[F(x)]^{k} [1 - F(x)]^{n-k-1} f(x) \\
&= \frac{n!}{(j-1)!(n-j)!} [F(x)]^{j-1} [1 - F(x)]^{n-j} f(x) \\
&+ \sum_{k=j}^{n-1} {n \choose k+1} (k+1)[F(x)]^{k} [1 - F(x)]^{n-k-1} f(x) \\
&- \sum_{k=j}^{n-1} {n \choose k} (n-k)[F(x)]^{k} [1 - F(x)]^{n-k-1} f(x)\n\end{split}
$$

The result follows from the fact that the last two terms cancel, because

$$
\binom{n}{k+1}(k+1) = \frac{n!}{k!(n-k-1)!} = \binom{n}{k}(n-k)
$$

UW-Madison (Statistics) [Stat 609 Lecture 18](#page-0-0) 2015 13/18

Example 5.4.5.

Let $X_1, ..., X_n$ be a random sample from *uniform*(0,1) so that $f(x) = 1$ and $F(x) = x$ for $x \in [0, 1]$. By Theorem 5.4.4, the pdf of $X_{(j)}$ is

$$
\frac{n!}{(j-1)!(n-j)!}x^{j-1}(1-x)^{n-j} = \frac{\Gamma(n+1)}{\Gamma(j)\Gamma(n-j+1)}x^{j-1}(1-x)^{n-j+1-1} \qquad 0 < x < 1
$$
\nwhich is the pdf of beta(j, n-j+1).

Theorem 5.4.6.

Let $X_{(1)},...,X_{(n)}$ be the order statistics of a random sample $X_1,...,X_n$ from a continuous population with cdf *F* and pdf *f*. Then the joint pdf of $X_{(i)}$ and $X_{(j)},\, 1\leq i < j \leq n,$ is

$$
f_{X_{(i)},X_{(j)}}(x,y) = \frac{n!}{(i-1)!(j-i-1)!(n-j)!}[F(x)]^{i-1}[F(y)-F(x)]^{j-i-1} \times [1-F(y)]^{n-j}f(x)f(y) \qquad x < y, (x,y) \in \mathcal{R}^2
$$

The proof is left to Exercise 5.26.

Example 5.4.7.

Let $X_1,...,X_n$ be a random sample from *uniform*(0,*a*), $R = X_{(n)} - X_{(1)}$ be the range, and $\mathsf{V}=(\mathsf{X}_{(1)}+\mathsf{X}_{(n)})/2$ be the midrange. We want to obtain the joint pdf of *R* and *V* as well as the marginal distributions of *R* and *V*.

By Theorem 5.4.6, the joint pdf of $\mathcal{Z}=\mathcal{X}_{(1)}$ and $\mathcal{Y}=\mathcal{X}_{(n)}$ is

$$
f_{Z,Y}(z,y) = \frac{n(n-1)}{a^2} \left(\frac{y}{a} - \frac{z}{a}\right)^{n-2} = \frac{n(n-1)(y-z)^{n-2}}{a^n}, \quad 0 < z < y < a
$$

Since $R = Y - Z$ and $V = (Y + Z)/2$, we obtain $Z = V - R/2$ and

$$
Y = V + R/2,
$$

$$
\left|\frac{\partial(Z,Y)}{\partial(R,V)}\right| = \left|\begin{array}{cc} -\frac{1}{2} & 1\\ \frac{1}{2} & 1 \end{array}\right| = -1
$$

The transformation from (*Z*,*Y*) to (*R*,*V*) maps the sets

 $\{(z,y): 0 < z < y < a\} \rightarrow \{(r,v): 0 < r < a, r/2 < v < a-r/2\}$

beamer-tu-logo Obviously $0 < r < a$, and for a fixed *r*, the smallest value of *v* is $r/2$ (when $z = 0$ and $y = r$) and the largest value of *v* is $a - r/2$ (when *z* = *a*−*r* and *y* = *a*).

UW-Madison (Statistics) [Stat 609 Lecture 18](#page-0-0) 2015 15/18

Thus, the joint pdf of *R* and *V* is

$$
f_{R,V}(r,v)=\frac{n(n-1)r^{n-2}}{a^n}, \qquad 0
$$

The marginal pdf of *R* is

$$
f_R(r) = \int_{r/2}^{a-r/2} \frac{n(n-1)r^{n-2}}{a^n} dv = \frac{n(n-1)r^{n-2}(a-r)}{a^n}, \qquad 0 < r < a
$$

The marginal pdf of *V* is

$$
f_V(v) = \int_0^{2v} \frac{n(n-1)r^{n-2}}{a^n} dr = \frac{n(2v)^{n-1}}{a^n} \quad 0 < v < a/2
$$

=
$$
\int_0^{2(a-v)} \frac{n(n-1)r^{n-2}}{a^n} dr = \frac{n(2(a-v)^{n-1}}{a^n} \quad a/2 < v < a
$$

because the set where $f_{R,V}(r, v) > 0$ is

$$
\{(r,v): 0 < r < a, r/2 < v < a-r/2\}
$$

= { $(r,v): 0 < v \le a/2, 0 < r < 2v$ }
 $\bigcup \{(r,v): a/2 < v \le a, 0 < r < 2(a-v)\}$

UW-Madison (Statistics) [Stat 609 Lecture 18](#page-0-0) 2015 16/18

Example.

Let $X_1, ..., X_n$ be a random sample from *uniform*(0,1). We want to find the distribution of $X_1/X_{(1)}.$ For $s > 1$,

$$
P\left(\frac{X_1}{X_{(1)}} > s\right) = \sum_{i=1}^n P\left(\frac{X_1}{X_{(1)}} > s, X_{(1)} = X_i\right)
$$

\n
$$
= \sum_{i=2}^n P\left(\frac{X_1}{X_{(1)}} > s, X_{(1)} = X_i\right)
$$

\n
$$
= (n-1)P\left(\frac{X_1}{X_{(1)}} > s, X_{(1)} = X_n\right)
$$

\n
$$
= (n-1)P(X_1 > sX_n, X_2 > X_n, ..., X_{n-1} > X_n)
$$

\n
$$
= (n-1)P(sX_n < 1, X_1 > sX_n, X_2 > X_n, ..., X_{n-1} > X_n)
$$

\n
$$
= (n-1)\int_0^{1/s} \left[\int_{sX_n}^1 \left(\prod_{i=2}^{n-1} \int_{x_n}^1 dx_i\right) dx_1\right] dx_n
$$

\n
$$
= (n-1)\int_0^{1/s} (1-x_n)^{n-2} (1-sx_n) dx_n
$$

UW-Madison (Statistics) [Stat 609 Lecture 18](#page-0-0) 2015 17/18

Thus, for $s > 1$,

$$
\frac{d}{ds}P\left(\frac{X_1}{X_{(1)}} \le s\right) = \frac{d}{ds}\left[1 - (n-1)\int_0^{1/s} (1-t)^{n-2}(1-st)dt\right]
$$

$$
= (n-1)\int_0^{1/s} (1-t)^{n-2}t dt
$$

$$
= (n-1)\int_0^{1/s} (1-t)^{n-2}t dt - (n-1)\int_0^{1/s} (1-t)^{n-1} dt
$$

$$
= (n-1)\int_0^{1/s} (1-t)^{n-2}t dt - (n-1)\int_0^{1/s} (1-t)^{n-1} dt
$$

$$
= 1 - \left(1 - \frac{1}{s}\right)^{n-1} - \frac{n-1}{n}\left[1 - \left(1 - \frac{1}{s}\right)^{n-1}\right]
$$

For *s* ≤ 1, obviously

$$
P\left(\frac{X_1}{X_{(1)}} \le s\right) = 0 \qquad \frac{d}{ds}P\left(\frac{X_1}{X_{(1)}} \le s\right) = 0
$$

 $\overline{1}$

 -1

Ŧ -

Ξ

beamer-tu-logo

 $\frac{1}{2}$