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Lecture 19: Convergence
Asymptotic approach

In statistical analysis or inference, a key to the success of finding a
good procedure is being able to find some moments and/or
distributions of various statistics.
In many complicated problems we are not able to find exactly the
moments or distributions of given statistics.
When the sample size n is large, we may approximate the
moments and distributions of statistics, using asymptotic tools,
some of which are studied in this course.
In an asymptotic analysis, we consider a sample X = (X1, ...,Xn)
not for fixed n, but as a member of a sequence corresponding to
n = n0,n0 + 1, ..., and obtain the limit of the distribution of an
appropriately normalized statistic or variable Tn(X ) as n→ ∞.
The limiting distribution and its moments are used as
approximations to the distribution and moments of Tn(X ) in the
situation with a large but actually finite n.
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This leads to some asymptotic statistical procedures and
asymptotic criteria for assessing their performances.
The asymptotic approach is not only applied to the situation where
no exact method (the approach considering a fixed n) is available,
but also used to provide a procedure simpler (e.g., in terms of
computation) than that produced by the exact approach.
In addition to providing more theoretical results and/or simpler
procedures, the asymptotic approach requires less stringent
mathematical assumptions than does the exact approach.

Definition 5.5.1 (convergence in probability)
A sequence of random variables Zn, i = 1,2, ..., converges in
probability to a random variable Z iff for every ε > 0,

lim
n→∞

P(|Zn−Z | ≥ ε) = 0.

A sequence of random vectors Zn converges in probability to a random
vector Z iff each component of Zn converges in probability to the
corresponding component of Z .
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Theorem 5.5.2 (Weak Law of Large Numbers (WLLN))
Let X1, ...,Xn be iid random variables with E(Xi) = µ and finite
Var(Xi) = σ2. Then, the sample mean X̄ converges in probability to µ.

Proof.
By Chebychev’s inequality and Theorem 5.2.6,

P(|X̄ −µ| ≥ ε)≤ Var(X̄ )

ε2 =
σ2

nε2

which converges to 0 as n→ ∞.

Remarks.
1 Although we write the sample mean as X̄ , it depends on n.
2 The WLLN states that the probability of the sample mean X̄ being

close to the population mean µ converges to 1.
3 The existence of a finite variance σ2 is not needed; we only need

the existence of E(Xi), a proof will be given later.
4 The independence assumption is not necessary either: in the

previous proof, we only need Xi ’s are uncorrelated.
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Example.
Suppose that X1, ...,Xn are identically distributed with E(Xi) = µ and
Var(Xi) = σ2 < ∞, and that

Cov(Xt ,Xs) =

{
c if |s− t |= 1

0 if |s− t |> 1

Then X̄ converges in probability to µ, because

Var(X̄ ) = Var

(
1
n

n

∑
i=1

Xi

)
=

1
n2 Var

(
n

∑
i=1

Xi

)

=
1
n2

(
n

∑
i=1

Var(Xi) + ∑
i 6=j

Cov(Xi ,Xj)

)

=
σ2

n
+

(n−1)c
n2

and, Chebychev’s inequality,

P(|X̄ −µ| ≥ ε)≤ Var(X̄ )

ε2 =
σ2 + (1−n−1)c

nε2 → 0
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A proof of the WLLN using chf’s
Let X1, ...,Xn be iid random variables with E |X1|< ∞ and E(Xi) = µ.
From the result for the chf (Theorem C1), the chf of X1 is differentiable
at 0 and

φX1(t) = 1 + ı̇µt + o(|t |) as |t | → 0.

Then, the chf of X̄ is

φX̄ (t) =

[
φX1

(
t
n

)]n

=

[
1 +

ı̇µt
n

+ o
(

t
n

)]n

→ eı̇µt

for any t ∈R as n→ ∞, because (1 + cn/n)n→ ec for any complex
sequence {cn} satisfying cn→ c.
The limiting function eı̇µt is the chf of the constant µ.
By Theorem C7, if FX̄ (x) is the cdf of X̄ , then

lim
n→∞

FX̄ (x) =

{
1 x > µ

0 x < µ

This shows that X̄ converges in probability to µ, because of Theorem
5.5.13 to be established later.
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Theorem 5.5.4.
Let Z1,Z2, ... be random vectors that converge in probability to a
random vector Z and let h be a continuous function. Then
h(Z1),h(Z2), ... converges in probability to h(Z ).

Example 5.5.3.

Let X1,X2, ... be iid random variable with E(Xi) = µ and Var(Xi) = σ2.
Consider the sample variance

S2 =
1

n−1

n

∑
i=1

(Xi − X̄ )2 =
1

n−1

n

∑
i=1

(Xi −µ)2− n(X̄ −µ)2

n−1

Define
Zn =

1
n

n

∑
i=1

(Xi −µ)2, Un = X̄ −µ, an =
n

n−1
By the WLLN, (Zn,Un) converges in probability to (σ2,0).
Note that an→ 1 and an is not random, but we can view that an
converges in probability to 1.
Then, by Theorem 5.5.4, S2 = h(an,Zn,Un) = an(Zn−U2

n ) converges in
probability to h(1,σ2,0) = σ2.
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Example 5.5.5.
Consider h(x) =

√
x .

By Theorem 5.5.4, the sample standard deviation S = h(S2) converges
in probability to the population standard deviation σ = h(σ2).

Note that convergence in probability is different from the convergence
of a sequence of deterministic functions gn(x) to a function g(x) for x
in a set A⊂Rk .
Similar to the convergence of deterministic functions (note that random
variables are random functions), we have the following concept.

Definition 5.5.6 (convergence almost surely)
A sequence of random variables Zn, n = 1,2, ..., converges almost
surely to a random variable Z iff

P
(

lim
n→∞

Zn = Z
)

= 1.

A sequence of random vectors Zn, n = 1,2, ..., converges almost surely
to a random vector Z iff each component of Zn converges almost
surely to the corresponding component of Z .
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The almost sure convergence of Zn to Z means that there is an
event N such that P(N) = 0 and for every element ω ∈ Nc ,
limn→∞ Zn(ω) = Z (ω), which is almost the same as point-wise
convergence for deterministic functions (Example 5.5.7).
If a sequence of random vectors Zn converges almost surely to a
random vector Z , and h is a continuous function, then h(Zn)
converges almost surely to h(Z ).
If Zn converges almost surely to Z , then Zn converges in
probability to Z .
Convergence in probability, however, does not imply convergence
almost surely (Example 5.5.8).
If Zn converges in probability fast enough, then it converges
almost surely, i.e., if for every ε > 0,

∞

∑
n=1

P(|Zn−Z | ≥ ε) < ∞,

then Zn converges almost surely to Z .
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It is, however, not easy to construct an example of convergence in
probability but not almost surely.

Similar to the WLLN in Theorem 5.5.2, we have the following result
with almost sure convergence.

Theorem 5.5.9 (Strong Law of Large Numbers (SLLN))
Let X1, ...,Xn be iid random variables with E(Xi) = µ. Then, the sample
mean X̄ converges almost surely to µ.

Note that we still only require the existence of the mean, not the
second order moment.
The proof is omitted, since it is out of the scope of the textbook.

Approximation to an integral

Suppose that h(x) is a function of x ∈Rk .
In many applications we want to calculate an integral∫

Rk
h(x)dx
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If the integral is not easy to calculate, a numerical method is needed.
The following is the so called Monte Carlo approximation method,
which is based on the SLLN.
Suppose that we can generate iid random vectors X1,X2, ... from a pdf
p(x) on Rk satisfying that p(x) > 0 if h(x) 6= 0.
By the SLLN, with probability equal to 1 (almost surely),

lim
n→∞

1
n

n

∑
i=1

h(Xi)

p(Xi)
= E

(
h(X1)

p(X1)

)
=

∫
Rk

h(x)

p(x)
p(x)dx

=
∫

Rk
h(x)dx

Thus, we can approximate the integral by the average 1
n ∑

n
i=1

h(Xi )
p(Xi )

with
a very large n.
We can actually find what is the large enough n to have a good
approximation.
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We often need to consider a convergence even weaker than
convergence in probability.

Definition 5.5.10 (convergence in distribution)
A sequence of random variables Zn, n = 1,2, ..., converges in
distribution to a random variable Z iff

lim
n→∞

FZn (x) = FZ (x), x ∈ {y : FZ (y) is continous }

where FZn and FZ are the cdf’s of Zn and Z , respectively.

Note that we only need to consider the convergence at x that is a
continuity point of FZ .
Note that cdf’s, not pdf’s or pmf’s, are involved in this definition.
In convergence in distribution, it is really the cdfs that converge,
not the random variables; in fact, the random variables can be
defined in different spaces, which is very different from the
convergence in probability or almost surely.
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Example 5.5.11.
Let X1,X2, ... be iid from uniform on (0,1) and X(n) = maxi=1,...,n Xi .
For every ε > 0,

P(|X(n)−1| ≥ ε) = P(X(n) ≤ 1− ε) + P(X(n) ≥ 1 + ε)

= P(X(n) ≤ 1− ε)

= P(Xi ≤ 1− ε, i = 1, ...,n)

= (1− ε)n

Hence, X(n) converges in probability to 1.
In fact, since ∑

∞

n=1(1− ε)n < ∞, X(n) converges almost surely to 1.
For any t > 0,

P(n(1−X(n))≤ t) = 1−P(n(1−X(n))≥ t)
= 1−P(X(n) ≤ 1− t/n)

= 1− (1− t/n)n

→ 1−e−t

which is the cdf of the exponential(0,1) distribution.
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It is clear that P(n(1−X(n))≤ t) = 0 if t ≤ 0.
Thus, n(1−X(n)) converges in distribution to Z ∼ exponential(0,1).

The next theorem shows that convergence in distribution is weaker
than convergence in probability and, hence, is also weaker than almost
sure convergence.

Theorem 5.5.12.
If Zn converges in probability to Z , then Zn converges in distribution to
Z .

Proof.
For any x ∈R and ε > 0,

FZ (x− ε) = P
(
Z ≤ x − ε

)
≤ P

(
Zn ≤ x

)
+ P

(
Z ≤ x − ε,Zn > x

)
≤ FZn (x) + P (|Zn−Z |> ε) .

Letting n→ ∞, we obtain that

FZ (x − ε)≤ liminf
n

FZn (x).
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Switching Zn and Z in the previous argument, we can show that

FZ (x + ε)≥ limsup
n

FZn (x)

i.e.,
FZ (x − ε)≤ liminf

n
FZn (x)≤ limsup

n
FZn (x)≤ FZ (x + ε)

Since ε is arbitrary,

lim
ε→0

FZ (x − ε)≤ liminf
n

FZn (x)≤ limsup
n

FZn (x)≤ lim
ε→0

FZ (x + ε)

Now, if FZ is continuous at x , then the limit on the far left hand side
equals the limit on the far right hand side and both are equal to FZ (x),
which shows that

FZ (x) = lim
n→∞

FZn (x).

Example.
The converse of Theorem 5.5.12 is not true in general.

Let θn = 1 + n−1 and Xn be a random variable having the
exponential(0,θn) distribution, n = 1,2, ....
Let X be a random variable ∼ exponential(0,1).
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For any x > 0, as n→ ∞,

FXn (x) = 1−e−x/θn → 1−e−x = FX (x)

Since FXn (x)≡ 0≡ FX (x) for x ≤ 0, we have shown that Xn converges
in distribution to X .

Does Xn converge in probability to X?
Need further information about the random variables X and Xn.
We consider two cases in which different answers can be
obtained.

Case 1
Suppose that Xn ≡ θnX (then Xn has the given distribution).
Xn−X = (θn−1)X = n−1X , which has the cdf (1−e−nx )I[0,∞)(x).
Then, Xn converges in probability to X , because, for any ε > 0,

P (|Xn−X | ≥ ε) = e−nε → 0

In fact, Xn converges almost surely to X , since
∞

∑
n=1

e−nε < ∞
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Case 2
Suppose that Xn and X are independent random variables.
Since the pdf’s of Xn and −X are θ

−1
n e−x/θn I(0,∞)(x) and ex I(−∞,0)(x),

respectively, we have

P (|Xn−X | ≤ ε) =
∫

ε

−ε

∫
θ
−1
n e−x/θney−x I(0,∞)(x)I(−∞,x)(y)dxdy ,

which converges to (by the dominated convergence theorem)∫
ε

−ε

∫
e−xey−x I(0,∞)(x)I(−∞,x)(y)dxdy = 1−e−ε .

Thus,
P (|Xn−X | ≥ ε)→ e−ε > 0

for any ε > 0 and, therefore, Xn does not converge in probability to X .

In one situation, however, convergence in distribution is equivalent to
convergence in probability, as the following result shows.

Theorem 5.5.13.
Zn converges in probability to a constant c iff Zn converges in
distribution to c.
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Proof.
The “only if" part is a special case of Theorem 5.5.12.
Hence, we only need to show the “if" part.
If Zn converges in distribution to a constant c, then

lim
n→∞

P(Zn ≤ x) =

{
0 x < c
1 x > c

which is the “cdf” of a constant c. (Note that the limit does not include
the case of x = 0, which is a discontinuity point of the cdf of c.
For every ε > 0,

P(|Zn−c| ≥ ε) = P(Zn−c ≥ ε) + P(Zn−c ≤−ε)

= P(Zn ≥ c + ε) + P(Zn ≤ c− ε)

= 1−P(Zn < c + ε) + P(Zn ≤ c− ε)

≤ 1−P(Zn < c + ε/2) + P(Zn ≤ c− ε)

→ 1−1 + 0 = 0

since c− ε < c and c + ε/2 > c.
This proves that Zn converges in probability to c.
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