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Lecture 20: Multivariate convergence and
the Central Limit Theorem
Convergence in distribution for random vectors

Let Z ,Z1,Z2, ... be random vectors on Rk .
If the cdf of Z is continuous, then we can define convergence in
distribution of Zn to Z by limn→∞ FZn (x) = FZ (x), for every x ∈Rk .
But this is not good enough if FZ is not always continuous.
We can adopt the following definition.

Definition.
Let Z ,Z1,Z2, ... be random vectors on Rk . If, for every c ∈Rk , c′Zn
converges in distribution to c′Z , then we say that Zn converges in
distribution to Z .

For any constant vector c ∈Rk , c′Zn is a linear combination of
components of Zn.
Note that in this definition, the convergence of c′Zn has to be true
for every c (not just some c).
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If Zn converges in distribution to Z , then every component of Zn
converges in distribution to the corresponding component of Z .
The converse is not true: if every component of Zn converges in
distribution to the corresponding component of Z , Zn does not
necessarily converge in distribution to Z , because each
component corresponds to a particular c only. (A counter-example
is given below.)
This is different from convergence in probability and convergence
almost surely.
Theorems 5.5.12 and 5.5.13 can be extended to the case of
random vectors.

A counter-example
Let Z = (X ,Y ) have the joint pdf

f (x ,y) =
1

2π
e−(x

2+y2)/2[1 + g(x ,y)], (x ,y) ∈R2

g(x ,y) =

{
xy −1 < x < 1, −1 < y < 1
0 otherwise
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In Chapter 4 we showed that X ∼ N(0,1) and Y ∼ N(0,1), but the joint
distribution of Z is not normal.

Let Zn = (Xn,Yn), where for each n, the random variables Xn and Yn
are independent, Xn ∼ N(0,1), and Yn ∼ N(0,1).

Since Xn’s have the same N(0,1) distribution for all n, obviously that
Xn “converges" in distribution to X ∼ N(0,1); similarly, Yn converges in
distribution to Y ∼ N(0,1).

But the joint distribution of Zn = (Xn,Yn) for every n is

fZn (x ,y) =
1

2π
e−(x

2+y2)/2, (x ,y) ∈R2

since Xn and Yn are independent.

Since Zn’s have the same distribution for every n, Zn converges in
distribution to Z1, which has a different distribution from Z .

Thus, Zn does not converge in distribution to Z although each
component of Zn converges in distribution to the corresponding
component of Z .
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The convergence in distribution is equivalent to the convergence in chf
(Theorem C7 or M3(ii)) so that the convergence in chf is a tool to study
convergence in distribution.
We can also use Theorem 2.3.12 or M3(i) to establish convergence in
distribution by showing the convergence in mgf, but we have to know
the existence of mgf’s.

Example.
Let X1, ...,Xn be iid random variables.
We want to show that there does not exist a sequence of real numbers
{cn} such that limn→∞ ∑

n
i=1(Xi −ci) exists almost surely, unless

P(X1 = c) = 1 for a constant c.
Suppose that Y = limn→∞ ∑

n
i=1(Xi −ci) exists almost surely.

For any n, the chf of Yn = ∑
n
i=1(Xi −ci) is

φYn (t) =
n

∏
i=1

φX1(t)e−ı̇tci = [φX1(t)]ne−ı̇t(c1+···+cn)

If Y exists almost surely, then Yn converges in distribution to Y and
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lim
n→∞

∣∣∣∣[φX1(t)]ne−ı̇t(c1+···+cn)

∣∣∣∣= lim
n→∞
|φX1(t)|n = |φY (t)|.

However, limn→∞ |φX1(t)|n is either 0 or 1, depending on whether
|φX1(t)|< 1 or = 1, which means that |φY (t)| must be either 0 or 1.
Since |φY (t)| is continuous and φY (0) = 1, |φY (t)|= 1 for all t and
hence |φX1(t)|= 1 for all t .
This proves that P(X1 = c) = 1 for a constant c.

The Central Limit Theorem (CLT) is one of the most important
theorems in probability and statistics.
It derives the limiting distribution of a sequence of normalized random
variables/vectors.

Theorem 5.5.15 (Central Limit Theorem)
Let X1,X2, ... be iid random variables with E(X1) = µ and
Var(Xi) = σ2 < ∞. Then, for any x ∈R,

lim
n→∞

P(
√

n(X̄ −µ)/σ ≤ x) = Φ(x) =
∫ x

−∞

1√
2π

e−t2/2dt

That is,
√

n(X̄ −µ)/σ converges in distribution to Z ∼ N(0,1).
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Normality comes from sums of iid random variables without
distributional assumption except the finiteness of the variance.
The assumption of finite variance is essentially necessary for
convergence of a sume of iid random variables to normality.

Proof.
We apply Theorem C7, i.e., we try to show that the chf of

Zn =

√
n(X̄ −µ)

σ
=

1√
n

n

∑
i=1

Xi −µ

σ

converges to the chf of N(0,1), which is e−t2/2.
Let φ be the chf of (Xi −µ)/σ (not depending on i since Xi ’s are iid).
From the properties of chf, the chf of Zn is

φZn (t) =

[
φ

(
t√
n

)]n

.

It remains to show that limn→∞ φZn (t) = e−t2/2 for t ∈R.
Since E((Xi −µ)/σ) = 0 and Var((Xi −µ)/σ) = 1, by Theorem C1 and
Taylor’s expansion,
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φ(s) = 1− s2

2
+ R(s) as |s| → 0

where
lim
|s|→0

R(s)/s2 = 0

Then, for any t ∈R,
lim
n→∞

nR
(

t√
n

)
= 0

and hence

lim
n→∞

φZn (t) = lim
n→∞

[
φ

(
t√
n

)]n

= lim
n→∞

[
1− t2

2n
+ R

(
t√
n

)]n

= lim
n→∞

[
1− 1

n

{
t2

2
+ nR

(
t√
n

)}]n

= lim
n→∞

[
1− 1

n

(
t2

2

)]n

= e−t2/2
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The multivariate CLT
Let X1,X2, ... be iid random vectors on Rk with E(X1) = µ and finite
covariance matrix Σ. Then

√
n(X̄ −µ) converges in distribution to a

random vector X ∼ N(0,Σ), the k -dimensional normal distribution with
mean 0 and covariance matrix Σ.

Proof.
By the definition of convergence in distribution for random vectors, we
need to show that for any constant vector c ∈Rk ,

√
nc′(X̄ −µ)

converges in distribution to c′X .
From the result discussed earlier, we know that c′X ∼ N(0,c′Σc).
By the CLT, √

n(c′X̄ −E(c′X̄ ))√
Var(c′X )

=

√
n(c′X̄ −c′µ)√

c′Σc
converges in distribution to Z ∼ N(0,1).
Note that

√
c′ΣcZ ∼ N(0,c′Σc).

The proof is then completed because we can show from the definition
that, if Yn converges in distribution to Y , then aYn converges in
distribution to aY .
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Example 5.5.16.
Let X1, ...,Xn be a random sample from a negative-binomial(r ,p)
distribution.
Recall that

µ = E(X1) =
r(1−p)

p
, σ

2 = Var(X1) =
r(1−p)

p2

Then, the CLT tells us that the sequence of normalized random
variables

√
n(X̄ −µ)

σ
=

√
n(X̄ − r(1−p)/p)√

r(1−p)/p2
, n = 1,2, ...

converges in distribution to Z ∼ N(0,1).

This provides a way to approximately calculate probabilities that are
very difficult to compute exactly.

For example, if r = 10, p = 1/2 and n = 30, using the fact that
∑

30
i=1 Xi ∼ negative-binomial(nr ,p), we can exactly compute
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P(X̄ ≤ 11) = P

(
30

∑
i=1

Xi ≤ 330

)
=

330

∑
x=0

(
300 + x −1

x

)
(0.5)300+x = 0.8916

The CLT gives us the approximation

P(X̄ ≤ 11) = P

(√
30(X̄ −10)√

20
≤
√

30(11−20)√
20

)

≈ Φ

(√
30(11−20)√

20

)
= Φ(1.2247) = 0.8888

where Φ(x) is the cdf of N(0,1).

Normal approximation to binomial
Let Zn ∼ binomial(n,p), n = 1,2, ...
To apply the CLT, note that each Zn is a sum of n independent
Bernoulli random variables X1, ...,Xn, i.e.,

Zn = X1 + · · ·+ Xn, n = 1,2, ...

X1,X2, ... are iid with E(Xi) = p, Var(Xi) = p(1−p)
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Then, X̄ = Zn/n and

Zn−np√
np(1−p)

=

√
n(X̄ −p)√
p(1−p)

converges in distribution to Z ∼ N(0,1)

Consequently, for any m,

P(Zn ≤m) = P

(
Zn−np√
np(1−p)

≤ m−np√
np(1−p)

)
≈Φ

(
m−np√
np(1−p)

)

From the previous two examples, to approximate a probability of the
form P(Zn ≤ x), we always first normalize Zn to [Zn−E(Zn)]/

√
Var(Zn)

and then approximate the probability by Φ([x −E(Zn)]/
√

Var(Zn)).
In fact, a little bit more can be done using the following result.

Pólya’s theorem
If a sequence of random vectors Zn converges in distribution to Z and
Z has a continuous cdf FZ on Rk , then

lim
n→∞

sup
x∈Rk

|FZn (x)−FZ (x)|= 0.
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If the limiting cdf FZ is continuous, then the convergence of FZn to
FZ is not only for every x , but also uniformly for all x ∈Rk .
This result implies the following useful result:
If Zn converges in distribution to Z with a continuous FZ and
cn ∈Rk with cn→ c, then FZn (cn)→ FZ (c).

Asymptotic normality
If Yn, n = 1,2, ..., is a sequence of random variables and µn and σn > 0,
n = 1,2, ..., are constants (typically µn = E(Yn) and σ2

n = Var(Yn) if they
are finite) such that (Yn−µn)/σn converges in distribution to N(0,1),
then for any sequence {cn} of constants,

lim
n→∞

∣∣∣∣P(Yn ≤ cn)−Φ

(
cn−µn

σn

)∣∣∣∣= 0,

i.e., P(Yn ≤ cn) can be approximated by Φ
(cn−µn

σn

)
, regardless of

whether cn, µn, or σn has a limit.

Since Φ
( t−µn

σn

)
is the cdf of N(µn,σ

2
n ), Yn is said to be asymptotically

distributed as N(µn,σ
2
n ) or simply asymptotically normal.
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Other forms of CLT
There are other forms of CLT for non-iid sequences of random
variables/vectors.
We introduce without proof the following three.

Lindeberg’s CLT
Let Xn, n = 1,2, ..., be independent random variables with

0 < σ
2
n = Var

(
n

∑
j=1

Xj

)
< ∞, n = 1,2, ...

If

lim
n→∞

1
σ2

n

n

∑
j=1

E
[
(Xj −E(Xj))2I{|Xj−E(Xj )|>εσn}

]
= 0 for any ε > 0,

then
1

σn

n

∑
j=1

(Xj −E(Xj)) converges in distribution to N(0,1).
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Liapounov’s CLT
Let Xn, n = 1,2, ..., be independent random variables with

lim
n→∞

1
σ

2+δ
n

n

∑
j=1

E |Xj −EXj |2+δ = 0 for some δ > 0.

Then the same conclusion as in Lindeberg’s CLT holds.
The condition in Liapounov’s CLT is stronger than the condition in
Lindeberg’s CLT, Liapounov’s condition is easier to verify.

The CLT for a linear combination of iid random variables
Let Xn, n = 1,2, ..., be iid random variables with E(X1) = µ and
Var(X1) = σ2 < ∞. Let cn ∈R, n = 1,2, ..., be constants such that

lim
n→∞

(
max
1≤i≤n

c2
i

/ n

∑
i=1

c2
i

)
= 0.

Then
n

∑
i=1

ci(Xi −µ)

σ

/√ n

∑
i=1

c2
i converges in distribution to N(0,1).
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Example.
We apply Liapounov’s CLT to independent random variables X1,X2, ...
satisfying P(Xj =±ja) = P(Xj = 0) = 1/3, where a > 0, j = 1,2,....
Note that E(Xj) = 0 and for all j

σ
2
n = Var

(
n

∑
j=1

Xj

)
=

n

∑
j=1

Var(Xj) =
2
3

n

∑
j=1

j2a.

We need to show that, for some δ > 0,

lim
n→∞

1
σ

2+δ
n

n

∑
j=1

E |Xj −EXj |2+δ = 0

For any δ > 0,
n

∑
j=1

E |Xj −E(Xj)|2+δ =
2
3

n

∑
j=1

j(2+δ)a.

Since
n−1

∑
j=1

j t ≤
n−1

∑
j=1

∫ j+1

j
x tdx ≤

n

∑
j=2

j t
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and
n−1

∑
j=1

∫ j+1

j
x tdx =

∫ n

1
x tdx =

nt+1−1
t + 1

,

we conclude that
lim
n→∞

1
nt+1

n

∑
j=1

j t =
1

t + 1
for any t > 0.
Then

lim
n→∞

1
σ

2+δ
n

n

∑
j=1

E |Xj −EXj |2+δ = lim
n→∞

2
3 ∑

n
j=1 j(2+δ)a(

2
3 ∑

n
j=1 j2a

)1+δ/2

= lim
n→∞

(
3
2

)δ/2 (2a + 1)1+δ/2

(2 + δ )a + 1
n(2+δ)a+1

n(2a+1)(1+δ/2)

=

(
3
2

)δ/2 (2a + 1)1+δ/2

(2 + δ )a + 1
lim
n→∞

1
nδ/2

= 0.
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