Chapter 7. Point Estimation
Lecture 1: Maximum likelihood and moment methods

Point estimation

We consider a sample X (a random sample for most discussions) from a population indexed by unknown $\theta \in \Theta$.
At least in the following two situations we want to estimate θ:

- We want to make inference about the population (or θ), and it is reasonable to start with the estimation of θ.
- A function $g(\theta)$ has a meaningful physical interpretation (such as a population mean or median) so there is a direct interest to estimate it.

Definition 7.1.1.

Let X be a sample from a population indexed by unknown $\theta \in \Theta$. A point estimator (or estimator) of a function of θ, $g(\theta)$, is any statistic $T(X)$. We call $T(x)$ an estimate after we observe $X = x$.

This is a vague definition: it is not even required that $T(X) \in \Theta$.
Maximum likelihood estimators

The maximum likelihood estimation is the most popular technique.

Example.

Let X be a single observation taking values either 0 or 1, with a pmf f_{θ}, where $\theta = \theta_0$ or θ_1 and the values of $f_{\theta_j}(i)$ are given as follows:

<table>
<thead>
<tr>
<th></th>
<th>$x = 0$</th>
<th>$x = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{θ_0}</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>f_{θ_1}</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>

If $X = 0$ is observed, it is more plausible that it came from f_{θ_0}, since $f_{\theta_0}(0)$ is much larger than $f_{\theta_1}(0)$.

If $X = 1$, it is more plausible that it came from f_{θ_1}, although the difference between the probabilities is not as large as that for $X = 0$.

This suggests the following estimator of θ:

$$T(X) = \begin{cases}
\theta_0 & X = 0 \\
\theta_1 & X \neq 0
\end{cases}$$
The idea in the example can be easily extended to the case where f_θ is any pmf and $\theta \in \Theta \subset \mathbb{R}^k$.

If $X = x$ is observed, θ_1 is more plausible than θ_2 iff $f_{\theta_1}(x) > f_{\theta_2}(x)$.

We then estimate θ by a $\hat{\theta}$ maximizing $f_\theta(x)$ over $\theta \in \Theta$.

For continuous variables, it is natural to extend this idea with pmf replaced by pdf.

Recall that, given $X = x$, the likelihood function $L(\theta | x)$ is the joint pmf for the discrete case or the joint pdf for the continuous case.

Definition 7.2.4.

For each sample point x, the maximum likelihood estimate (MLE) of θ is any $\hat{\theta}(x) \in \Theta$ (if it exists) such that

$$L(\hat{\theta}(x) | x) = \sup_{\theta \in \Theta} L(\theta | x)$$

A maximum likelihood estimator (MLE) of θ is defined to be $\hat{\theta}(X)$, when $\hat{\theta}(x)$ is a well-defined function.

- Note that the MLE is defined for vector θ when $k > 1$. If g is a function on Θ, then an MLE of $g(\theta)$ is defined as $g(\hat{\theta})$ (see Theorem 7.2.10).
In some cases, an MLE exists if we add boundary points of Θ into Θ to form a new parameter space.

If the parameter space Θ contains finitely many points, then an MLE can always be obtained by comparing finitely many values $L(\theta|x)$, $\theta \in \Theta$.

If $L(\theta|x)$ is differentiable on Θ, then possible candidates for MLEs are the values of $\theta \in \Theta$ satisfying

$$\frac{\partial L(\theta|x)}{\partial \theta} = 0 \quad \text{or} \quad \frac{\partial \log L(\theta|x)}{\partial \theta} = 0$$

which is called the likelihood equation or log likelihood equation.

It is important to analyze the entire likelihood function to find its maxima.

- Note that θ satisfying likelihood equation may be local or global minima, local or global maxima, or simply stationary points.
- Extrema may occur at the boundary of Θ or when θ diverges to ∞ in some way.
- If $L(\theta|x)$ is not always differentiable, then extrema may occur at non-differentiable or discontinuity points of $L(\theta|x)$.
Example 7.2.7.

Let \(X_1, \ldots, X_n \) be iid Bernoulli random variables with
\[P(X_1 = 1) = p \in \Theta = (0, 1). \]

When \(X = (X_1, \ldots, X_n) = (x_1, \ldots, x_n) \) is observed, the likelihood function is
\[L(p|x) = \prod_{i=1}^{n} p^{x_i} (1 - p)^{1-x_i} = p^{n\bar{x}} (1 - p)^{n(1 - \bar{x})}, \]
where \(\bar{x} \) is the sample mean.

The likelihood equation is
\[\frac{d \log L(p|x)}{dp} = \frac{n\bar{x}}{p} - \frac{n(1 - \bar{x})}{1 - p} = 0. \]

If \(0 < \bar{x} < 1 \), then this equation has a unique solution \(\bar{x} \).

The second-order derivative of \(\log L(p|x) \) is
\[\frac{d^2 \log L(p|x)}{dp^2} = -\frac{n\bar{x}}{p^2} - \frac{n(1 - \bar{x})}{(1 - p)^2}, \]
which is always negative.

Also, when \(p \) tends to 0 or 1 (the boundary of \(\Theta \)), \(L(p|x) \rightarrow 0 \).
Thus, \(\bar{x} \) is the unique MLE of \(p \).
When $\bar{x} = 0$, $L(p|x) = (1 - p)^n$ is a strictly decreasing function of p and, therefore, an MLE does not exist unless we add 0 to the parameter space. If $p \in (0, 1)$, an MLE $= 0$ is not reasonable; however, the probability that $\bar{x} = 0$ is p^n, which tends to 0 quickly as $n \to \infty$. A similar discussion can be made when $\bar{x} = 1$.

This example indicates that, for small n, an MLE may not exist on Θ or an MLE may be an unreasonable estimator; however, this is unlikely to occur when n is large.

Example 7.2.11.

Let X_1, \ldots, X_n be iid from $N(\mu, \sigma^2)$ with unknown $\theta = (\mu, \sigma^2)$. Consider first the case where $\Theta = \mathbb{R} \times (0, \infty)$. When $x = (x_1, \ldots, x_n)$ is observed, the log-likelihood function is

$$\log L(\theta|x) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{n}{2} \log \sigma^2 - \frac{n}{2} \log(2\pi).$$

The likelihood equation becomes
\[
\frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu) = 0 \quad \text{and} \quad \frac{1}{\sigma^4} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{n}{\sigma^2} = 0.
\]

Solving the first equation for \(\mu \), we obtain a unique solution \(\bar{x} = n^{-1} \sum_{i=1}^{n} x_i \), and substituting \(\bar{x} \) for \(\mu \) in the second equation we obtain a unique solution \(\hat{\sigma}^2 = n^{-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \).

To show that \(\hat{\theta} = (\bar{x}, \hat{\sigma}^2) \) is an MLE, first note that \(\Theta \) is an open set and \(L(\theta|x) \) is differentiable everywhere; as \(\theta \) tends to the boundary of \(\Theta \) or diverges to \(\infty \), \(L(\theta|x) \) tends to 0; and

\[
\frac{\partial^2 \log L(\theta|x)}{\partial \theta \partial \theta^T} = -\begin{pmatrix}
\frac{n}{\sigma^2} & \frac{1}{\sigma^4} \sum_{i=1}^{n} (x_i - \mu) \\
\frac{1}{\sigma^4} \sum_{i=1}^{n} (x_i - \mu) & \frac{1}{\sigma^6} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{n}{2\sigma^4}
\end{pmatrix}
\]

is negative definite when \(\mu = \bar{x} \) and \(\sigma^2 = \hat{\sigma}^2 \).

Hence \(\hat{\theta} \) is the unique MLE.

Sometimes we can avoid the calculation of the second-order derivatives; e.g., in this example we know that \(L(\theta|x) \) is bounded and \(L(\theta|x) \rightarrow 0 \) as \(\theta \) diverges to \(\infty \) or \(\theta \) tends to the boundary of \(\Theta \); hence the unique solution to the likelihood equation must be the MLE.
Consider next the case where $\Theta = [0, \infty) \times (0, \infty)$, i.e., we know $\mu \geq 0$. The likelihood function is differentiable on Θ.

If $\bar{x} > 0$, then the same argument for the previous case can be used to show that $(\bar{x}, \hat{\sigma}^2)$ is the MLE.

If $\bar{x} \leq 0$, then the first likelihood equation does not have a solution in Θ. However, the function $\log L(\theta | x) = \log L(\mu, \sigma^2 | x)$ is strictly decreasing in μ for any fixed σ^2.

Hence, a maximum of $\log L(\mu, \sigma^2 | x)$ is $\mu = 0$ not depending on σ^2.

Then, the MLE of σ^2 is the value maximizing $\log L(0, \sigma^2 | x)$ over $\sigma^2 \geq 0$. Solving
\[
\frac{d}{d\sigma^2} \log L(0, \sigma^2 | x) = -\frac{1}{\sigma^4} \sum_{i=1}^{n} x_i^2 - \frac{n}{2\sigma^2} = 0
\]
gives $\hat{\sigma}^2 = n^{-1} \sum_{i=1}^{n} x_i^2$, i.e., the MLE of θ is
\[
\hat{\theta} = \begin{cases}
(\bar{x}, \hat{\sigma}^2) & \bar{x} > 0 \\
(0, \hat{\sigma}^2) & \bar{x} \leq 0.
\end{cases}
\]

Example.

Let X_1, \ldots, X_n be iid from $\text{uniform}(\theta, \theta + 1)$ with $\theta \in \mathbb{R}$.
The likelihood function is

\[
L(\theta|x) = \begin{cases}
1 & x(n) - 1 < \theta < x(1) \\
0 & \text{otherwise}
\end{cases}
\]

The method of using the likelihood equation is not applicable. However, it follows from the definition that any statistic \(T(X) \) satisfying

\[
x(n) - 1 \leq T(x) \leq x(1)
\]

is an MLE of \(\theta \).

This example indicates that MLE’s may not be unique and can be unreasonable.

Example

Let \(X \) be an observation from the hypergeometric distribution

\[
P(X = x) = \binom{n}{x} \frac{\theta-n}{\theta} \binom{r-x}{\theta}, \quad x = 0, 1, ..., r < \min(n, \theta - n)
\]

with known \(r, n \), and an unknown \(\theta = n + 1, n + 2, ... \)

In this case, the likelihood function is defined on integers and the method of using the likelihood equation is certainly not applicable.
Note that
\[
\frac{L(\theta|x)}{L(\theta-1|x)} = \frac{(\theta-r)(\theta-n)}{\theta(\theta-n-r+x)},
\]
which is larger than 1 iff \(\theta < rn/x\) and is smaller than 1 iff \(\theta > rn/x\). Thus, \(L(\theta|x)\) has a maximum \(\theta = \) the integer part of \(rn/x\), which is the MLE of \(\theta\).

Example.

Let \(X_1,...,X_n\) be iid from \(\text{gamma}(\alpha, \gamma)\) with unknown \(\alpha > 0\) and \(\gamma > 0\). The log-likelihood function is
\[
\log L(\theta|x) = -n\alpha \log \gamma - n\log \Gamma(\alpha) + (\alpha - 1) \sum_{i=1}^{n} \log x_i - \frac{1}{\gamma} \sum_{i=1}^{n} x_i
\]
and the likelihood equation is
\[
-n\log \gamma - \frac{n\Gamma'(\alpha)}{\Gamma(\alpha)} + \sum_{i=1}^{n} \log x_i = 0 \quad \text{and} \quad -\frac{n\alpha}{\gamma} + \frac{1}{\gamma^2} \sum_{i=1}^{n} x_i = 0.
\]
The second equation yields \(\gamma = \bar{x}/\alpha\).
Substituting \(\gamma = \bar{x}/\alpha\) into the first equation we obtain that
\[
\log \alpha - \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} + \frac{1}{n} \sum_{i=1}^{n} \log x_i - \log \bar{x} = 0.
\]

In this case, the likelihood equation does not have an explicit solution. A numerical method has to be applied to compute the MLE for any given observations \(x_1, \ldots, x_n \).

Exponential families

Suppose that \(X \) has a pmf or pdf from an exponential family so that

\[
L(\eta | x) = \exp(\eta' T(x) - \zeta(\eta)) h(x),
\]

where \(\eta \in \Xi \) is a vector of unknown parameters.

The likelihood equation is then

\[
\frac{\partial \log L(\eta | x)}{\partial \eta} = T(x) - \frac{\partial \zeta(\eta)}{\partial \eta} = 0,
\]

which has a unique solution \(T(x) = \partial \zeta(\eta) / \partial \eta \), assuming that \(T(x) \) is in the range of \(\partial \zeta(\eta) / \partial \eta \).

Consider the second order derivative matrix:
\[
\frac{\partial^2 \log L(\eta|x)}{\partial \eta \partial \eta'} = - \frac{\partial^2 \zeta(\eta)}{\partial \eta \partial \eta'} = -\text{Var}(T)
\]

Since \(\text{Var}(T)\) is positive definite, \(-\log L(\eta|x)\) is convex in \(\eta\) and \(T(x)\) is the unique MLE of the parameter \(\mu(\eta) = \partial \zeta(\eta)/\partial \eta\).

The function \(\mu(\eta)\) is one-to-one so that \(\mu^{-1}\) exists.

Then the MLE of \(\eta\) is \(\hat{\eta} = \mu^{-1}(T(x))\).

If the likelihood function is

\[
L(\theta|x) = \exp (\eta(\theta)' T(x) - \xi(\theta)) h(x),
\]

then the MLE of \(\theta\) is \(\hat{\theta} = \eta^{-1}(\hat{\eta})\), if \(\eta^{-1}\) exists and \(\hat{\eta}\) is in the range of \(\eta(\theta)\).

Of course, \(\hat{\theta}\) is also the solution of the likelihood equation

\[
\frac{\partial \log L(\theta|x)}{\partial \theta} = \frac{\partial \eta(\theta)}{\partial \theta} T(x) - \frac{\partial \xi(\theta)}{\partial \theta} = 0.
\]
Method of moments

This is the oldest of the three main methods of finding point estimators. Let X_1, \ldots, X_n be a random sample from a pdf or pmf $f_\theta(x)$ with finite kth moments, where $\theta = (\theta_1, \ldots, \theta_k) \in \mathbb{R}^k$ is unknown.

Define

$$m_j = \frac{1}{n} \sum_{i=1}^{n} X_i^j \quad \mu_j = E(X_1^j) = h_j(\theta_1, \ldots, \theta_k), \quad j = 1, \ldots, k$$

where each h_j is a known function of $\theta = (\theta_1, \ldots, \theta_k)$.

The method of moment defines an estimator $\hat{\theta} = (\hat{\theta}_1, \ldots, \hat{\theta}_k)$ as a solution to the following system of k equations with k variables:

$$m_j = h_j(\theta_1, \ldots, \theta_k), \quad j = 1, \ldots, k$$

- Let $m = (m_1, \ldots, m_k) = h(\hat{\theta})$, $h = (h_1, \ldots, h_k)$. If the inverse function h^{-1} exists, then the unique moment estimator of θ is $\hat{\theta} = h^{-1}(m)$.

- When h^{-1} does not exist (i.e., h is not one-to-one), any solution to $m = h(\hat{\theta})$ is a moment estimator of θ; if possible, we always choose a solution so that $\hat{\theta} \in \Theta$.
Two important statistical principles, the moment matching and substitution principle, are applied in this method.

Moment estimators may not be unique; in some cases, a moment estimator does not exist, or no solution to \(m = h(\hat{\theta}) \) is in \(\Theta \).

When the \(k \) equations involving the first \(k \) moments do not provide a solution, we may consider more equations with moments higher than \(k \).

Moment estimators may not be efficient, but they are simple and can be building blocks for more efficient estimators.

Example 7.2.1.

Let \(X_1, \ldots, X_n \) be iid from \(N(\mu, \sigma^2) \), \(\theta = (\mu, \sigma^2) \), \(\mu \in \mathbb{R} \) and \(\sigma^2 \in (0, \infty) \).

Since

\[
E(X_1) = \mu \quad \text{and} \quad E(X_1^2) = \text{Var}(X_1) + [E(X_1)]^2 = \sigma^2 + \mu^2
\]

setting \(m_1 = \mu \) and \(m_2 = \sigma^2 + \mu^2 \) we obtain the moment estimator

\[
\hat{\theta} = \left(\bar{X}, \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 \right) = \left(\bar{X}, \frac{n-1}{n} S^2 \right).
\]
Example.

Let X_1, \ldots, X_n be iid from $\text{uniform}(\theta_1, \theta_2)$, $-\infty < \theta_1 < \theta_2 < \infty$. Note that

$$ E(X_1) = \frac{\theta_1 + \theta_2}{2} \quad \text{and} \quad E(X_1^2) = \frac{\theta_1^2 + \theta_2^2 + \theta_1 \theta_2}{3} $$

Setting $m_1 = EX_1$ and $m_2 = EX_1^2$ and substituting θ_1 in the second equation by $2m_1 - \theta_2$ (the first equation), we obtain that

$$(2m_1 - \theta_2)^2 + \theta_2^2 + (2m_1 - \theta_2)\theta_2 = 3m_2,$$

which is the same as

$$(\theta_2 - m_1)^2 = 3(m_2 - m_1^2).$$

Since $\theta_2 > EX_1$, we obtain that

$$ \hat{\theta}_2 = m_1 + \sqrt{3(m_2 - m_1^2)} = \bar{X} + \sqrt{\frac{3(n-1)}{n}}S^2 $$

$$ \hat{\theta}_1 = m_1 - \sqrt{3(m_2 - m_1^2)} = \bar{X} - \sqrt{\frac{3(n-1)}{n}}S^2 $$

These estimators are not functions of the sufficient and complete statistic $(X_{(1)}, X_{(n)})$ when $n > 2$.
Generalized Method of Moments (GMM)

The method of moments tries to solve

\[m_j - h_j(\theta) = 0, \quad j = 1, \ldots, k. \]

Sometimes, it has no solution.

Moreover, sometimes \(E(X_1^m) \) exists for an \(m > k \) and we may wonder which of the \(k \) moments out of \(m \) moments we should use.

If we consider all \(m \) equations

\[m_j - h_j(\theta) = 0, \quad j = 1, \ldots, m, \]

then there is typically no solution, since there are more equations than variables.

The generalized method of moments (GMM) can be applied: Let

\[
G(\theta | X) = \left(\frac{1}{n} \sum_{i=1}^{n} \psi_1(X_i, \theta), \ldots, \frac{1}{n} \sum_{i=1}^{n} \psi_m(X_i, \theta) \right)', \quad \theta \in \Theta
\]

where \(\psi_j(x, \theta) = x^j - h_j(\theta) \).
The method of moments tries to solve $G(\theta|x) = 0$, which may not exist. Instead of getting a $\hat{\theta}$ such that $G(\hat{\theta}|X) = 0$, the GMM tries to find a $\hat{\theta}$ that minimizes $G(\theta|X)'G(\theta|X)$ over $\theta \in \Theta$.

Of course, when there is a $\hat{\theta}$ such that $G(\hat{\theta}|X) = 0$, then $\hat{\theta}$ that minimizes $G(\theta|X)'G(\theta|X)$ over $\theta \in \Theta$, since $G(\hat{\theta}|X)'G(\hat{\theta}|X) = 0$.

In general, a GMM estimator of θ is obtained using the following two-step algorithm.

1. Obtain $\hat{\theta}^{(1)}$ by minimizing $G'(\theta|X)G(\theta|X)$ over $\theta \in \Theta$.

2. Let \hat{W} be the inverse matrix of the $m \times m$ matrix whose (j, l)th element is equal to

$$
\frac{1}{n} \sum_{i=1}^{n} \psi_j(X_i, \hat{\theta}^{(1)}) \psi_l(X_i, \hat{\theta}^{(1)})
$$

The GMM estimator $\hat{\theta}$ is obtained by minimizing

$$
G'(\theta|x)\hat{W}G(\theta|x) \quad \text{over } \theta \in \Theta
$$

Note that the solution of a GMM is always in Θ.