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Lecture 3: Unbiasedness, UMVUE, and
Cramer-Rao information inequality

We now focue on the MSE criterion.
As we discussed earlier, another criterion is needed for the purpose of
finding an estimator of certain optimal property.
The Bayes risk is one example.
In the next few lectures, we will study the unbiasedness criterion.

Definition 7.3.2.
The bias of an estimator T (X ) of g(θ) is the function of θ defined by
Eθ [T (X )]−g(θ). An estimator T (X ) of g(θ) is unbiased if its bias is 0,
i.e., Eθ [T (X )] = g(θ) for all θ ∈Θ.

An unbiased estimator can be thought of an estimator that has no
systematic estimation error: the center of the distribution of T (X ) is
what we want to estimate.
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Note that the MSE of an estimator T is equal to

Eθ [T (X )−g(θ)]2 = Eθ [T −Eθ (T )]2 + [Eθ (T )−g(θ)]2

= Varθ (T ) + [the bias of T (X )]2

Hence, an estimator T is unbiased iff MSE = the variance of T .

Example 7.3.3.

Let X1, ...,Xn be iid from N(µ,σ2) with unknown θ = (µ,σ2).
From Theorem 5.2.6, X̄ is an unbiased estimator of µ and S2 is an
unbiased estimator of σ2.
Since X̄ is normally distributed and (n−1)S2/σ2 is chi-square, the
MSE’s are

Eθ (X̄ −µ)2 = Varθ (X̄ ) =
σ2

n
Eθ (S2−σ

2)2 = Varθ (S2) =
2σ4

n−1
The unbiasedness of X̄ and S2 and the MSE of X̄ remain the same if
the normality assumption is dropped, whereas the MSE of S2 is not
the same if the normality assumption is dropped (Exercise 5.8).
The sample standard deviation, S =

√
S2, is not an unbiased estimator

of the population standard deviation σ .
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Under the normality assumption, since (n−1)S2/σ2 is chi-square with
degrees of freedom n−1,
√

n−1
σ

Eθ (S) = Eθ

(√
n−1S

σ

)
=

1

Γ(n−1
2 )2

n−1
2

∫
∞

0

√
xx

n−1
2 −1e−x/2dx

Using the fact that
√

xx
n−1

2 −1e−x/2 = x
n
2−1e−x/2 is the kernel for the

chi-square with degrees of freedom n, we obtain that
√

n−1
σ

Eθ (S) =
Γ(n

2 )2
n
2

Γ(n−1
2 )2

n−1
2

=

√
2Γ(n

2 )

Γ(n−1
2 )

i.e.,
Eθ (S) =

√
2Γ(n

2 )
√

n−1 Γ(n−1
2 )

σ = kn−1σ

For example, Eθ (S) =
√

2√
π

σ when n = 2, and Eθ (S) =
√

π

2 σ when n = 3.
Since [Eθ (S)]2 < Eθ (S2) = σ2,

kn < 1 for all n = 2,3, ...
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i.e., Eθ (S) < σ is always true and S underestimates σ with a negative
bias Eθ (S)−σ = (kn−1−1)σ .
What is the MSE of S as an estimator of σ?

Eθ (S−σ)2 = Varθ (S)+[(kn−1−1)σ ]2 =Eθ (S2)−[Eθ (S)]2+[(kn−1−1)σ ]2

= σ
2−k2

n−1σ
2 + (kn−1−1)2

σ
2 = 2(1−kn−1)σ

2

There is a trade-off between variance and bias.
We want an estimator having small MSE (for that purpose, sometimes
we give up exact unbiasedness), but we do not want a systematic error
trend (such as always underestimate or always overestimate).

Example 7.3.4.

Let X1, ...,Xn be iid from N(µ,σ2) with unknown θ = (µ,σ2).
The MLE of σ2 is σ̂2 = n−1

∑
n
i=1(Xi − X̄ )2 = n−1

n S2.
We now compare the biases and MSE’s of σ̂2 and S2.

Eθ (σ̂
2) =

n−1
n

Eθ (S2) =
n−1

n
σ

2
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i.e., the bias of σ̂2 is −σ2/n.

Varθ (σ̂
2) =

(n−1)2

n2 Varθ (S2) =
2(n−1)σ4

n2

The MSE of σ̂2 is then

Eθ (σ̂
2−σ

2)2 = Varθ (σ̂
2) +

σ4

n2

=
2(n−1)σ4

n2 +
σ4

n2 =
2n−1

n2 σ
2

<
2

n−1
σ

4 = Varθ (S2)

= Eθ (S2−σ
2)2

That is, the MSE of σ̂2 is always smaller than that of S2, although σ̂2 is
biased and S2 is unbiased.
In this example we don’t want to conclude that σ̂2 is better than S2.
First, σ̂2 always underestimates.
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Second, it can be argued that the MSE, while a reasonable criterion for
location parameters, is not so reasonable for scale parameters; the
MSE penalizes equally for overestimation and underestimation, which
is fine in the location case but may not be good for the non-symmetric
problem of estimating a scale parameter.

How to find unbiased estimators
Try some simple statistics; e.g, the sample moment mj is unbiased
for the population moment µj for any j ; try the order statistics.
Note that a linear function of an unbiased estimator is unbiased for
the same linear function of the parameter. However, nonlinear
functions of unbiased estimators are no longer unbiased.
Let X1, ...,Xn be iid random variables from a cdf F and t ∈R.
Let I(X ≤ t) = 1 if X ≤ t and I(X ≤ t) = 0 otherwise.
Then an unbiased estimator of F (t) is

F̂n(t) =
1
n

n

∑
i=1

I(Xi ≤ t)

which is the empirical cdf based on X1, ...,Xn.
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Let m be a fixed positive integer, h(x1, ...,xm) be a symmetric
function, and X1, ...,Xn be iid.
Let g(θ) = Eθ [h(X1, ...,Xm)] be the parameter of interest.
Then an unbiased estimator of θ is the so called U-statistic

U(X ) =

(
n
m

)−1

∑
c

h(Xi1 , ...,Xim ),

where ∑c denotes the summation over the
(n

m

)
combinations of m

distinct elements {i1, ..., im} from {1, ...,n}.
When m = 1, this is a kind of sample mean.
For example, if we want to estimate µk , µ = E(X1), then
h(x1, ...,xk ) = x1 · · ·xk and Eθ (X1 · · ·Xk ) = µk .
The sample variance is a U-statistic with h(x1,x2) = (x1−x2)2/2,
m = 2:

U(X ) =
2

n(n−1) ∑
i<j

(Xi −Xj)
2

2
=

1
n(n−1) ∑

i 6=j

(Xi −Xj)
2

2
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=
1

2n(n−1)

n

∑
i=1

n

∑
j=1

(Xi −Xj)
2

=
1

2n(n−1)

n

∑
i=1

n

∑
j=1

(X 2
i + X 2

j −2XiXj)

=
1

2n(n−1)

(
n

∑
i=1

n

∑
j=1

X 2
i +

n

∑
i=1

n

∑
j=1

X 2
j −2

n

∑
i=1

n

∑
j=1

XiXj

)

=
1

n(n−1)

(
n

n

∑
i=1

X 2
i −

n

∑
i=1

Xi

n

∑
j=1

Xj

)

=
1

n−1

(
n

∑
i=1

X 2
i −nX̄ 2

)
= S2

The UMVUE
We now try to find the best unbiased estimator in a given problem.
The MSE of an unbiased estimator is simply its variance.
Hence, the best unbiased estimator can be defined as follows.

UW-Madison (Statistics) Stat 610 Lecture 3 2016 8 / 15



beamer-tu-logo

Definition 7.3.7.
An estimator is a best unbiased estimator or a uniform minimum
variance unbiased estimator (UMVUE) of g(θ) if it has the smallest
variance (and hence the MSE) among all unbiased estimators of g(θ).

Finding a best unbiased estimator is not easy.
There are three main approaches.

Approach 1: using a lower bound.
If we can show that, for any unbiased estimator T (X ) of g(θ),

Varθ (T (X ))≥ b(θ) all θ ∈Θ

and we can find an estimator T ∗(X ) that achieves the variance lower
bound, i.e., Varθ (T ∗) = b(θ) for all θ ∈Θ, then T ∗ is a UMVUE.

Theorem 7.3.9 (Cramér-Rao inequality)
Let θ ∈Θ⊂R and X be a sample with joint pdf or pmf fθ (x) satisfying∫

X

∂ fθ (x)

∂θ
dx =

∂

∂θ

∫
X

fθ (x)dx = 0 θ ∈Θ
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Let T (X ) be any estimator satisfying Varθ (T ) < ∞ and

∂

∂θ
Eθ (T ) =

∫
X

T (x)
∂ fθ (x)

∂θ
dx θ ∈Θ

Then,
Varθ (T )≥

[ ∂

∂θ
Eθ (T )]2

Eθ

[
∂

∂θ
log fθ (X )

]2 θ ∈Θ

Proof.
Consider the Cauchy-Schwartz inequality,

Var(Z )≥ [Cov(Z ,Y )]2

Var(Y )

Let Z = T (X ) and Y = ∂

∂θ
log fθ (X ).

Eθ (Y ) = Eθ

[
∂

∂θ
log fθ (X )

]
=
∫

X

∂ fθ (x)

∂θ
dx = 0

by the condition on fθ (x).
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Eθ

[
∂

∂θ
log fθ (X )

]2

= Eθ (Y 2) = Varθ (Y )

It remains to show that Covθ (Z ,Y ) = Eθ (ZY ) = ∂

∂θ
Eθ (T ).

From the condition on T ,

Eθ (ZY ) = Eθ

[
T

∂

∂θ
log fθ (X )

]
=
∫

X
T (x)

∂

∂θ
fθ (x)dx

=
∂

∂θ

∫
X

T (x)fθ (x)dx =
∂

∂θ
Eθ (T )

There is a multivariate extension of Theorem 7.3.9: If θ ∈Rk , then

Varθ (T )≥
[

∂

∂θ
Eθ (T )

]′
[I(θ)]−1 ∂

∂θ
Eθ (T )

where
I(θ) = Eθ

{
∂

∂θ
log fθ (X )

[
∂

∂θ
log fθ (X )

]′}
The k ×k matrix I(θ) is called the Fisher information matrix.
The greater I(θ) is, the easier it is to distinguish θ from
neighboring values, and the more accurately θ can be estimated.
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I(θ) is a measure of the information about θ contained in X .
The Cramér-Rao inequality is one type of information inequality.
If X and Y are independent with the Fisher information matrices
IX (θ) and IY (θ), respectively, then the Fisher information about θ

contained in (X ,Y ) is IX (θ) + IY (θ).
In particular, if X1, ...,Xn are iid and I1(θ) is the Fisher information
about θ contained in a single Xi , then the Fisher information about
θ contained in X1, ...,Xn is nI1(θ).
Note that I(θ) depends on the particular parameterization.
If θ = ψ(η) and ψ is differentiable, then the Fisher information
about η contained in X is

∂

∂η
ψ(η)I(ψ(η))

[
∂

∂η
ψ(η)

]′
.

If T is an unbiased estimator of g(θ), then the extended Theorem
7.3.9 says that

Varθ (T )≥
[

∂g(θ)
∂θ

]′
[I(θ)]−1 ∂g(θ)

∂θ

If the equality holds for T for all θ ∈Θ, then T is a UMVUE of g(θ).
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The following lemma may simplify the calculation of the matrix I(θ).

Lemma 7.3.11.
If fθ (x) is twice differentiable in θ ,

∂

∂θ
Eθ

[
∂

∂θ
log fθ (X )

]
=
∫

X

∂

∂θ

[(
∂

∂θ
log fθ (x)

)
fθ (x)

]
dx ,

and the condition on fθ in Theorem 7.3.9 holds, then

I(θ) =−Eθ

[
∂ 2

∂θ∂θ ′
log fθ (X )

]
.

Proof.
Under the conditions,

Eθ

[
∂ 2

∂θ∂θ ′ fθ (X )

fθ (X )

]
=
∫

X

∂ 2

∂θ∂θ ′
fθ (x)dx =

∂ 2

∂θ∂θ

∫
X

fθ (x)dx = 0

Then the result follows from

∂ 2

∂θ∂θ ′
log fθ (x) =

∂ 2

∂θ∂θ ′ fθ (x)

fθ (x)
− ∂

∂θ
log fθ (x)

[
∂

∂θ
log fθ (x)

]
.

UW-Madison (Statistics) Stat 610 Lecture 3 2016 13 / 15



beamer-tu-logo

The conditions in Theorem 7.3.9 and Lemma 7.3.11 are satisfied when
fθ (x) is from an exponential family.

Example 7.3.14.

Let X1, ...,Xn be iid from N(µ,σ2), θ ∈ (µ,σ2) ∈R× (0,∞).
If fθ (xi) is the pdf of Xi , then

log fθ (xi) =−(xi −µ)2

2σ2 − 1
2

log(2πσ
2)

∂ log fθ (xi)

∂ µ
=

xi −µ

σ2
∂ log fθ (xi)

∂σ2 =−(xi −µ)2

2σ4 − 1
2σ2

∂ 2 log fθ (xi)

∂ µ2 =− 1
σ2

∂ 2 log fθ (xi)

∂σ4 =−(xi −µ)2

σ6 +
1

2σ4

∂ 2 log fθ (xi)

∂ µ∂σ2 =−xi −µ

σ4 Eθ

[
∂ 2 log fθ (Xi)

∂ µ∂σ2

]
=−Eθ (Xi −µ)

σ4 = 0

Eθ

[
∂ 2 log fθ (Xi)

∂σ4

]
=−Eθ (Xi −µ)2

σ6 +
1

2σ4 =− 1
σ2 σ

6 +
1

2σ4 =− 1
2σ4
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Hence, the Fisher information contained in Xi is

I1 =

[ 1
σ2 0

0 1
2σ4

]
The Fisher information contained in X = (X1, ...,Xn) is In(θ) = nI1(θ)

[In(θ)]−1 =

 σ2

n 0

0 2σ4

n


Since X̄ is unbiased for µ, the first component of θ , and
Varθ (X̄ ) = σ2/n, which equals the first diagonal element of [In(θ)]−1,
i.e., the equality in the Cramér-Rao inequality holds.
Hence, X̄ is the UMVUE.
Note that S2 is unbiased for σ2.
Since it has a chi-square distribuition, Varθ (S2) = 2σ4/(n−1), which is
larger than the second diagonal element in [In(θ)]−1.
We cannot conclude that S2 is a UMVUE using this approach.
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