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Lecture 4: UMVUE and unbiased estimators of 0
Problems of approach 1.
Approach 1 has the following two main shortcomings.

Even if Theorem 7.3.9 or its extension is applicable, there is no
guarantee that the bound is sharp, i.e., there may be a UMVUE
but it still cannot achieve the Cramér-Rao lower bound.
The conditions for Theorem 7.3.9 is somewhat strong.

Example 7.3.13 (a case where Theorem 7.3.9 is not applicable)
Let X1, ...,Xn be iid with from uniform(0,θ), where θ > 0 is unknown.
The pdf of Xi is fθ (xi) = θ−1I(0 < xi < θ).
Since Pθ (0 < Xi < θ) = 1, we can focus on 0 < xi < θ :

log fθ (xi) =− logθ ,
∂

∂θ
log fθ (xi) =−1

θ
, 0 < xi < θ

Then

Eθ

[
∂

∂θ
log fθ (Xi)

]2

=
1

θ 2
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Consider the estimation of g(θ) = θ , g′(θ) = 1.
According to Theorem 7.3.9 (if it holds), for any unbiased estimator
T (X ) of θ , we should have

Varθ (T )≥ [g′(θ)]2

nEθ

[
∂

∂θ
log fθ (X1)

]2 =
θ 2

n

Let X(n) be the largest order statistic.
From the result in Chapter 5, the pdf of X(n) is

nyn−1

θ n , 0 < y < θ

Thus,
Eθ (X(n)) =

∫
θ

0

nyn

θ n dy =
n

θ n
yn+1

n + 1

∣∣∣∣θ
0

=
nθ

n + 1
showing that n+1

n X(n) is an unbiased estimator of θ .

Eθ (X 2
(n)) =

∫
θ

0

nyn+1

θ n dy =
n

θ n
yn+2

n + 2

∣∣∣∣θ
0

=
nθ 2

n + 2
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Then

Varθ

(
n + 1

n
X(n)

)
=

(n + 1)2

n2 Varθ (X(n))

=
(n + 1)2

n2

[
Eθ (X 2

(n))−{Eθ (X(n))}2
]

=
(n + 1)2

n2

[
nθ 2

n + 2
−
(

nθ

n + 1

)2
]

=
θ 2

n(n + 2)
<

θ 2

n

Hence, Theorem 7.3.9 does not apply.
What is wrong?
Note that the key condition for Theorem 7.3.9 is that

∂

∂θ
Eθ (T ) =

∫
X

T (x)
∂ fθ (x)

∂θ
dx θ ∈Θ

The right hand side is∫
θ

0
· · ·
∫

θ

0
T (x)

∂

∂θ

(
1

θ n

)
dx1 · · ·dxn =− n

θ n+1

∫
θ

0
· · ·
∫

θ

0
T (x)dx1 · · ·dxn
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The left hand side is
∂

∂θ

[
1

θ n

∫
θ

0
· · ·
∫

θ

0
T (x)dx1 · · ·dxn

]
=

T (θ , ...,θ)

θ n − n
θ n+1

∫
θ

0
· · ·
∫

θ

0
T (x)dx1 · · ·dxn

which is not the same as the right hand side unless T (θ , ...,θ) = 0 for
all θ .
The problem is the support of fθ (x), {x : fθ (x) > 0}, depends on θ .
When this occurs, Theorem 7.3.9 is typically not applicable.

Approach 2: using unbiased estimators of 0
To see when an unbiased estimator is best unbiased, we might ask
how could we improve upon a given unbiased estimator?
Suppose that T (X ) is unbiased for g(θ) and U(X ) is a statistic
satisfying Eθ (U) = 0 for all θ , i.e., U is unbiased for 0.
Then, for any constant a,

T (X ) + aU(X )

is unbiased for g(θ).
Can it be better than T (X )?
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Varθ (T + aU) = Varθ (T ) + 2aCovθ (T ,U) + a2Varθ (U)

If for some θ0, Covθ0(T ,U) < 0, then we can make

2aCovθ0(T ,U) + a2Varθ0(U) < 0

by choosing 0 < a−2Covθ0(T ,U)/Varθ0(U).
Hence, T (X ) + aU(X ) is better than T (X ) at least when θ = θ0 and
T (X ) cannot be UMVUE.
Similarly, if Covθ0(T ,U) > 0 for some θ0, then T (X ) cannot be UMVUE
either.
Thus, Covθ (T ,U) = 0 is necessary for T (X ) to be a UMVUE, for all
unbiased estimators of 0.
It turns out that Covθ (T ,U) = 0 for all U(X ) unbiased for 0 is also
sufficient for T (X ) being a UMVUE.

Theorem 7.3.20.
An unbiased estimator T (X ) of g(θ) is UMVUE iff T (X ) is uncorrelated
with all unbiased estimators of 0.
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Proof.
We have shown the necessity (the only if part).
We now show the sufficiency (the if part).
Let W (X ) be another unbiased estimator of g(θ).
Then W (X )−T (X ) is unbiased for 0 and

Varθ (W ) = Varθ (T + (W −T ))

= Varθ (T ) + Varθ (W −T ) + 2Covθ (T ,W −T )

= Varθ (T ) + Varθ (W −T )

≥ Varθ (T )

The result follows since W is arbitrary.

An unbiased estimator of 0 is a first-order ancillary statistic and can be
treated as a random noise.
It makes sense that the most sensible way to estimate 0 is with 0, not
with a random noise.
Theorem 7.3.20 says that an estimator is correlated with a random
noise, then it can be improved.
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The following two useful results are consequence of Theorem 7.3.20.

Corollary
Let Tj be a UMVUE of gj(θ), j = 1, ...,m, where m is a fixed positive
integer.

Then T = ∑
m
j=1 cjTj is a UMVUE of g(θ) = ∑

m
j=1 cjgj(θ) for any

constants c1, ...,cm.

Proof.
Let U(X ) be any unbiased estimator of 0.
First, the unbiasedness of Tj ’s imply that T is unbiased for g(θ):

Eθ (T ) = Eθ

(
m

∑
j=1

cjTj

)
=

m

∑
j=1

Eθ (Tj) =
m

∑
j=1

cjgj(θ) = g(θ)

By Theorem 7.3.20, Covθ (Tj ,U) = 0 for all j = 1, ...,m, and θ ∈Θ.

Covθ (T ,U) = Covθ

(
m

∑
j=1

cjTj ,U

)
=

m

∑
j=1

cjCovθ (Tj ,U) = 0

Again, by Theorem 7.3.20, this shows that T is a UMVUE of g(θ).
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Theorem 7.3.19.
If T (X ) is a UMVUE of g(θ), then T (X ) is unique in the sense that if
T1(X ) is another UMVUE of g(θ), then

Pθ (T (X ) = T1(X )) = 1 for any θ ∈Θ

Proof.
Let T (X ) and T1(X ) be both UMVUE of g(θ).
Since both T (X ) and T1(X ) are unbiased, T (X )−T1(X ) is an
unbiased estimator of 0.
Since both T and T1 are UMVUE, by Theorem 7.3.20,

Covθ (T ,T −T1) = 0, Covθ (T1,T −T1) = 0 θ ∈Θ

Then
Eθ (T −T1)2 = Eθ [(T −T1)(T −T1)]

= Eθ [T (T −T1)]−Eθ [T1(T −T1)]

= Covθ (T ,T −T1)−Covθ (T1,T −T1)

= 0
Hence, Pθ (T (X ) = T1(X )) = 1 for any θ ∈Θ.
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Although Theorem 7.3.20 provides an interesting characterization of
best unbiased estimators and two useful results, its usefulness of
checking whether a particular unbiased estimator T is a UMVUE is
limited since it asks to check whether T is uncorrelated with all
unbiased estimator of 0.
However, Theorem 7.3.20 is sometimes useful in determining that an
estimator is not best unbiased or showing that no UMVUE exists.

Example 7.3.21.
Let X be an observation from uniform(θ ,θ + 1), θ ∈R.
We want to show that there is no UMVUE of g(θ) for any nonconstant
differentiable function g.
Note that an unbiased estimator U(X ) of 0 must satisfy∫

θ+1

θ

U(x)dx = 0 for all θ ∈R

Differentiating both sizes of the previous equation, U(θ) = U(θ + 1),
θ ∈R, i.e.,

U(x) = U(x + 1), x ∈R
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If T is a UMVUE of g(θ), then T (X )U(X ) is unbiased for 0 and, hence,

T (x)U(x) = T (x + 1)U(x + 1), x ∈R

where U(X ) is any unbiased estimator of 0.
Since this is true for all U,

T (x) = T (x + 1), x ∈R

Since T is unbiased for g(θ),

g(θ) =
∫

θ+1

θ

T (x)dx for all θ ∈R

Differentiating both sides of the previous equation we obtain that

g′(θ) = T (θ + 1)−T (θ) = 0, θ ∈R

Thus, g is a constant function.

We consider more for g(θ) = θ .
Since Eθ (X ) = θ + 1

2 , X − 1
2 is unbiased for θ , and its variance is 1

12 .
One unbiased estimator of 0 is U = sin(2πX ), i.e.,

Eθ (U) =
∫

θ+1

θ

sin(2πx)dx = 0 θ ∈R
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Covθ (X − 1
2 ,U) = Covθ (X ,sin(2πX )) = Eθ [X sin(2πX )]

=
∫

θ+1

θ

x sin(2πx)dx

= −x cos(2πx)

2π

∣∣∣∣θ+1

θ

+
∫

θ+1

θ

cos(2πx)

2π
dx

= −cos(2πθ)

2π

Hence X − 1
2 is correlated with an unbiased estimator of 0, and cannot

be a UMVUE of θ .
In fact, X − 1

2 + sin(2πX)
2π

is unbiased for θ and has variance 0.071 < 1
12 .

Sufficient statistics
If there is a sufficient statistic T , then the Rao-Blackwell theorem says
that E(W |T ) is a better unbiased estimator than an unbiased estimator
W .
The following is a Rao-Blackwell theorem for unbiased estimators, a
special case of what we have shown in Chapter 6.
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Theorem 7.3.17.
Let W be any unbiased estimator of g(θ) and T be a sufficient statistic
for θ . Define ψ(T ) = E(W |T ), which does not depend on θ since T is
sufficient. Then ψ(T ) is an unbiased estimator of g(θ) and
Varθ (T )≤ Varθ (W ).

Thus, conditioning any unbiased estimator on a sufficient statistic will
result in a uniform improvement.
This and the next result indicate that we need consider only estimators
that are functions of a sufficient statistic in our search for the UMVUE.

An alternative to Theorem 7.3.20.
Suppose that T is a sufficient statistic for θ . An unbiased estimator
ψ(T ) of g(θ) is a UMVUE iff Covθ (ψ(T ),h(T )) = 0 for any θ ∈Θ and
any h(T ) that is an unbiased estimator of 0.

Proof.
The “only if" part follows from the “only if" part of Theorem 7.3.20.

We now prove the “if" part.
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Suppose that Covθ (ψ(T ),h(T )) = 0 for any θ ∈Θ and any h(T ) that is
an unbiased estimator of 0.
For any unbiased estimator of 0 U and any θ ,

Covθ (ψ(T ),U) = Eθ [ψ(T )U] = Eθ{E [ψ(T )U|T ]}= Eθ{ψ(T )E(U|T )}=0

since E(U|T ) is a function of T and Eθ [E(U|T )] = Eθ (U)=0.

If we have another sufficient statistic S, should we consider
E [E(W |T )|S]?
If there is a function h such that S = h(T ), then by the properties of
conditional expectation,

E [E(W |T )|S] = E(W |S) = E [E(W |S)|T ]

That is, we should always conditioning on a simpler sufficient statistic,
such as a minimal sufficient statistic or a complete sufficient statistic.
If we do have a sufficient and complete statistic T , then by the
completeness, 0 is essentially the only unbiased estimator of 0 that is
a function of T .
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Thus, by the alternative to Theorem 7.3.20, we have actually proved
the following result useful for finding the UMVUE.

Theorem 7.3.23 (Lehmann-Scheffé Theorem)
Let T be a complete sufficient statistic for θ . If ψ(T ) is an unbiased
estimator of g(θ), then it is the unique UMVUE.

By Example 7.3.21, Theorem 7.3.23 does not hold if T is only minimal
sufficient, since X is minimal sufficient for θ in Example 7.3.21.
This is because functions of minimal sufficient statistic can be
first-order ancillary and can still be useful.

Example 7.3.13.
Let X1, ...,Xn be iid from uniform(0,θ) with unknown θ > 0.
Consider the estimation of θ .
Previously we show that approach 1 is not applicable in this example.
Since T = X(n) is the sufficient and complete statistic for θ and

E(X(n)) = nθ/(n + 1)

The UMVUE of θ is (1 + n−1)X(n).
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Suppose now that Θ = [1,∞).
Then X(n) is not complete, although it is still sufficient for θ .
Thus, Theorem 7.3.23 does not apply to X(n).
We now illustrate how to use the alternative Theorem 7.3.20 to find a
UMVUE of θ .
Let U(X(n)) be an unbiased estimator of 0.
Since X(n) has pdf nθ−nxn−1I(0,θ)(x),

0 =
∫ 1

0
U(x)xn−1dx +

∫
θ

1
U(x)xn−1dx for all θ ≥ 1.

This implies that U(x) = 0 on [1,∞) and∫ 1

0
U(x)xn−1dx = 0.

Consider T = h(X(n)).
To have E(TU) = 0, we must have∫ 1

0
h(x)U(x)xn−1dx = 0.

Thus, we may consider the following function:
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h(x) =

{
c 0≤ x ≤ 1
bx x > 1,

where c and b are some constants.
From the previous discussion,

E [h(X(n))U(X(n))] = 0, θ ≥ 1.

Since E [h(X(n))] = θ , we obtain that

θ = cP(X(n) ≤ 1) + bE [X(n)I(1,∞)(X(n))]

= cθ
−n + [bn/(n + 1)](θ −θ

−n).

Thus, c = 1 and b = (n + 1)/n.
The UMVUE of θ is then

h(X(n)) =

{
1 0≤ X(n) ≤ 1
(1 + n−1)X(n) X(n) > 1.

This estimator is better than (1 + n−1)X(n), which is the UMVUE when
Θ = (0,∞) and does not make use of the information about θ ≥ 1.
When Θ = (0,∞), this estimator is not unbiased.
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