Lecture 5: Functions of sufficient and complete statistics

Approach 3: using functions of sufficient and complete statistics

If there is a complete and sufficient statistic *T*, there are two typical ways to derive a UMVUE using Lehmann- Scheffé Theorem.

Solving for the function ψ

The first one is solving for ψ when the distribution of τ is available. The following are two typical examples.

Example (uniform family).

Let $X_1,...,X_n$ be iid from *uniform*(0, θ) with unknown $\theta > 0$. Suppose that *g* is a differentiable function on $(0, \infty)$. Since the sufficient and complete statistic $\mathcal{T} = X_{(n)}$ has pdf $n\theta^{-n}x^{n-1}$, $0 < x < \theta,$ an unbiased estimator $\psi(X_{(n)})$ of $g(\theta)$ must satisfy

$$
\theta^n g(\theta) = n \int_0^{\theta} \psi(x) x^{n-1} dx \quad \text{for all } \theta > 0
$$

Differentiating both sizes of the previous equation leads to

$$
n\theta^{n-1}g(\theta)+\theta^n g'(\theta)=n\psi(\theta)\theta^{n-1}
$$

Hence, the UMVUE of $g(\theta)$ is $\psi(X_{(n)}) = g(X_{(n)}) + n^{-1}X_{(n)}g'(X_{(n)})$.

Example (Poisson family).

Let $X_1, ..., X_n$ be iid from *Poisson*(θ) with unknown $\theta > 0$. Then $\mathcal{T} = \sum_{i=1}^n X_i$ is sufficient and complete for θ and has $Poisson(nθ)$ distribution.

Suppose that g is a smooth function such that $g(x) = \sum_{j=0}^\infty a_j x^j, \, x>0.$ An unbiased estimator $\psi(T)$ of $g(\theta)$ must satisfy

$$
\sum_{t=0}^{\infty}\frac{\psi(t)n^t}{t!}\theta^t=\left. e^{n\theta}g(\theta)=\sum_{k=0}^{\infty}\frac{n^k}{k!}\theta^k\sum_{j=0}^{\infty}a_j\theta^j\right.\\ \left.\left.\theta>0\right.\right.\\ \left.\left.\left.-\sum_{t=0}^{\infty}\left(\sum_{j,k: j+k=t}\frac{n^ka_j}{k!}\right)\theta^t\right.\right.\right.\\ \left.\left.\theta>0\right.
$$

Thus, a comparison of coefficient[s](#page-1-0) in fron[t](#page-2-0) [o](#page-0-0)f $\theta^{\,t}$ [l](#page-0-0)[ea](#page-2-0)[d](#page-0-0)s to

$$
\psi(t)=\frac{t!}{n^t}\sum_{j,k:j+k=t}\frac{n^k a_j}{k!},
$$

i.e., $\psi(T)$ is the UMVUE of $q(\theta)$.

In particular, if $g(\theta) = \theta^r$ for some fixed integer $r \geq 1,$ then $a_r = 1$ and $a_k = 0$ if $k \neq r$ and

$$
\phi(t) = \begin{cases} 0 & t < r \\ \frac{t!}{n'(t-r)!} & t \geq r. \end{cases}
$$

Example (normal family).

Let $X_1,...,X_n$ be iid $\mathsf{N}(\mu,\sigma^2)$ with unknown $\theta=(\mu,\sigma^2)\in\mathscr{R}\times(0,\infty).$ $\mathcal{T} = (\bar{X}, S^2)$ is sufficient and complete for θ and \bar{X} and $(n-1)S^2/\sigma^2$ are independent and have the $\mathcal{N}(\mu, \sigma^2/n)$ and chi-square distribution with degrees of freedom *n* − 1, respectively. Using the method of solving for ψ directly, we find that the UMVUE for μ is \bar{X} ; the UMVUE of μ^2 is $\bar{X}^2 - S^2/n$; the UMVUE for σ^r with $r > 1 - n$ is $k_{n-1,r} S^r$, where

$$
k_{n,r}=\frac{n^{r/2}\Gamma(n/2)}{2^{r/2}\Gamma\left(\frac{n+r}{2}\right)}
$$

(in particular, the UMVUE of σ^2 is S^2 , which is a conclusion we cannot get in Example 7.3.14), and the UMVUE of μ/σ is $k_{n-1,-1}\bar{X}/S$. Suppose that $g(\theta)$ satisfies $P(X_1 \leq g(\theta)) = p$ with a fixed $p \in (0,1)$. Let Φ be the cdf of the standard normal distribution.

Then $g(\theta) = \mu + \sigma \Phi^{-1}(\rho)$ and its UMVUE is $\bar{X} + k_{n-1,1} S \Phi^{-1}(\rho)$.

Conditioning

The second method of deriving a UMVUE when there is a sufficient and complete statistic *T* is conditioning on *T*, i.e., if *W* is any unbiased estimator of $g(\theta)$, then $E(W|T)$ is the UMVUE of $g(\theta)$.

To apply this method, we do not need the distribution of *T*, but need to work out the conditional expectation *E*(*W*|*T*).

From the uniqueness of the UMVUE, it does not matter which *W* is used and, thus, we should choose *W* so as to make the calculation of *E*(*W*|*T*) as easy as possible.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

beamer-tu-logo

 QQ

Example 7.3.24 (binomial family)

Let $X_1, ..., X_n$ be iid from *binomial*(k, θ) with known k and unknown $\theta \in (0,1)$.

We want to estimate $g(\theta) = P_{\theta}(X_1 = 1) = k\theta(1-\theta)^{k-1}$. Note that $\mathcal{T} = \sum_{i=1}^n X_i \sim binomial(kn, \theta)$ is the sufficient and complete statistic for θ.

But no unbiased estimator based on it is immediately evident. To apply conditioning, we take the simple unbiased estimator of $P_{\theta}(X_1 = 1)$, the indicator function $I(X_1 = 1)$. By Theorem 7.3.23, the UMVUE of $q(\theta)$ is

$$
\psi(T) = E[I(X_1 = 1)|T) = P(X_1 = 1|T)
$$

We need to simply $\psi(T)$ and obtain an explicit form. For $t = 1, ..., kn$,

$$
\psi(t) = P(X_1 = 1 | T = t) = \frac{P_{\theta}(X_1 = 1, \sum_{i=1}^n X_i = t)}{P_{\theta}(\sum_{i=1}^n X_i = t)}
$$

$$
= \frac{P_{\theta}(X_1 = 1, \sum_{i=2}^n X_i = t - 1)}{P_{\theta}(\sum_{i=1}^n X_i = t)}
$$

$$
= \frac{P_{\theta}(X_1 = 1)P_{\theta}(\sum_{i=2}^n X_i = t - 1)}{P_{\theta}(\sum_{i=1}^n X_i = t)}
$$

=
$$
\frac{k\theta(1-\theta)^{k-1}\left[\binom{k(n-1)}{t-1}\theta^{t-1}(1-\theta)^{k(n-1)-(t-1)}\right]}{\binom{kn}{t}\theta^t(1-\theta)^{kn-t}}
$$

=
$$
\frac{k\binom{k(n-1)}{t-1}}{\binom{kn}{t}}
$$

When $T = 0$, $P(X_1 = 1 | T = 0) = 0$. Hence, the UMVUE of $g(\theta) = k\theta(1-\theta)^{k-1}$ is

$$
\psi(T) = \begin{cases} \frac{k\binom{k(n-1)}{T-1}}{\binom{k(n)}{T}} & T = 1,...,kn \\ 0 & T = 0 \end{cases}
$$

Example (exponential distribution family)

beamer-tu-logo Let $X_1,...,X_n$ be iid with pdf $\theta^{-1}e^{-\chi\theta},\,x>0,$ where $\theta>0$ is unknown. Le[t](#page-0-0) *t* [>](#page-15-0) 0 and the parameter of interest to be $g(\theta) = P_{\theta}(X_1 > t)$ $g(\theta) = P_{\theta}(X_1 > t)$ [.](#page-15-0)

Since \bar{X} is sufficient and complete for $\theta > 0$ and the indicator $I(X_1 > t)$ is unbiased for $g(\theta)$,

$$
\psi(\bar{X}) = E[I(X_1 > t)|\bar{X}] = P(X_1 > t|\bar{X})
$$

is the UMVUE of $q(\theta)$.

If the conditional distribution of X_1 given \overline{X} is available, then we can calculate $P(X_1 > t | \bar{X})$ directly.

But the following technique can be applied to avoid the derivation of conditional distributions.

By Basu's theorem, X_1/\overline{X} and \overline{X} are independent.

Then

$$
P(X_1 > t | \bar{X} = \bar{x}) = P(X_1/\bar{X} > t/\bar{X} | \bar{X} = \bar{x})
$$

=
$$
P(X_1/\bar{X} > t/\bar{x} | \bar{X} = \bar{x})
$$

=
$$
P(X_1/\bar{X} > t/\bar{x})
$$

To compute this unconditional probability, we need the distribution of

$$
X_1 / \sum_{i=1}^n X_i = X_1 / \left(X_1 + \sum_{i=2}^n X_i\right)
$$

UW-Madison (Statistics) and Statistics State 610 Lecture 5 2016 7/16

Using the transformation technique discussed earlier and the fact that $\sum_{i=2}^n X_i$ is independent of X_1 and has a gamma distribution, we obtain that $X_1/\sum_{i=1}^n X_i$ has pdf $(n-1)(1-x)^{n-2}$, $0 < x < 1$ (a beta pdf).

$$
P(X_1 > t | \bar{X} = \bar{x}) = (n - 1) \int_{t/(n\bar{x})}^1 (1 - x)^{n-2} dx = \left(1 - \frac{t}{n\bar{x}}\right)^{n-1}
$$

Hence the UMVUE of $q(\theta)$ is

$$
T(X) = \left(1 - \frac{t}{n\bar{X}}\right)^{n-1}
$$

Simple linear regression

Simple linear regression studies the relationship between a variable of interest *Yⁱ* (often called response or dependent variable) and a univariate covariate *Xⁱ* (also called auxiliary variable, explanatory variable, or independent variable), when the following simple linear regression model is assumed:

$$
Y_i = \alpha + \beta x_i + \varepsilon_i, \qquad i = 1, ..., n,
$$

where $\left. Y_{i}\right.$ is a random respons[e,](#page-0-0) x_{i} is the univa[ria](#page-6-0)[te](#page-8-0) [co](#page-7-0)[v](#page-8-0)[ari](#page-0-0)[at](#page-15-0)e, [w](#page-15-0)[hic](#page-0-0)[h i](#page-15-0)s

either a deterministic value or the observed value of a random variable, in which case our analysis is conditional on $x_1,...,x_n$, $\alpha \in \mathscr{R}$ and $\beta \in \mathscr{R}$ are unknown intercept and slope, respectively, ε*ⁱ* 's are measurement errors and are independent random variables with mean 0 and a finite common unknown variance σ^2 $>$ 0, and n \geq 3 is the sample size.

An example of a set of observed (y_i, x_i) 's is shown in the next figure.

• Data are from Table 11.3.1.

• Points should be on a line if there is no error $(\varepsilon_i = 0$ for all *i*).

beamer-tu-logo $\hat{y} = c + dx$ $\hat{y} = c + dx$ $\hat{y} = c + dx$ is a[n](#page-7-0) [e](#page-8-0)stima[te](#page-0-0) of $y = \alpha + \beta x$ $y = \alpha + \beta x$ $y = \alpha + \beta x$ that [ge](#page-9-0)ne[ra](#page-9-0)te[s](#page-15-0) [th](#page-0-0)[e d](#page-15-0)a[ta.](#page-15-0)
W^{-Madison (Statistics)}

The MLE and UMVUE

Under the additional assumption that ε_i 's are iid $\mathcal{N}(0, \sigma^2)$, the likelihood function is *n* 2 \setminus

$$
\frac{1}{(2\pi\sigma^2)^{n/2}}\exp\left(-\sum_{i=1}^n\frac{(y_i-\alpha-\beta x_i)^2}{2\sigma^2}\right)
$$

Maximizing this likelihood is equivalent to minimizing

$$
\psi(a, b) = \sum_{i=1}^{n} (y_i - a - bx_i)^2
$$
 over a and b

Consider $(y_1, x_1),..., (y_n, x_n)$ as *n* pairs of numbers plotted in a scatterplot as in the previous figure.

Think of drawing through this cloud of points a straight line that comes "as close as possible" to all the points, measured by the vertical distances from the points to the straight line.

For any line $y = a + bx$, the squared distances is $y(a, b)$.

The MLE $(\widehat{\alpha}, \beta)$ is the point that minimizes $\psi(a, b)$ over *a* and *b*.

beamer-tu-logo Because of this, the estimator $(\widehat{\alpha}, \beta)$ is also called the least squares
estimator (LSE) estimator (LSE).

Consider

$$
\frac{\partial \psi(a,b)}{\partial a} = -2 \sum_{i=1}^{n} (y_i - a - bx_i) = 0
$$

$$
\frac{\partial \psi(a,b)}{\partial b} = -2 \sum_{i=1}^{n} x_i (y_i - a - bx_i) = 0
$$

The first equation is

$$
\bar{y}-a-b\bar{x}=0 \quad \text{iff} \quad a=\bar{y}-b\bar{x}
$$

Substituting *a* in the second equation by $\bar{y} - b\bar{x}$ results in

$$
\sum_{i=1}^n x_i(y_i - \bar{y}) - b \sum_{i=1}^n x_i(x_i - \bar{x}) = 0
$$

This equation is the same as $S_{xy} = bS_{xx}$, where

$$
S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}), \quad S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2
$$

Therefore, replacing *yⁱ* by the random variable *Yⁱ* for all *i* (and we still use $\mathcal{S}_{\mathsf{x}\mathsf{y}}$ when y_i is replaced by Y_i), we obtain the MLE or LSE as

$$
\widehat{\beta} = \frac{S_{xy}}{S_{xx}}, \qquad \widehat{\alpha} = \bar{Y} - \widehat{\beta}\bar{x} = \bar{Y} - \frac{S_{xy}}{S_{xx}}\bar{x}
$$

We can always assume that $S_{xx} > 0$, since $S_{xx} = 0$ is the trivial case of identical *x_i*'s.

We now show that $\widehat{\alpha}$ and $\widehat{\beta}$ are UMVUE's of α and β , respectively. First, we show that they are unbiased estimators.

$$
E(S_{xy}) = \sum_{i=1}^{n} (x_i - \bar{x}) E(y_i - \bar{y}) = \sum_{i=1}^{n} (x_i - \bar{x}) \beta (x_i - \bar{x}) = \beta S_{xx}
$$

 $\widehat{\beta}$ is unbiased for β and

$$
E(\widehat{\alpha}) = E(\overline{Y}) - E(\widehat{\beta})\overline{x} = \alpha + \beta \overline{x} - \beta \overline{x} = \alpha
$$

The likelihood function is

$$
\frac{1}{(2\pi\sigma^2)^{n/2}}\exp\left(-\sum_{i=1}^n\frac{(y_i-\alpha-\beta x_i)^2}{2\sigma^2}\right)
$$
\n
$$
=\frac{1}{(2\pi\sigma^2)^{n/2}}\exp\left(-\sum_{i=1}^n\frac{[(y_i-\bar{y})-(\alpha-\widehat{\alpha})-\beta(x_i-\bar{x})]^2}{2\sigma^2}\right)
$$
\n
$$
=\frac{1}{(2\pi\sigma^2)^{n/2}}\exp\left(-\frac{S_{yy}+n(\alpha-\widehat{\alpha})^2+\beta^2S_{xx}-2\beta S_{xy}}{2\sigma^2}\right)
$$

UW-Madison (Statistics) UW-Madison (Statistics) [Stat 610 Lecture 5](#page-0-0) 2016 12/16 2016 12/16

where

$$
S_{yy}=\sum_{i=1}^n(y_i-\bar{y})^2
$$

We still use the notation *Syy* when *yⁱ* is replaced by *Yⁱ* .

From the properties of the exponential family, a complete and sufficient statistic for $\theta = (\alpha, \beta, \sigma^2)$ is $(\widehat{\alpha}, \widehat{\beta}, S_{yy})$.

Since $\hat{\alpha}$ and $\hat{\beta}$ are unbiased estimators and functions of the sufficient and complete statistic, they are UMVUE's.

The best Linear unbiased estimator (BLUE)

What if we remove the normality assumption? $\hat{\alpha}$ and $\hat{\beta}$ are still LSE, but not MLE. A statistical property of the LSE is that it is the best linear unbiased estimator (BLUE) in the sense that $\widehat{\beta}$ (or $\widehat{\alpha}$) has the smallest variance

within the class of linear unbiased estimators of β (or α) of the form

$$
\sum_{i=1}^{n} d_i Y_i, \qquad d_i \text{'s are known constants}
$$

If the estimator of this form is unbiased for β , then

$$
\beta = E\left(\sum_{i=1}^n d_i Y_i\right) = \sum_{i=1}^n d_i E(Y_i) = \sum_{i=1}^n d_i (\alpha + \beta x_i) = \alpha \sum_{i=1}^n d_i + \beta \sum_{i=1}^n d_i x_i
$$

holds for all α and β , which implies that

$$
\sum_{i=1}^n d_i = 0, \qquad \sum_{i=1}^n d_i x_i = 1
$$

A geometric description of the BLUE of β is given in the next figure.

UW-Madison (Statistics) [Stat 610 Lecture 5](#page-0-0) 2016 14/16

Proof: the LSE $\widehat{\beta}$ is BLUE

Since

$$
\text{Var}\left(\sum_{i=1}^n d_i Y_i\right) = \sum_{i=1}^n d_i^2 \text{Var}(Y_i) = \sigma^2 \sum_{i=1}^n d_i^2
$$

the BLUE of $β$ must be a solution of

min
$$
\sum_{i=1}^{n} d_i^2
$$
 subject to $\sum_{i=1}^{n} d_i = 0$, $\sum_{i=1}^{n} d_i x_i = 1$

Consider the Lagrange multiplier method by minimizing

$$
g(d_1,...,d_n,\lambda_1,\lambda_2)=\sum_{i=1}^n d_i^2+\lambda_1\sum_{i=1}^n d_i+\lambda_2\left(\sum_{i=1}^n d_i x_i-1\right)
$$

Taking derivatives, we obtain that

$$
0=\frac{\partial g}{\partial d_i}=2d_i+\lambda_1+\lambda_2x_i, \quad i=1,...,n
$$

Then

$$
0 = \sum_{i=1}^{n} (2d_i + \lambda_1 + \lambda_2 x_i) = \lambda_1 n + \lambda_2 \sum_{i=1}^{n} x_i
$$

UW-Madison (Statistics) [Stat 610 Lecture 5](#page-0-0) 2016 15/16

which gives $\lambda_1 = -\lambda_2 \bar{x}$ and, hence

 $0 = 2d_i + \lambda_2(x_i - \bar{x})$

Then

$$
0=\sum_{i=1}^n(x_i-\bar{x})[2d_i+\lambda_2(x_i-\bar{x})]=2+\lambda_2S_{xx}
$$

which gives $\lambda_2 = -2/S_{xx}$. Then

$$
d_i = -(\lambda_1 + \lambda_2 x_i)/2 = -\lambda_2(x_i - \bar{x})/2 = (x_i - \bar{x})/S_{xx}
$$

and the BLUE of β is

$$
\sum_{i=1}^n d_i Y_i = \sum_{i=1}^n \frac{(x_i - \bar{x})}{S_{xx}} Y_i = \frac{S_{xy}}{S_{xx}} = \widehat{\beta}
$$

Since

$$
\widehat{\beta} = \sum_{i=1}^n \frac{(x_i - \bar{x})(\beta x_i + \varepsilon_i)}{S_{xx}} = \beta + \sum_{i=1}^n d_i \varepsilon_i
$$

where $d_i = (x_i - \bar{x})/S_{xx}$, we obtain that

$$
\text{Var}(\widehat{\beta}) = \sum_{i=1}^{n} d_i^2 \text{Var}(\varepsilon_i) = \frac{\sigma^2}{S_{xx}}
$$

UW-Madison (Statistics) [Stat 610 Lecture 5](#page-0-0) 2016 16/16