Lecture 5: Functions of sufficient and complete statistics

Approach 3: using functions of sufficient and complete statistics

If there is a complete and sufficient statistic T, there are two typical ways to derive a UMVUE using Lehmann- Scheffé Theorem.

Solving for the function ψ

The first one is solving for ψ when the distribution of *T* is available. The following are two typical examples.

Example (uniform family).

Let $X_1, ..., X_n$ be iid from *uniform* $(0, \theta)$ with unknown $\theta > 0$. Suppose that *g* is a differentiable function on $(0, \infty)$. Since the sufficient and complete statistic $T = X_{(n)}$ has pdf $n\theta^{-n}x^{n-1}$, $0 < x < \theta$, an unbiased estimator $\psi(X_{(n)})$ of $g(\theta)$ must satisfy

$$\theta^n g(\theta) = n \int_0^\theta \psi(x) x^{n-1} dx$$
 for all $\theta > 0$

Differentiating both sizes of the previous equation leads to

$$n\theta^{n-1}g(\theta) + \theta^n g'(\theta) = n\psi(\theta)\theta^{n-1}$$

Hence, the UMVUE of $g(\theta)$ is $\psi(X_{(n)}) = g(X_{(n)}) + n^{-1}X_{(n)}g'(X_{(n)})$.

Example (Poisson family).

Let $X_1, ..., X_n$ be iid from $Poisson(\theta)$ with unknown $\theta > 0$. Then $T = \sum_{i=1}^n X_i$ is sufficient and complete for θ and has $Poisson(n\theta)$ distribution.

Suppose that *g* is a smooth function such that $g(x) = \sum_{j=0}^{\infty} a_j x^j$, x > 0. An unbiased estimator $\psi(T)$ of $g(\theta)$ must satisfy

$$\sum_{t=0}^{\infty} rac{\psi(t)n^t}{t!} heta^t = e^{n heta} g(heta) = \sum_{k=0}^{\infty} rac{n^k}{k!} heta^k \sum_{j=0}^{\infty} a_j heta^j = \sum_{t=0}^{\infty} \left(\sum_{j,k:j+k=t} rac{n^k a_j}{k!}
ight) heta^t \qquad heta > 0$$

Thus, a comparison of coefficients in front of θ^t leads to

$$\psi(t)=\frac{t!}{n^t}\sum_{j,k:j+k=t}\frac{n^ka_j}{k!},$$

i.e., $\psi(T)$ is the UMVUE of $g(\theta)$.

In particular, if $g(\theta) = \theta^r$ for some fixed integer $r \ge 1$, then $a_r = 1$ and $a_k = 0$ if $k \ne r$ and

$$\phi(t) = \begin{cases} 0 & t < r \\ \frac{t!}{n^r(t-r)!} & t \ge r. \end{cases}$$

Example (normal family).

Let $X_1, ..., X_n$ be iid $N(\mu, \sigma^2)$ with unknown $\theta = (\mu, \sigma^2) \in \mathscr{R} \times (0, \infty)$. $T = (\bar{X}, S^2)$ is sufficient and complete for θ and \bar{X} and $(n-1)S^2/\sigma^2$ are independent and have the $N(\mu, \sigma^2/n)$ and chi-square distribution with degrees of freedom n-1, respectively. Using the method of solving for ψ directly, we find that the UMVUE for μ is \bar{X} ; the UMVUE of μ^2 is $\bar{X}^2 - S^2/n$; the UMVUE for σ^r with r > 1 - n is $k_{n-1,r}S^r$, where

$$k_{n,r} = \frac{n^{r/2} \Gamma(n/2)}{2^{r/2} \Gamma\left(\frac{n+r}{2}\right)}$$

(in particular, the UMVUE of σ^2 is S^2 , which is a conclusion we cannot get in Example 7.3.14), and the UMVUE of μ/σ is $k_{n-1,-1}\bar{X}/S$. Suppose that $g(\theta)$ satisfies $P(X_1 \le g(\theta)) = p$ with a fixed $p \in (0,1)$. Let Φ be the cdf of the standard normal distribution. Then $g(\theta) = \mu + \sigma \Phi^{-1}(p)$ and its UMVUE is $\bar{X} + k_{n-1,1}S\Phi^{-1}(p)$.

Conditioning

The second method of deriving a UMVUE when there is a sufficient and complete statistic *T* is conditioning on *T*, i.e., if *W* is any unbiased estimator of $g(\theta)$, then E(W|T) is the UMVUE of $g(\theta)$.

To apply this method, we do not need the distribution of T, but need to work out the conditional expectation E(W|T).

From the uniqueness of the UMVUE, it does not matter which *W* is used and, thus, we should choose *W* so as to make the calculation of E(W|T) as easy as possible.

イロン イ理シ イヨン イヨン

Example 7.3.24 (binomial family)

Let $X_1, ..., X_n$ be iid from *binomial*(k, θ) with known k and unknown $\theta \in (0, 1)$.

We want to estimate $g(\theta) = P_{\theta}(X_1 = 1) = k\theta(1-\theta)^{k-1}$. Note that $T = \sum_{k=1}^{n} X_{k-k}$ bipomial(kn θ) is the sufficient and

Note that $T = \sum_{i=1}^{n} X_i \sim binomial(kn, \theta)$ is the sufficient and complete statistic for θ .

But no unbiased estimator based on it is immediately evident. To apply conditioning, we take the simple unbiased estimator of $P_{\theta}(X_1 = 1)$, the indicator function $I(X_1 = 1)$. By Theorem 7.3.23, the UMVUE of $g(\theta)$ is

$$\psi(T) = E[I(X_1 = 1)|T) = P(X_1 = 1|T)$$

We need to simply $\psi(T)$ and obtain an explicit form. For t = 1, ..., kn,

$$\psi(t) = P(X_1 = 1 | T = t) = \frac{P_{\theta}(X_1 = 1, \sum_{i=1}^{n} X_i = t)}{P_{\theta}(\sum_{i=1}^{n} X_i = t)}$$
$$= \frac{P_{\theta}(X_1 = 1, \sum_{i=2}^{n} X_i = t - 1)}{P_{\theta}(\sum_{i=1}^{n} X_i = t)}$$

$$= \frac{P_{\theta}(X_{1} = 1)P_{\theta}(\sum_{i=2}^{n} X_{i} = t - 1)}{P_{\theta}(\sum_{i=1}^{n} X_{i} = t)}$$

=
$$\frac{k\theta(1-\theta)^{k-1} \left[\binom{k(n-1)}{t-1} \theta^{t-1} (1-\theta)^{k(n-1)-(t-1)} \right]}{\binom{kn}{t} \theta^{t} (1-\theta)^{kn-t}}$$

=
$$\frac{k\binom{k(n-1)}{t-1}}{\binom{kn}{t}}$$

When T = 0, $P(X_1 = 1 | T = 0) = 0$. Hence, the UMVUE of $g(\theta) = k\theta(1 - \theta)^{k-1}$ is

$$\psi(T) = \begin{cases} \frac{k\binom{k(n-1)}{T-1}}{\binom{kn}{T}} & T = 1, \dots, kn \\ 0 & T = 0 \end{cases}$$

Example (exponential distribution family)

Let $X_1, ..., X_n$ be iid with pdf $\theta^{-1} e^{-x\theta}$, x > 0, where $\theta > 0$ is unknown. Let t > 0 and the parameter of interest to be $g(\theta) = P_{\theta}(X_1 > t)$. Since \bar{X} is sufficient and complete for $\theta > 0$ and the indicator $I(X_1 > t)$ is unbiased for $g(\theta)$,

$$\psi(\bar{X}) = E[I(X_1 > t)|\bar{X}] = P(X_1 > t|\bar{X})$$

is the UMVUE of $g(\theta)$.

If the conditional distribution of X_1 given \bar{X} is available, then we can calculate $P(X_1 > t | \bar{X})$ directly.

But the following technique can be applied to avoid the derivation of conditional distributions.

By Basu's theorem, X_1/\bar{X} and \bar{X} are independent.

Then

$$P(X_1 > t | \bar{X} = \bar{x}) = P(X_1 / \bar{X} > t / \bar{X} | \bar{X} = \bar{x}) \\ = P(X_1 / \bar{X} > t / \bar{x} | \bar{X} = \bar{x}) \\ = P(X_1 / \bar{X} > t / \bar{x})$$

To compute this unconditional probability, we need the distribution of

$$X_1 / \sum_{i=1}^n X_i = X_1 / \left(X_1 + \sum_{i=2}^n X_i \right)$$

UW-Madison (Statistics)

Stat 610 Lecture 5

Using the transformation technique discussed earlier and the fact that $\sum_{i=2}^{n} X_i$ is independent of X_1 and has a gamma distribution, we obtain that $X_1 / \sum_{i=1}^{n} X_i$ has pdf $(n-1)(1-x)^{n-2}$, 0 < x < 1 (a beta pdf).

$$P(X_1 > t | \bar{X} = \bar{x}) = (n-1) \int_{t/(n\bar{x})}^1 (1-x)^{n-2} dx = \left(1 - \frac{t}{n\bar{x}}\right)^{n-2}$$

Hence the UMVUE of $g(\theta)$ is

$$T(X) = \left(1 - \frac{t}{n\bar{X}}\right)^{n-1}$$

Simple linear regression

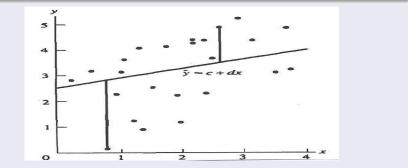
Simple linear regression studies the relationship between a variable of interest Y_i (often called response or dependent variable) and a univariate covariate X_i (also called auxiliary variable, explanatory variable, or independent variable), when the following simple linear regression model is assumed:

$$Y_i = \alpha + \beta x_i + \varepsilon_i, \qquad i = 1, ..., n,$$

where Y_i is a random response, x_i is the univariate covariate, which is

either a deterministic value or the observed value of a random variable, in which case our analysis is conditional on $x_1, ..., x_n$, $\alpha \in \mathscr{R}$ and $\beta \in \mathscr{R}$ are unknown intercept and slope, respectively, ε_i 's are measurement errors and are independent random variables with mean 0 and a finite common unknown variance $\sigma^2 > 0$, and $n \ge 3$ is the sample size.

An example of a set of observed (y_i, x_i) 's is shown in the next figure.



Data are from Table 11.3.1.

• Points should be on a line if there is no error ($\varepsilon_i = 0$ for all *i*).

• $\hat{y} = c + dx$ is an estimate of $y = \alpha + \beta x$ that generates the data.

The MLE and UMVUE

Under the additional assumption that ε_i 's are iid $N(0, \sigma^2)$, the likelihood function is $1 \qquad \left(-\frac{n}{\sigma} (v_i - \alpha - \beta x_i)^2 \right)$

$$\frac{1}{(2\pi\sigma^2)^{n/2}}\exp\left(-\sum_{i=1}^n\frac{(y_i-\alpha-\beta x_i)^2}{2\sigma^2}\right)$$

Maximizing this likelihood is equivalent to minimizing

$$\psi(a,b) = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
 over a and b

Consider $(y_1, x_1), ..., (y_n, x_n)$ as *n* pairs of numbers plotted in a scatterplot as in the previous figure.

Think of drawing through this cloud of points a straight line that comes "as close as possible" to all the points, measured by the vertical distances from the points to the straight line.

For any line y = a + bx, the squared distances is $\psi(a, b)$.

The MLE $(\hat{\alpha}, \hat{\beta})$ is the point that minimizes $\psi(a, b)$ over *a* and *b*.

Because of this, the estimator $(\hat{\alpha}, \hat{\beta})$ is also called the least squares estimator (LSE).

Consider

$$\frac{\partial \psi(a,b)}{\partial a} = -2\sum_{i=1}^{n} (y_i - a - bx_i) = 0$$
$$\frac{\partial \psi(a,b)}{\partial b} = -2\sum_{i=1}^{n} x_i (y_i - a - bx_i) = 0$$

The first equation is

$$\bar{y} - a - b\bar{x} = 0$$
 iff $a = \bar{y} - b\bar{x}$

Substituting *a* in the second equation by $\bar{y} - b\bar{x}$ results in

$$\sum_{i=1}^{n} x_{i}(y_{i} - \bar{y}) - b \sum_{i=1}^{n} x_{i}(x_{i} - \bar{x}) = 0$$

This equation is the same as $S_{xy} = bS_{xx}$, where

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}), \quad S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Therefore, replacing y_i by the random variable Y_i for all *i* (and we still use S_{xy} when y_i is replaced by Y_i), we obtain the MLE or LSE as

$$\widehat{eta} = rac{S_{xy}}{S_{xx}}, \qquad \widehat{lpha} = \overline{Y} - \widehat{eta} \, \overline{x} = \overline{Y} - rac{S_{xy}}{S_{xx}} \overline{x}$$

We can always assume that $S_{xx} > 0$, since $S_{xx} = 0$ is the trivial case of identical x_i 's.

We now show that $\hat{\alpha}$ and $\hat{\beta}$ are UMVUE's of α and β , respectively. First, we show that they are unbiased estimators.

$$E(S_{xy}) = \sum_{i=1}^{n} (x_i - \bar{x}) E(y_i - \bar{y}) = \sum_{i=1}^{n} (x_i - \bar{x}) \beta(x_i - \bar{x}) = \beta S_{xx}$$

 $\widehat{\beta}$ is unbiased for β and

$$E(\widehat{\alpha}) = E(\overline{Y}) - E(\widehat{\beta})\overline{x} = \alpha + \beta \overline{x} - \beta \overline{x} = \alpha$$

The likelihood function is

$$\frac{1}{(2\pi\sigma^2)^{n/2}}\exp\left(-\sum_{i=1}^n\frac{(y_i-\alpha-\beta x_i)^2}{2\sigma^2}\right)$$

$$= \frac{1}{(2\pi\sigma^2)^{n/2}}\exp\left(-\sum_{i=1}^n\frac{[(y_i-\bar{y})-(\alpha-\hat{\alpha})-\beta(x_i-\bar{x})]^2}{2\sigma^2}\right)$$

$$= \frac{1}{(2\pi\sigma^2)^{n/2}}\exp\left(-\frac{S_{yy}+n(\alpha-\hat{\alpha})^2+\beta^2S_{xx}-2\beta S_{xy}}{2\sigma^2}\right)$$

where

$$S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

We still use the notation S_{yy} when y_i is replaced by Y_i .

From the properties of the exponential family, a complete and sufficient statistic for $\theta = (\alpha, \beta, \sigma^2)$ is $(\hat{\alpha}, \hat{\beta}, S_{yy})$.

Since $\hat{\alpha}$ and $\hat{\beta}$ are unbiased estimators and functions of the sufficient and complete statistic, they are UMVUE's.

The best Linear unbiased estimator (BLUE)

What if we remove the normality assumption? $\hat{\alpha}$ and $\hat{\beta}$ are still LSE, but not MLE. A statistical property of the LSE is that it is the best linear unbiased estimator (BLUE) in the sense that $\hat{\beta}$ (or $\hat{\alpha}$) has the smallest variance within the class of linear unbiased estimators of β (or α) of the form

$$\sum_{i=1}^{n} d_i Y_i, \qquad d_i$$
's are known constants

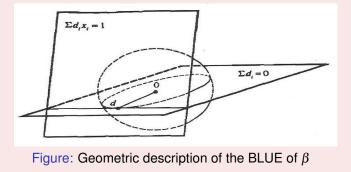
If the estimator of this form is unbiased for β , then

$$\beta = E\left(\sum_{i=1}^n d_i Y_i\right) = \sum_{i=1}^n d_i E(Y_i) = \sum_{i=1}^n d_i (\alpha + \beta x_i) = \alpha \sum_{i=1}^n d_i + \beta \sum_{i=1}^n d_i x_i$$

holds for all α and β , which implies that

$$\sum_{i=1}^{n} d_i = 0, \qquad \sum_{i=1}^{n} d_i x_i = 1$$

A geometric description of the BLUE of β is given in the next figure.



UW-Madison (Statistics)

Stat 610 Lecture 5

Proof: the LSE $\hat{\beta}$ is BLUE

Since

$$\operatorname{Var}\left(\sum_{i=1}^{n} d_{i} Y_{i}\right) = \sum_{i=1}^{n} d_{i}^{2} \operatorname{Var}(Y_{i}) = \sigma^{2} \sum_{i=1}^{n} d_{i}^{2}$$

the BLUE of β must be a solution of

$$\min \sum_{i=1}^{n} d_i^2$$
 subject to $\sum_{i=1}^{n} d_i = 0$, $\sum_{i=1}^{n} d_i x_i = 1$

Consider the Lagrange multiplier method by minimizing

$$g(d_1,...,d_n,\lambda_1,\lambda_2) = \sum_{i=1}^n d_i^2 + \lambda_1 \sum_{i=1}^n d_i + \lambda_2 \left(\sum_{i=1}^n d_i x_i - 1 \right)$$

Taking derivatives, we obtain that

$$0 = \frac{\partial g}{\partial d_i} = 2d_i + \lambda_1 + \lambda_2 x_i, \quad i = 1, ..., n$$

Then

$$0 = \sum_{i=1}^{n} (2d_i + \lambda_1 + \lambda_2 x_i) = \lambda_1 n + \lambda_2 \sum_{i=1}^{n} x_i$$

which gives $\lambda_1 = -\lambda_2 \bar{x}$ and, hence

n

$$0=2d_i+\lambda_2(x_i-\bar{x})$$

Then

$$0 = \sum_{i=1}^{n} (x_i - \bar{x}) [2d_i + \lambda_2 (x_i - \bar{x})] = 2 + \lambda_2 S_{xx}$$

which gives $\lambda_2 = -2/S_{xx}$. Then

$$d_i = -(\lambda_1 + \lambda_2 x_i)/2 = -\lambda_2 (x_i - \bar{x})/2 = (x_i - \bar{x})/S_{xx}$$

and the BLUE of β is

$$\sum_{i=1}^n d_i Y_i = \sum_{i=1}^n \frac{(x_i - \bar{x})}{S_{xx}} Y_i = \frac{S_{xy}}{S_{xx}} = \widehat{\beta}$$

Since

$$\widehat{eta} = \sum_{i=1}^n rac{(x_i - ar{x})(eta x_i + arepsilon_i)}{S_{xx}} = eta + \sum_{i=1}^n d_i arepsilon_i$$

where $d_i = (x_i - \bar{x})/S_{xx}$, we obtain that

$$\operatorname{Var}(\widehat{\beta}) = \sum_{i=1}^{n} d_i^2 \operatorname{Var}(\varepsilon_i) = \frac{\sigma^2}{S_{xx}}$$