Lecture 5: Functions of sufficient and complete

statistics

Approach 3: using functions of sufficient and complete statistics

If there is a complete and sufficient statistic T, there are two typical
ways to derive a UMVUE using Lehmann- Scheffé Theorem.

Solving for the function y

The first one is solving for y when the distribution of T is available.
The following are two typical examples.

Example (uniform family).

Let Xi,..., X, be iid from uniform(0, 6) with unknown 6 > 0.

Suppose that g is a differentiable function on (0, o).

Since the sufficient and complete statistic T = X,y has pdf ne—"x"-1,
0 < x < 6, an unbiased estimator y(X,) of g(8) must satisfy

°]
6"g(0) = n/o y(x)x"'dx  forall6 >0

v
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Differentiating both sizes of the previous equation leads to
ne"1g(6)+6"g'(6) = ny(6)6"!
Hence, the UMVUE of g(@) is l[/(X(n)) = g(X(n)) + n*1X(n)g’(X(,,)).

Example (Poisson family).

Let Xi,..., X, be iid from Poisson(6) with unknown 6 > 0.

Then T =Y, X; is sufficient and complete for 6 and has Poisson(n6)
distribution.

Suppose that g is a smooth function such that g(x) = Yio ajxf, x > 0.
An unbiased estimator y(T) of g(6) must satisfy

y YT gt _ gnogey=y° ”—kekia-ef
t! P R

_ Z( y 9 a/)et 0>0
N
t=0 \J.,k:;j+k=t

Thus, a comparison of coefficients in front of 8¢ leads to
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t! nka
y(t)=— —,
nt j,k:j;k:t k!
i.e., y(T) is the UMVUE of g(0).
In particular, if g(6) = 6" for some fixed integer r > 1, then a, = 1 and

ax=0if k#rand
0 t<r
O I

nr(t—r)!

Example (normal family).

Let X1, ..., X, be iid N(u,5?) with unknown 6 = (u,62) € % x (0, ).
T = (X, S?) is sufficient and complete for 6 and X and (n—1)S?/c?
are independent and have the N(u,62/n) and chi-square distribution
with degrees of freedom n— 1, respectively.
Using the method of solving for v directly, we find that the UMVUE for
u is X; the UMVUE of u? is X? — S?/n; the UMVUE for ¢” with
r>1—nis kp_4,S", where

n'/2T(n/2)

knr = S oy
272F (257)
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(in particular, the UMVUE of 62 is S?, which is a conclusion we cannot
get in Example 7.3.14), and the UMVUE of u/o is k,_1 _1X/S.

Suppose that g(60) satisfies P(X; < g(0)) = p with a fixed p € (0,1).
Let ® be the cdf of the standard normal distribution.
Then g(6) = u+ocd~1(p) and its UMVUE is X + k,_1.1S®~"(p).

Conditioning
The second method of deriving a UMVUE when there is a sufficient

and complete statistic T is conditioning on T, i.e., if W is any unbiased
estimator of g(0), then E(W/|T) is the UMVUE of g(6).

To apply this method, we do not need the distribution of T, but need to
work out the conditional expectation E(W|T).

From the uniqueness of the UMVUE, it does not matter which W is
used and, thus, we should choose W so as to make the calculation of
E(W|T) as easy as possible.
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Example 7.3.24 (binomial family)

Let Xi,..., X, be iid from binomial(k, 6) with known k and unknown

0 <(0,1).

We want to estimate g(6) = Pg(X; =1) = k(1 —0)k 1.

Note that T =Y/, X; ~ binomial(kn, 6) is the sufficient and complete
statistic for 6.

But no unbiased estimator based on it is immediately evident.

To apply conditioning, we take the simple unbiased estimator of

Po (X1 = 1), the indicator function /(X; =1).

By Theorem 7.3.23, the UMVUE of g(0) is

w(T) = E[I(X1 =1)|T) = P(Xy =1|T)
We need to simply y(T) and obtain an explicit form.
Fort=1,....kn,

Po(Xy =1, Xi=1)
)= P(X; =1|T=1t)= i
Po(Xy =111, Xi=t—1)

Po(E4 Xi=1)
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_ Po(Xi=1)Po(Eilo Xi=1t—1)
Po(XiL1 Xi=1)
ko(1— @)k [(k(,"_]1))9’*1(1 —g)k(n-1)=(t-1)
(ktn)gt(1 — g)kn-t

k(k(n%))
- k
()
When T =0, P(X; = 1|T = 0) = 0.
Hence, the UMVUE of g(6) = k6(1 — ) 'is

{ 0 R

(7)
0 T=0

y(T)=

Example (exponential distribution family)

Let Xi, ..., X, be iid with pdf 6-1e~*®, x > 0, where 6 > 0 is unknown.
Let t > 0 and the parameter of interest to be g(0) = Pg (X1 > t).

v
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Since X is sufficient and complete for 6 > 0 and the indicator /(X; > t)
is unbiased for g(6),

w(X) = E[I[(X; > t)|X] = P(X; > t[X)
is the UMVUE of g(0).

If the conditional distribution of X; given X is available, then we can
calculate P(Xy > t|X) directly.

But the following technique can be applied to avoid the derivation of
conditional distributions.

By Basu’s theorem, X; /X and X are independent.
Then
P(X; > t|X = X) P(Xi/X > t/X|X = X)
P(Xi/X > t/X|X = X)
= P(X{/X>t/X)
To compute this unconditional probability, we need the distribution of

n n
X[ ¥ x=x [ (%+ L%
i= =

i=2
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Using the transformation technique discussed earlier and the fact that
Y7 - X; is independent of Xy and has a gamma distribution, we obtain
that X; /Y™, X; has pdf (n—1)(1 —x)"2, 0 < x < 1 (a beta pdf).

P(X; >t X =X) = (n—1)/1 (1 —x)"2dx = (1 —nt)_()n_1

t/(nx)
Hence the UMVUE of g(6) is

T(X) = <1 _ ni_(>n_1

Simple linear regression

Simple linear regression studies the relationship between a variable of
interest Y; (often called response or dependent variable) and a
univariate covariate X; (also called auxiliary variable, explanatory
variable, or independent variable), when the following simple linear
regression model is assumed:

Yi=a+Bx+e¢, i=1,....n,

where Y; is a random response, x; is the univariate covariate, which is
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either a deterministic value or the observed value of a random variable,
in which case our analysis is conditional on x4, ..., x,, «€Z% and BeZ#
are unknown intercept and slope, respectively, €’s are measurement
errors and are independent random variables with mean 0 and a finite
common unknown variance ¢ > 0, and n > 3 is the sample size.

An example of a set of observed (y;, X;)’s is shown in the next figure.

@ Data are from Table 11.3.1.
@ Points should be on a line if there is no error (¢; = 0 for all J).
@ y = c+dx is an estimate of y = a + Bx that generates the data.
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The MLE and UMVUE

Under the additional assumption that ¢;’s are iid N(0, 62), the likelihood

function is .

1 (yi—a—Bx)?
(2n02)n/2 > ( ,; 202
Maximizing this likelihood is equivalent to minimizing
n
y(a,b)=Y (yi—a—bx)? overaandb
i=1
Consider (y1,X1),-..,(¥n,Xn) @s n pairs of numbers plotted in a
scatterplot as in the previous figure.

Think of drawing through this cloud of points a straight line that comes
“as close as possible” to all the points, measured by the vertical
distances from the points to the straight line.

For any line y = a+ bx, the squared distances is y(a,b).
The MLE (@, B) is the point that minimizes y(a,b) over a and b.

Because of this, the estimator (&,3) is also called the least squares
estimator (LSE).
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Consider dy(ab)

The first equation is
y—a—-bx=0 iff a=y—bx
Substituting a in the second equation by y — bx results in

n n
Y xi(yi—y)—bY x(xi—x)=0
= i=

This equation is the same as Sy, = bSyx, Where
n n

Sxy = Z(Xi_)_()(yi_}_/)a Sxx = Z(Xi_)_()2

i=1 i=1
Therefore, replacing y; by the random variable Y; for all i (and we still
use Sy, when y; is replaced by Y;), we obtain the MLE or LSE as

%)

~ _ ~_  _ S8
Xy ~ Xy -
B ===, a=Y-Bx=Y— X
SXX SXX
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We can always assume that Syx > 0, since Syx = 0 is the trivial case of

identical x;’s.

We now show that @ and B are UMVUE'’s of o and B, respectively.

First, we show that they are unbiased estimators.

n n

E(Sy) =Y (xi—X)E(yi—y) =} (xi— X)B(xi — X) = B Sxx

i=1 i=1
ﬁ is unbiased for 8 and
E(@)=E(Y)-E(B)x=0a+Bx—BX=a

The likelihood function is

1 4 —o— [3 X;)?
(2wo2)n/2 e ( /;
_ 1 L ((yi—y)— (e—a) - B —X)]?
exp Sy +n(a )%+ B2Sx — 2B Sxy
(2wo2)n/2 202
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where
n

Syy = Z(y/’—}_’)z
i=1
We still use the notation Sy, when y; is replaced by Y;.
From the properties of the expogential family, a complete and sufficient
statistic for 6 = (a,8,062) is (@, 3, Syy)-
Since @ and E are unbiased estimators and functions of the sufficient
and complete statistic, they are UMVUE'’s.

The best Linear unbiased estimator (BLUE)

What if we remove the normality assumption?

@ and B are still LSE, but not MLE.

A statistical property of the LSE is that it is the best linear unbiased
estimator (BLUE) in the sense that E (or @) has the smallest variance
within the class of linear unbiased estimators of 3 (or «) of the form

n
Z ay,, d;’s are known constants
i=1
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If the estimator of this form is unbiased for 3, then
n n n
B=E (Z d,-Y,-) =Y dE(Y) =) di(a+px)=a
i=1 i= i= i

holds for all & and 3, which implies that

n n
Zd,-:O, Zd,'X,':1
i=1 i=1

A geometric description of the BLUE of f3 is given in the next figure.

n n
di+B Y dix
= i=1

Figure: Geometric description of the BLUE of
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Proof: the LSE B is BLUE

Since n n
ar (Z di Y,) =Y d?var(V))=0?Y of
i=1 i=1 i=1
the BLUE of 8 must be a solution of

)
>

n n n

minY o subjectto Y =0, Y dx=1
i=1 i=1 i=1

Consider the Lagrange multiplier method by minimizing

n n n
9(d, ... dn, 2, 2) = Y df+ 41 Y di+ 2 <Z diXi—1>
i=1 i=1 i=1

Taking derivatives, we obtain that

Jag

0= ad;

=2di+M+Ax;, i=1,...n

Then

M=

0=

n
(2d +7L1+242X,) 2,1n—|—).QZX,'
i=

Il
o
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which gives A1 = —A>x and, hence
0 =2d;+ Ao(Xx; — X)
Then

which gives 1, = —2/SXX
Then
di = —(A1 +22X%)) /2 = —A2(Xi — X) /2 = (Xi — X) / Sxx

and the BLUE of f is

Xy Sy _ 2
Zd'y Z 5 V=g, P

Since

e Z(x, Brte) g § g
XX i=

where d; = (x; — )/SXX, we obtain that
62

Var Z d?Var(g;) = 5

i=
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