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Lecture 5: Functions of sufficient and complete
statistics
Approach 3: using functions of sufficient and complete statistics
If there is a complete and sufficient statistic T , there are two typical
ways to derive a UMVUE using Lehmann- Scheffé Theorem.

Solving for the function ψ

The first one is solving for ψ when the distribution of T is available.
The following are two typical examples.

Example (uniform family).
Let X1, ...,Xn be iid from uniform(0,θ) with unknown θ > 0.
Suppose that g is a differentiable function on (0,∞).
Since the sufficient and complete statistic T = X(n) has pdf nθ−nxn−1,
0 < x < θ , an unbiased estimator ψ(X(n)) of g(θ) must satisfy

θ
ng(θ) = n

∫
θ

0
ψ(x)xn−1dx for all θ > 0
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Differentiating both sizes of the previous equation leads to

nθ
n−1g(θ) + θ

ng′(θ) = nψ(θ)θ
n−1

Hence, the UMVUE of g(θ) is ψ(X(n)) = g(X(n)) + n−1X(n)g′(X(n)).

Example (Poisson family).
Let X1, ...,Xn be iid from Poisson(θ) with unknown θ > 0.
Then T = ∑

n
i=1 Xi is sufficient and complete for θ and has Poisson(nθ)

distribution.
Suppose that g is a smooth function such that g(x) = ∑

∞

j=0 ajx j , x > 0.
An unbiased estimator ψ(T ) of g(θ) must satisfy

∞

∑
t=0

ψ(t)nt

t!
θ

t = enθ g(θ) =
∞

∑
k=0

nk

k !
θ

k
∞

∑
j=0

ajθ
j

=
∞

∑
t=0

(
∑

j ,k :j+k=t

nkaj

k !

)
θ

t
θ > 0

Thus, a comparison of coefficients in front of θ t leads to
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ψ(t) =
t!
nt ∑

j ,k :j+k=t

nkaj

k !
,

i.e., ψ(T ) is the UMVUE of g(θ).
In particular, if g(θ) = θ r for some fixed integer r ≥ 1, then ar = 1 and
ak = 0 if k 6= r and

φ(t) =

{
0 t < r

t!
nr (t−r)! t ≥ r .

Example (normal family).

Let X1, ...,Xn be iid N(µ,σ2) with unknown θ = (µ,σ2) ∈R× (0,∞).
T = (X̄ ,S2) is sufficient and complete for θ and X̄ and (n−1)S2/σ2

are independent and have the N(µ,σ2/n) and chi-square distribution
with degrees of freedom n−1, respectively.
Using the method of solving for ψ directly, we find that the UMVUE for
µ is X̄ ; the UMVUE of µ2 is X̄ 2−S2/n; the UMVUE for σ r with
r > 1−n is kn−1,r Sr , where

kn,r =
nr/2Γ(n/2)

2r/2Γ
(n+r

2

)
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(in particular, the UMVUE of σ2 is S2, which is a conclusion we cannot
get in Example 7.3.14), and the UMVUE of µ/σ is kn−1,−1X̄/S.
Suppose that g(θ) satisfies P(X1 ≤ g(θ)) = p with a fixed p ∈ (0,1).
Let Φ be the cdf of the standard normal distribution.
Then g(θ) = µ + σΦ−1(p) and its UMVUE is X̄ + kn−1,1SΦ−1(p).

Conditioning
The second method of deriving a UMVUE when there is a sufficient
and complete statistic T is conditioning on T , i.e., if W is any unbiased
estimator of g(θ), then E(W |T ) is the UMVUE of g(θ).

To apply this method, we do not need the distribution of T , but need to
work out the conditional expectation E(W |T ).

From the uniqueness of the UMVUE, it does not matter which W is
used and, thus, we should choose W so as to make the calculation of
E(W |T ) as easy as possible.
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Example 7.3.24 (binomial family)
Let X1, ...,Xn be iid from binomial(k ,θ) with known k and unknown
θ ∈ (0,1).
We want to estimate g(θ) = Pθ (X1 = 1) = kθ(1−θ)k−1.
Note that T = ∑

n
i=1 Xi ∼ binomial(kn,θ) is the sufficient and complete

statistic for θ .
But no unbiased estimator based on it is immediately evident.
To apply conditioning, we take the simple unbiased estimator of
Pθ (X1 = 1), the indicator function I(X1 = 1).
By Theorem 7.3.23, the UMVUE of g(θ) is

ψ(T ) = E [I(X1 = 1)|T ) = P(X1 = 1|T )

We need to simply ψ(T ) and obtain an explicit form.
For t = 1, ...,kn,

ψ(t) = P (X1 = 1|T = t) =
Pθ (X1 = 1,∑n

i=1 Xi = t)
Pθ (∑

n
i=1 Xi = t)

=
Pθ (X1 = 1,∑n

i=2 Xi = t−1)

Pθ (∑
n
i=1 Xi = t)
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=
Pθ (X1 = 1)Pθ (∑

n
i=2 Xi = t−1)

Pθ (∑
n
i=1 Xi = t)

=
kθ(1−θ)k−1

[(k(n−1)
t−1

)
θ t−1(1−θ)k(n−1)−(t−1)

]
(kn

t

)
θ t (1−θ)kn−t

=
k
(k(n−1)

t−1

)(kn
t

)
When T = 0, P(X1 = 1|T = 0) = 0.
Hence, the UMVUE of g(θ) = kθ(1−θ)k−1 is

ψ(T ) =


k(k(n−1)

T−1 )
(kn

T )
T = 1, ...,kn

0 T = 0

Example (exponential distribution family)

Let X1, ...,Xn be iid with pdf θ−1e−xθ , x > 0, where θ > 0 is unknown.
Let t > 0 and the parameter of interest to be g(θ) = Pθ (X1 > t).
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Since X̄ is sufficient and complete for θ > 0 and the indicator I(X1 > t)
is unbiased for g(θ),

ψ(X̄ ) = E [I(X1 > t)|X̄ ] = P(X1 > t |X̄ )

is the UMVUE of g(θ).
If the conditional distribution of X1 given X̄ is available, then we can
calculate P(X1 > t |X̄ ) directly.
But the following technique can be applied to avoid the derivation of
conditional distributions.
By Basu’s theorem, X1/X̄ and X̄ are independent.
Then

P(X1 > t |X̄ = x̄) = P(X1/X̄ > t/X̄ |X̄ = x̄)

= P(X1/X̄ > t/x̄ |X̄ = x̄)

= P(X1/X̄ > t/x̄)

To compute this unconditional probability, we need the distribution of

X1

/ n

∑
i=1

Xi = X1

/(
X1 +

n

∑
i=2

Xi

)
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Using the transformation technique discussed earlier and the fact that
∑

n
i=2 Xi is independent of X1 and has a gamma distribution, we obtain

that X1/∑
n
i=1 Xi has pdf (n−1)(1−x)n−2, 0 < x < 1 (a beta pdf).

P(X1 > t |X̄ = x̄) = (n−1)
∫ 1

t/(nx̄)
(1−x)n−2dx =

(
1− t

nx̄

)n−1

Hence the UMVUE of g(θ) is

T (X ) =

(
1− t

nX̄

)n−1

Simple linear regression
Simple linear regression studies the relationship between a variable of
interest Yi (often called response or dependent variable) and a
univariate covariate Xi (also called auxiliary variable, explanatory
variable, or independent variable), when the following simple linear
regression model is assumed:

Yi = α + βxi + εi , i = 1, ...,n,

where Yi is a random response, xi is the univariate covariate, which is
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either a deterministic value or the observed value of a random variable,
in which case our analysis is conditional on x1, ...,xn, α∈R and β∈R
are unknown intercept and slope, respectively, εi ’s are measurement
errors and are independent random variables with mean 0 and a finite
common unknown variance σ2 > 0, and n ≥ 3 is the sample size.

An example of a set of observed (yi ,xi)’s is shown in the next figure.

Data are from Table 11.3.1.
Points should be on a line if there is no error (εi = 0 for all i).
ŷ = c + dx is an estimate of y = α + βx that generates the data.
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The MLE and UMVUE
Under the additional assumption that εi ’s are iid N(0,σ2), the likelihood
function is

1
(2πσ2)n/2 exp

(
−

n

∑
i=1

(yi −α−βxi)
2

2σ2

)
Maximizing this likelihood is equivalent to minimizing

ψ(a,b) =
n

∑
i=1

(yi −a−bxi)
2 over a and b

Consider (y1,x1), ...,(yn,xn) as n pairs of numbers plotted in a
scatterplot as in the previous figure.
Think of drawing through this cloud of points a straight line that comes
“as close as possible” to all the points, measured by the vertical
distances from the points to the straight line.
For any line y = a + bx , the squared distances is ψ(a,b).

The MLE (α̂, β̂ ) is the point that minimizes ψ(a,b) over a and b.

Because of this, the estimator (α̂, β̂ ) is also called the least squares
estimator (LSE).
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Consider
∂ψ(a,b)

∂a
=−2

n

∑
i=1

(yi −a−bxi) = 0

∂ψ(a,b)

∂b
=−2

n

∑
i=1

xi(yi −a−bxi) = 0

The first equation is
ȳ −a−bx̄ = 0 iff a = ȳ −bx̄

Substituting a in the second equation by ȳ −bx̄ results in
n

∑
i=1

xi(yi − ȳ)−b
n

∑
i=1

xi(xi − x̄) = 0

This equation is the same as Sxy = bSxx , where

Sxy =
n

∑
i=1

(xi − x̄)(yi − ȳ), Sxx =
n

∑
i=1

(xi − x̄)2

Therefore, replacing yi by the random variable Yi for all i (and we still
use Sxy when yi is replaced by Yi ), we obtain the MLE or LSE as

β̂ =
Sxy

Sxx
, α̂ = Ȳ − β̂ x̄ = Ȳ −

Sxy

Sxx
x̄
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We can always assume that Sxx > 0, since Sxx = 0 is the trivial case of
identical xi ’s.
We now show that α̂ and β̂ are UMVUE’s of α and β , respectively.
First, we show that they are unbiased estimators.

E(Sxy ) =
n

∑
i=1

(xi − x̄)E(yi − ȳ) =
n

∑
i=1

(xi − x̄)β (xi − x̄) = βSxx

β̂ is unbiased for β and

E(α̂) = E(Ȳ )−E(β̂ )x̄ = α + β x̄−β x̄ = α

The likelihood function is

1
(2πσ2)n/2 exp

(
−

n

∑
i=1

(yi −α−βxi)
2

2σ2

)

=
1

(2πσ2)n/2 exp

(
−

n

∑
i=1

[(yi − ȳ)− (α− α̂)−β (xi − x̄)]2

2σ2

)

=
1

(2πσ2)n/2 exp
(
−

Syy + n(α− α̂)2 + β 2Sxx −2βSxy

2σ2

)
=

1
(2πσ2)n/2 exp

(
−

Syy −S2
xy/Sxx + n(α− α̂)2 + Sxx (β − β̂ )2

2σ2

)
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where

Syy =
n

∑
i=1

(yi − ȳ)2

We still use the notation Syy when yi is replaced by Yi .
From the properties of the exponential family, a complete and sufficient
statistic for θ = (α,β ,σ2) is (α̂, β̂ ,Syy ).

Since α̂ and β̂ are unbiased estimators and functions of the sufficient
and complete statistic, they are UMVUE’s.

The best Linear unbiased estimator (BLUE)
What if we remove the normality assumption?
α̂ and β̂ are still LSE, but not MLE.
A statistical property of the LSE is that it is the best linear unbiased
estimator (BLUE) in the sense that β̂ (or α̂) has the smallest variance
within the class of linear unbiased estimators of β (or α) of the form

n

∑
i=1

diYi , di ’s are known constants
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If the estimator of this form is unbiased for β , then

β = E

(
n

∑
i=1

diYi

)
=

n

∑
i=1

diE(Yi) =
n

∑
i=1

di(α + βxi) = α

n

∑
i=1

di + β

n

∑
i=1

dixi

holds for all α and β , which implies that
n

∑
i=1

di = 0,
n

∑
i=1

dixi = 1

A geometric description of the BLUE of β is given in the next figure.

Figure: Geometric description of the BLUE of β
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Proof: the LSE β̂ is BLUE
Since

Var

(
n

∑
i=1

diYi

)
=

n

∑
i=1

d2
i Var(Yi) = σ

2
n

∑
i=1

d2
i

the BLUE of β must be a solution of

min
n

∑
i=1

d2
i subject to

n

∑
i=1

di = 0,
n

∑
i=1

dixi = 1

Consider the Lagrange multiplier method by minimizing

g(d1, ...,dn,λ1,λ2) =
n

∑
i=1

d2
i + λ1

n

∑
i=1

di + λ2

(
n

∑
i=1

dixi −1

)
Taking derivatives, we obtain that

0 =
∂g
∂di

= 2di + λ1 + λ2xi , i = 1, ...,n

Then
0 =

n

∑
i=1

(2di + λ1 + λ2xi) = λ1n + λ2

n

∑
i=1

xi
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which gives λ1 =−λ2x̄ and, hence

0 = 2di + λ2(xi − x̄)

Then
0 =

n

∑
i=1

(xi − x̄)[2di + λ2(xi − x̄)] = 2 + λ2Sxx

which gives λ2 =−2/Sxx .
Then

di =−(λ1 + λ2xi)/2 =−λ2(xi − x̄)/2 = (xi − x̄)/Sxx

and the BLUE of β is
n

∑
i=1

diYi =
n

∑
i=1

(xi − x̄)

Sxx
Yi =

Sxy

Sxx
= β̂

Since
β̂ =

n

∑
i=1

(xi − x̄)(βxi + εi)

Sxx
= β +

n

∑
i=1

diεi

where di = (xi − x̄)/Sxx , we obtain that

Var(β̂ ) =
n

∑
i=1

d2
i Var(εi) =

σ2

Sxx
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