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Lecture 6: Linear models and Gauss-Markov theorem
Linear model setting
Results in simple linear regression can be extended to the following
general linear model with independently observed response variables
Y1, ...,Yn:

Yi = β
′xi + εi , i = 1, ...,n,

where xi is the i th value of a p-dimensional vector of explanatory
variables (multiple covariates) and β ∈Rp is an unknown parameter
vector, p < n is a positive integer, εi ’s are random errors with mean 0
(more assumptions on the distributions of εi ’s will be added later).

xi ’s are deterministic or a given set of observed values of covariates, in
which case conditional analysis given x1, ...,xn is considered.

A matrix form of the general linear model is
Y = Xβ +E

where X is the n×p matrix whose i raw is xi , Y is the n-dimensional
vector whose i th component is Yi , and E is the n-dimensional vector
whose i th component is εi .
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Obviously the simple linear regression model is a special case of the
general linear model with p = 2.
Another very useful model is described as follows.

One way analysis of variance (ANOVA)
Consider i = 1, ...,k populations with unknown means µ1, ...,µk ,
respectively, and a common unknown variance σ2.

Suppose that a random sample is taken from each population so that
the total sample consists of

Yi1, ...,Yini iid ∼ population i i = 1, ...,k

where ni is the sample size of the i th sample and samples from
different populations are independent.
Thus Yij ’s are independent but may not be iid.

The ANOVA is a special case of linear model with

β = (µ1, ...,µk )′, k = p,

Y = (Y11, ...,Y1n1 ,Y21, ...,Y2n2 , ......,Yk1, ...,Yknk )′
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and

X =


1n1 0 · · · 0
0 1n2 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1nk


where 1t is the t-dimensional vector of ones.

The least squares estimator (LSE)
The least squares estimator (LSE) has been defined as an estimator
that minimizes the sum of squared distances between points (Yi ,xi)
and a straightline in the simple linear regression.
As an extension, the LSE of β under a gneral linear model is obtained
by minimizing

‖Y −Xb‖2 =
n

∑
i=1

(Yi −x ′i b)2 over b ∈Rp

Besides the motivation of minimizing the sum of squared distances,
the LSE can also be motivated by the fact that the true parameter
vector β is a minimizer of E(‖Y −Xb‖2) over b ∈Rp.
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Let β̃ ∈Rp satisfying

X ′X β̃ = X ′Y (the so-called normal equation)

Then, for any b ∈Rp,

‖Y −Xb‖2 = ‖Y −X β̃ + X (β̃ −b)‖2

= ‖Y −X β̃‖2 +‖X (β̃ −b)‖2 + 2(β̃ −b)′X ′(Y −X β̃ )

= ‖Y −X β̃‖2 +‖X (β̃ −b)‖2

≥ ‖Y −X β̃‖2

That means any solution of the normal equation is an LSE of β .
If X ′X is nonsingular (of rank p), then the LSE is unique and equal to

β̂ = (X ′X )−1X ′Y

If X ′X is singular, then there are infinitely many solutions to the normal
equation; in fact, the model parameter β is not identifiable in the sense
that there exist γ 6= β but Xγ = Xβ so that with the observed data we
cannot estimate β (cannot tell the difference between γ and β ).
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Regression parameter β

The parameter vector β is called regression parameter.
Suppose that the rank of X is q < p.
Then there exists an n×q submatrix X∗ of X such that X∗ is of rank q
and

X = X∗C
where C is a q×p matrix.
Then our linear model becomes

Y = Xβ +E = X∗Cβ +E

Note that X ′∗X∗ is of rank q and nonsingular.
This means that after re-formulate the model with re-parameterization
β∗ = Cβ , we can estimate β∗ by the LSE β̂∗ = (X ′∗X∗)−1X ′∗Y .
Since the dimension of β∗ is q < p, the singularity of X is caused by
having too many regression parameters in the linear model.
If the rank of X is q, then at most we can estimate q free regression
parameters in the linear model.
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In simple linear regression, X has two columns with one column 1n
and the other column whose i th element is the unvariate covariate xi ,
and X ′X is nonsingular iff xi ’s are not all the same.

In the case of one-way ANOVA, the matrix X is of the full rank k = p
and the LSE of µi is Ȳi .

Assumptions on E .
One of the following assumptions is typically assumed:
A1 E ∼ N(0,σ2In) with an unknown σ > 0.
A2 E(E ) = 0 and Var(E ) = σ2In with an unknown σ > 0.
A3 E(E ) = 0 and Var(E ) exists.
Obviously A1 implies A2 and A2 implies A3.
Typically, some condition has to be added to V = Var(E ) in A3,
otherwise we may also have too many parameters.
Either assumption A1 or A2 is assumed in one-way ANOVA or simple
linear regression.

Next, we consider a two-way ANOVA model.
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Example (two-way balanced ANOVA)
The one-way ANOVA model studies the effect of p groups constructed
using one group factor (variable).
In some applications we have p groups constructed by two factors with
one having a groups and the other having b groups so that p = ab.
In addition to studying the effects of the two factors, we also want to
study whether the two factors have the so called interaction effect.
The following figure illustrates the interaction effect with one factor
having two groups T1 and T2 and another fact having two groups S1
and S2, a = b = 2, p = ab = 4.
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The effects of two factors, A and B, and the interaction effect AB can
be modeled as follows:

Yijk = µ + αi + βj + γij + εijk , i = 1, ...,a, j = 1, ...,b, k = 1, ...,c,

where a is the number of groups for factor A, b is the number of groups
for factor B, c is the number of observations in each combination group
of A and B, αi is the effect of the i th group for factor A, βj is the effect
of the j th group for factor B, γij is the interaction effect of the i th group
for factor A and the j th group for factor B, µ is an overall effect, Yijk ’s
are observations, εijk ’s are random errors, the total number of groups is
ab, and the total number of observations is n = abc.
This model is called a two-way balanced ANOVA model, because the
number of observations in each combination group is a constant c.
We now show that this model is a special case of the general linear
model with the regression parameter vector (denoted as θ instead of
β )

θ = (µ,α1, ...,αa,β1, ...,βb,γ11, ...,γ1b, ...,γa1, ...,γab)′

We need to find the form of the matrix X in the general linear model.
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Define
X1 =

(
1ab A B Iab

)
ab×(a+b+ab+1)

where 1t denotes the t-dimensional vector of ones, Im denotes the
identity matrix of order m,

A =


1b 0 · · · 0
0 1b · · · 0
· · · · · · · · · · · ·
0 0 · · · 1b


ab×a

and B =


Ib
Ib
· · ·
Ib


ab×b

Then X can be obtained by replicating X1 c times, i.e.,

X =


1ab A B Iab
1ab A B Iab

...
...

...
...

1ab A B Iab


abc×(a+b+ab+1)

This is an n×p matrix, where n = abc and p = a + b + ab + 1.
Let Yk =(Y11k , ...,Y1bk ,Y21k , ...,Y2bk , ...,Ya1k , ...,Yabk )′, Y =(Y ′1, ...,Y

′
k )′.

Then Y = Xθ +E with E defined similarly to Y .
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The rank of X is ab < p, even if n > p.
This means that there are too many regression parameters: we can
only estimate ab regression parameters so the number of extra
parameters is p−ab = a + b + ab + 1−ab = a + b + 1.
Before we consider how to reduce the number of parameters, we first
show that the following p-dimensional vector is an LSE although LSE’s
are not unique:

θ̂ = (µ̂, α̂1, ..., α̂a, β̂1, ..., β̂b, γ̂11, ..., γ̂1b, ..., γ̂a1, ..., γ̂ab)′

where

µ̂ = Ȳ··· α̂i = Ȳi ··− Ȳ··· β̂j = Ȳ·j ·− Ȳ··· γ̂ij = Ȳij ·− Ȳi ··− Ȳ·j ·+ Ȳ···

and a dot indicates averaging over the indicated subscript, e.g.,

Ȳ··· =
1

abc

a

∑
i=1

b

∑
j=1

c

∑
k=1

Yijk Ȳ·j · =
1
ac

a

∑
i=1

c

∑
k=1

Yijk Ȳij · =
1
c

c

∑
k=1

Yijk

To prove this, we just need to verify that the normal equation holds:

X ′X θ̂ = X ′Y
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From the construction of X ,

X ′X = cX ′1X1 X ′Y = X1

c

∑
k=1

Yk

Hence, we need to show that

X ′1X1θ̂ = X ′1Ȳ·

where Ȳ· = (Ȳ11·, ..., Ȳ1b·, Ȳ21·, ..., Ȳ2b·, ..., Ȳa1·, ..., Ȳab·)
′.

By the construction of X and X1, the result follows from

X1θ̂ =



µ̂ + α̂1 + β̂1 + γ̂11
...

µ̂ + α̂1 + β̂b + γ̂1b
...

µ̂ + α̂a + β̂1 + γ̂a1
...

µ̂ + α̂a + β̂1 + γ̂ab


=



Ȳ11·
...

Ȳ1b·
...

Ȳa1·
...

Ȳab·


= Ȳ·

where the second equality follows from the definition of µ̂, α̂i , β̂j , γ̂ij .
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We now consider re-parameterization to reduce the number of
regression parameters.
If factor A has a different effects and µ is the overall mean, we don’t
need a parameters α1, ...,αa to describe the effects of A.
One of αi can be absorbed into µ so we can impose a constraint such
as a

∑
i=1

αi = 0

Similarly, we can impose a constraint on the effects of factor B:
b

∑
j=1

βj = 0

and constraints on the effects of interactions:
b

∑
j=1

γij = 0,
a

∑
i=1

γij = 0, i = 1, ...,a, i = 1, ...,b

But one of the above constraint on γij is redundant so that the total
number of constraints is 2 + a + b−1 = a + b + 1.
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With a + b + 1 constraints, the total number of free regression
parameters is ab and we can estimate all of them by the LSE.

Under the re-parameterization according to the constraints, we may try
to find the full rank n×ab matrix X∗ and then estimate the new
parameters by the unique LSE.

But it is more convenient to equivalently solve the following
minimization problem with constraints:

min
b∈Rp

‖Y −Xb‖2 subject to the a + b + 1 constraints

where p = 1 + a + b + ab.

It is easy to check that the components of the previously defined θ̂

satisfies all the a + b + 1 constraints.

Hence, θ̂ is the unique LSE under the re-parameterization.

Another advantage of using constraints instead of the new parameters
in re-parameterization is the nice interpretation of main effects and
interactions under the model with 1 + a + b + ab parameters.
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The following result, without the normality assumption on E , explains
why the LSE is popular.

Gauss-Markov Theorem
Assume a general linear model previously described: Y = Xβ +E with
assumption A2, i.e., Var(E ) = σ2In and X is of full rank p < n. Let β̂ be
the LSE and l ∈Rp be a fixed vector. Then the l ′β̂ is the best linear
unbiased estimator (BLUE) of l ′β in the sense that it has the minimum
variance in the class of unbiased estimators of l ′β that are linear
functions of Y .

Proof.

Since β̂ = (X ′X )−1X ′Y , it is a linear function of Y and

E(β̂ ) = (X ′X )−1X ′E(Y ) = (X ′X )−1X ′Xβ = β

Thus, l ′β̂ is unbiased for l ′β .
Let c′Y be any linear unbiased estimator of l ′β , where c ∈Rp is a fixed
vector.
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Since c′Y is unbiased, E(c′Y ) = c′E(Y ) = c′Xβ = l ′β for all β , which
implies that c′X = l ′, i.e., l = X ′c.
Then

Var(c′Y ) = Var(c′Y − l ′β̂ + l ′β̂ )

= Var(c′Y − l ′β̂ ) + Var(l ′β̂ )

+2Cov(c′Y − l ′β̂ , l ′β̂ )

= Var(c′Y − l ′β̂ ) + Var(l ′β̂ )

≥ Var(l ′β̂ )

where the third equality follows from

Cov(c′Y − l ′β̂ , l ′β̂ ) = Cov(c′Y − l ′(X ′X )−1X ′Y , l ′(X ′X )−1X ′Y )

= Cov(c′Y , l ′(X ′X )−1X ′Y )−Var(l ′(X ′X )−1X ′Y )

= c′Var(Y )X (X ′X )−1l− l ′(X ′X )−1X ′Var(Y )X (X ′X )−1l

= σ
2c′X (X ′X )−1l−σ

2l ′(X ′X )−1X ′X (X ′X )−1l

= σ
2l ′(X ′X )−1l−σ

2l ′(X ′X )−1l
= 0.
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