Lecture 8: Linear mixed effects models

Adding random effects

A linear model is of the form $Y = X\beta + \mathcal{E}$, where X is a fixed matrix, β is a parameter vector, and \mathcal{E} is an unobserved random error.

In many applications we need to add a random-effect term, which leads to the linear mixed effects model

 $Y = X\beta + Z\alpha + \mathscr{E}$

where Z is a fixed matrix and α is an unobserved random effect (vector).

The following are two main reasons for adding random effects.

- We want to model the correlation among the errors.
- Random effects present unobserved variables of practical interests.

It is typically assumed that both α and \mathscr{E} have mean 0 and finite covariance matrices, and they are independent; thus,

$$E(Y) = X\beta$$
 and $Var(Y) = ZVar(\alpha)Z' + Var(\mathscr{E})$

Example: One-way random effects model

The one-way random effect model

$$Y_{ij} = \mu + A_i + e_{ij}, \qquad j = 1, ..., n_i, \ i = 1, ..., m_i$$

discussed in the last lecture is a special case.

We can derive the MLE's under the one-way random effects model with $A_i \sim N(0, \sigma_a^2)$ and $e_{ij} \sim N(0, \sigma^2)$.

Using the notation previously defined and the form of V^{-1} , we obtain

$$(Y - \mu \mathbf{1}_{n})'V^{-1}(Y - \mu \mathbf{1}_{n}) = \sum_{i=1}^{m} (Y_{i} - \mu \mathbf{1}_{n_{i}})'(\sigma^{2}I_{n_{i}} + \sigma_{a}^{2}\mathbf{1}_{n_{i}}\mathbf{1}_{n_{i}}')^{-1}(Y_{i} - \mu \mathbf{1}_{n_{i}})$$
$$= \frac{1}{\sigma^{2}} \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} (Y_{ij} - \mu)^{2} - \frac{\sigma_{a}^{2}}{\sigma^{2}} \sum_{i=1}^{m} \frac{n_{i}^{2}(\bar{Y}_{i.} - \mu)^{2}}{\sigma^{2} + n_{i}\sigma_{a}^{2}}$$
$$= \frac{SSE}{\sigma^{2}} + \sum_{i=1}^{m} \frac{n_{i}(\bar{Y}_{i.} - \mu)^{2}}{\sigma^{2} + n_{i}\sigma_{a}^{2}}, \quad SSE = \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} (Y_{ij} - \bar{Y}_{i.})^{2}$$

Since V is block diagonal,

$$|V| = \prod_{i=1}^{m} |\sigma^2 I_{n_i} + \sigma_a^2 \mathbf{1}_{n_i} \mathbf{1}'_{n_i}| = \prod_{i=1}^{m} \sigma^{2(n_i-1)} (\sigma^2 + n_i \sigma_a^2)$$

We obtain the likelihood function

$$L(\mu, \sigma^{2}, \sigma_{a}^{2} | Y) = \frac{\exp\left\{-\frac{1}{2}(Y - \mu \mathbf{1}_{n})'V^{-1}(Y - \mu \mathbf{1}_{n})\right\}}{(2\pi)^{n/2} |V|^{1/2}}$$
$$= \frac{\exp\left\{-\frac{\mathrm{SSE}}{2\sigma^{2}} - \frac{1}{2}\sum_{i=1}^{m} \frac{n_{i}(\bar{Y}_{i} - \mu)^{2}}{\sigma^{2} + n_{i}\sigma_{a}^{2}}\right\}}{(2\pi)^{n/2}\sigma^{n-m}\prod_{i=1}^{m} (\sigma^{2} + n_{i}\sigma_{a}^{2})^{1/2}}$$

Let $\theta = (\mu, \sigma^2, \sigma_a^2)$ and $(\tilde{\mu}, \tilde{\sigma}^2, \tilde{\sigma}_a^2)$ be the root of $\partial \log L(\theta | Y) / \partial \theta = 0$. Then we have the following score equations:

$$\begin{split} \tilde{\mu} &= \sum_{i=1}^{m} \frac{n_i \bar{Y}_{i.}}{\tilde{\sigma}^2 + n_i \tilde{\sigma}_a^2} \Big/ \sum_{i=1}^{m} \frac{n_i}{\tilde{\sigma}^2 + n_i \tilde{\sigma}_a^2} \\ 0 &= \frac{\text{SSE}}{\tilde{\sigma}^4} + \sum_{i=1}^{m} \frac{n_i (\bar{Y}_{i.} - \tilde{\mu})^2}{(\tilde{\sigma}^2 + n_i \tilde{\sigma}_a^2)^2} - \frac{n - m}{\tilde{\sigma}^2} - \sum_{i=1}^{m} \frac{1}{\tilde{\sigma}^2 + n_i \tilde{\sigma}_a^2} \\ 0 &= \sum_{i=1}^{m} \frac{n_i^2 (\bar{Y}_{i.} - \tilde{\mu})^2}{(\tilde{\sigma}^2 + n_i \tilde{\sigma}_a^2)^2} - \sum_{i=1}^{m} \frac{n_i}{\tilde{\sigma}^2 + n_i \tilde{\sigma}_a^2} \end{split}$$

There is no explicit formula for this solution.

If $\tilde{\sigma}_a^2 > 0$, then $(\tilde{\mu}, \tilde{\sigma}^2, \tilde{\sigma}_a^2)$ is the MLE of $(\mu, \sigma^2, \sigma_a^2)$.

If $\tilde{\sigma}_a^2 \leq 0$, then the MLE of σ_a^2 is 0, and substituting $\tilde{\sigma}_a^2 = 0$ in the first two score equations we obtain the MLE of μ is \bar{Y} . and the MLE of σ^2 is

$$\frac{1}{n}\left[SSE + \sum_{i=1}^{m} n_i (\bar{Y}_{i.} - \bar{Y}_{..})^2\right] = \frac{1}{n} \sum_{i=1}^{m} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{..})^2$$

In the balance case where $n_i = n_0$ for all *i*, we have shown that the MLE of μ is \bar{Y}_{\dots}

Also, the 3rd score equation becomes

$$\tilde{\sigma}^2 + n_0 \tilde{\sigma}_a^2 = \frac{n_0}{m} \sum_{i=1}^m (\bar{Y}_{i.} - \bar{Y}_{..})^2$$

and because of the 3rd equation, the 2nd score equation becomes

$$\tilde{\sigma}^2 = \frac{\text{SSE}}{n-m}$$

Then

$$\tilde{\sigma}_{a}^{2} = \frac{1}{m} \sum_{i=1}^{m} (\bar{Y}_{i.} - \bar{Y}_{..})^{2} - \frac{\text{SSE}}{n_{0}(n-m)}$$

The MLE of $(\mu, \sigma^2, \sigma_a^2)$ in the balanced case is $(\bar{Y}_{..}, \tilde{\sigma}^2, \max(\tilde{\sigma}_a^2, 0))$.

The restricted maximum likelihood (REML) estimators

To introduce the idea, let's first consider the example of $X = (X_1, ..., X_n)$, where X_i 's are iid $N(\mu, \sigma^2)$ so that the likelihood is

$$L(\mu, \sigma^2 | X) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2\right\}$$
$$= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{(\bar{X} - \mu)^2}{2\sigma^2/n} - \frac{(n-1)S^2}{2\sigma^2}\right\}$$
$$= L_1(\mu | \bar{X}, \sigma^2) L_2(\sigma^2 | S^2)$$

where

$$L_1(\mu|\bar{X},\sigma^2) = \frac{C_1}{\sigma} \exp\left\{-\frac{(\bar{X}-\mu)^2}{2\sigma^2/n}\right\}$$
$$L_2(\sigma^2|S^2) = \frac{C_2}{\sigma^{(n-1)}} \exp\left\{-\frac{(n-1)S^2}{2\sigma^2}\right\}$$

and C_1 and C_2 are constants not depending on parameters. Maximizing L_1 over μ we obtain the maximum $\hat{\mu} = \bar{X}$ and maximizing L_2 we obtain the maximum $\hat{\sigma}^2 = S^2$. The REML estimator of (μ, σ^2) is (\bar{X}, S^2) . The MLE of (μ, σ^2) is $(\bar{X}, (n-1)S^2/n)$.

REML estimators in balanced one-way random effects model

From the previous derivation we know that the likelihood under the balanced ($n_i = n_0$ for all *i*) one-way random effects model is

$$L(\mu, \sigma^{2}, \sigma_{a}^{2} | Y) = \frac{\exp\left\{-\frac{SSE}{2\sigma^{2}} - \frac{SSA}{2(\sigma^{2} + n_{0}\sigma_{a}^{2})} - \frac{n(\bar{Y}_{..} - \mu)^{2}}{2(\sigma^{2} + n_{0}\sigma_{a}^{2})}\right\}}{(2\pi)^{n/2}\sigma^{n-m}(\sigma^{2} + n_{0}\sigma_{a}^{2})^{m/2}}$$

where

$$SSA = \sum_{i=1}^{m} n_i (\bar{Y}_{i.} - \bar{Y}_{..})^2$$

Maximizing

$$L_{1}(\mu|\bar{Y}_{..},\sigma^{2},\sigma_{a}^{2}) = \frac{1}{(\sigma^{2}+n_{0}\sigma_{a}^{2})^{1/2}} \exp\left\{-\frac{n(\bar{Y}_{..}-\mu)^{2}}{2(\sigma^{2}+n_{0}\sigma_{a}^{2})}\right\}$$

we obtain that the REML estimator of μ is $\hat{\mu} = Y_{...}$; maximizing

$$L_{2}(\sigma^{2}, \sigma_{a}^{2}|\text{SSE}, \text{SSA}) = \frac{\exp\left\{-\frac{\text{SSE}}{2\sigma^{2}} - \frac{\text{SSA}}{2(\sigma^{2} + n_{0}\sigma_{a}^{2})}\right\}}{\sigma^{n-m}(\sigma^{2} + n_{0}\sigma_{a}^{2})^{(m-1)/2}}$$

we obtain that the REML estimators of σ^2 and σ^2_a are, respectively,

$$\hat{\sigma}^2 = \frac{\text{SSE}}{n-m}$$
 and $\check{\sigma}_a^2 = \max(\tilde{\sigma}_a^2, 0), \quad \check{\sigma}_a^2 = \frac{\text{SSA}}{n-n_0} - \frac{\text{SSE}}{n_0(n-m)}$

In fact, δ_a^2 is the popular ANOVA estimator, although it may take negative values.

Comparing the MLE derived previously with the REML estimators, we find that the MLE and REML estimators of μ and σ^2 are the same, but the estimators of σ_a^2 are the positive parts of two different estimators,

$$\tilde{\sigma}_a^2 = \frac{\text{SSA}}{n} - \frac{\text{SSE}}{n_0(n-m)}$$
 and $\check{\sigma}_a^2 = \frac{\text{SSA}}{n-n_0} - \frac{\text{SSE}}{n_0(n-m)}$

The difference is in the denominator of the first term.

Consider the expectations of these two estimators.

First, since

$$SSE = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i.})^2 = \sum_{i=1}^{m} (n_i - 1)S_i^2$$

where S_i is the sample variance based on $Y_{i1}, ..., Y_{in_i}$,

$$E(\hat{\sigma}^{2}) = E\left(\frac{SSE}{n-m}\right) = \frac{1}{n-m}\sum_{i=1}^{m}(n_{i}-1)E(S_{i}^{2}) = \frac{\sigma^{2}}{n-m}\sum_{i=1}^{m}(n_{i}-1) = \sigma^{2}$$

Hence, the MLE or REML estimator of σ^2 is unbiased (UMVUE).

Note that

$$\bar{Y}_{i.} = \mu + A_i + \frac{1}{n_i} \sum_{j=1}^{n_i} \varepsilon_{ij} \sim \mathcal{N}(\mu, \sigma_a^2 + n_i^{-1}\sigma^2)$$

When $n_i = n_0$ for all i, $\bar{Y}_{1.}, ..., \bar{Y}_{m}$ are iid from $N(\mu, \sigma_a^2 + n_0^{-1}\sigma^2)$ and, hence $SSA = 1 - \sum_{i=1}^{m} (\bar{\tau}_i - \bar{\tau}_i)^2$

$$\frac{1}{n_0(m-1)} = \frac{1}{m-1} \sum_{i=1}^{m-1} (\bar{Y}_{i.} - \bar{Y}_{..})^2$$

is the sample variance of $\bar{Y}_{1}, ..., \bar{Y}_{m}$ and

$$E\left(\frac{\text{SSA}}{n-n_0}\right) = E\left(\frac{\text{SSA}}{n_0(m-1)}\right) = \sigma_a^2 + \frac{\sigma^2}{n_0}$$

This implies

$$\mathsf{E}(\check{\sigma}_a^2) = \mathsf{E}\left(\frac{\mathrm{SSA}}{n-n_0}\right) - \mathsf{E}\left(\frac{\mathrm{SSE}}{n_0(n-m)}\right) = \sigma_a^2 + \frac{\sigma^2}{n_0} - \frac{\sigma^2}{n_0} = \sigma_a^2$$

i.e., the ANOVA estimator $\check{\sigma}_a^2$ is unbiased (UMVUE). On the other hand,

$$E(\tilde{\sigma}_a^2) = E\left(\frac{\text{SSA}}{n} - \frac{\text{SSE}}{n_0(n-m)}\right) = \frac{n-n_0}{n}\left(\sigma_a^2 + \frac{\sigma^2}{n_0}\right) - \frac{\sigma^2}{n_0}$$

Thus, $\tilde{\sigma}_a^2$ is biased and the bias is

$$E(\tilde{\sigma}_a^2) - \sigma_a^2 = -\frac{n_0\sigma_a^2}{n} - \frac{\sigma^2}{n} = -\frac{\sigma_a^2}{m} - \frac{\sigma^2}{n}$$

This bias becomes a serious issue when *m* is not large.

REML estimators in unbalanced one-way random effects model

For the unbalanced case, the previously derived likelihood is

$$L(\mu, \sigma^{2}, \sigma_{a}^{2} | \mathbf{Y}) = \frac{\exp\left\{-\frac{SSE}{2\sigma^{2}} - \frac{1}{2}\sum_{i=1}^{m} \frac{n_{i}(\bar{Y}_{i} - \mu)^{2}}{\sigma^{2} + n_{i}\sigma_{a}^{2}}\right\}}{(2\pi)^{n/2}\sigma^{n-m}\prod_{i=1}^{m}(\sigma^{2} + n_{i}\sigma_{a}^{2})^{1/2}}$$
$$= \frac{\exp\left\{-\frac{SSE}{2\sigma^{2}} - \frac{1}{2}\sum_{i=1}^{m} \frac{n_{i}(\bar{Y}_{i} - \bar{\mu})^{2}}{\sigma^{2} + n_{i}\sigma_{a}^{2}} - \frac{1}{2}\sum_{i=1}^{m} \frac{n_{i}(\bar{\mu} - \mu)^{2}}{\sigma^{2} + n_{i}\sigma_{a}^{2}}\right\}}{(2\pi)^{n/2}\sigma^{n-m}\prod_{i=1}^{m}(\sigma^{2} + n_{i}\sigma_{a}^{2})^{1/2}}$$
$$\tilde{\mu} = \sum_{i=1}^{m} \frac{n_{i}\bar{Y}_{i}}{\sigma^{2} + n_{i}\sigma_{a}^{2}} / \sum_{i=1}^{m} \frac{n_{i}}{\sigma^{2} + n_{i}\sigma_{a}^{2}}$$

where

For each fixed (σ^2, σ_a^2) ,

$$\tilde{\mu} \sim N\left(\mu, \tau^2\right), \quad \tau^2 = \left(\sum_{i=1}^m \frac{n_i}{\sigma^2 + n_i \sigma_a^2}\right)^{-1}$$

and $\tilde{\mu}$ maximizes

$$L_1(\mu|Y,\sigma^2,\sigma_a^2) = \frac{1}{(2\pi)^{1/2}\tau} \exp\left\{-\frac{1}{2}\sum_{i=1}^m \frac{n_i(\tilde{\mu}-\mu)^2}{\sigma^2+n_i\sigma_a^2}\right\}$$

Let

$$L_{2}(\sigma^{2},\sigma_{a}^{2}|\text{SSE},\bar{Y}_{i.}-\tilde{\mu},i=1,...,m) = \frac{\exp\left\{-\frac{\text{SSE}}{2\sigma^{2}}-\frac{1}{2}\sum_{i=1}^{m}\frac{n_{i}(\bar{Y}_{i.}-\tilde{\mu})^{2}}{\sigma^{2}+n_{i}\sigma_{a}^{2}}\right\}}{(2\pi)^{(n-1)/2}\sigma^{n-m}\prod_{i=1}^{m}(\sigma^{2}+n_{i}\sigma_{a}^{2})^{1/2}\tau^{-1}}$$

Then

$$L(\mu, \sigma^2, \sigma_a^2 | Y) = L_1(\mu | \tilde{\mu}, \sigma^2, \sigma_a^2) L_2(\sigma^2, \sigma_a^2 | \text{SSE}, \bar{Y}_{i.} - \tilde{\mu}, i = 1, ..., m)$$

Note that the second factor in the product depends on $\tilde{\mu}$, due to unbalancedness.

Like the MLE, the REML estimators have to be calculated iteratively. At each iteration, first treat the previously calculated estimates of σ^2 and σ_a^2 as known and calculate $\tilde{\mu}$ (it is a WLSE).

Then treat $\tilde{\mu}$ as known and calculate MLE of (σ^2, σ_a^2) by maximizing

$$L_2(\sigma^2, \sigma_a^2|\text{SSE}, \bar{Y}_{i.} - \tilde{\mu}, i = 1, ..., m)$$

This step needs iteration, since no explicit solution exists due to unbalancedness.

Also, we need to restrict the estimate of σ_a^2 to $[0,\infty)$.

The transformation approach to derive REML estimators

The matrix form of the one way balanced random effects model is

$$Y = \mu \mathbf{1}_n + Z\alpha + \mathscr{E}$$

where

$$Z = \begin{pmatrix} 1_{n_0} & 0 & \cdots & 0 \\ 0 & 1_{n_0} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1_{n_0} \end{pmatrix} \qquad \alpha = \begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{pmatrix}$$

Note that $H_n = I_n - n^{-1} \mathbf{1}_n \mathbf{1}'_n$ is an $n \times n$ projection matrix of rank n - 1. Let \tilde{H}_n be the $(n-1) \times n$ matrix obtained by deleting the first row of H_n and

$$C = \left(\begin{array}{c} \mathbf{1}'_n\\ \tilde{H}_n \end{array}\right)$$

Because \tilde{H}_n is of rank n-1 and

$$H_n 1_n = (I_n - n^{-1} 1_n 1'_n) 1_n = 1_n - 1_n = 0$$

we know that $\tilde{H}_n \mathbf{1}_n = 0$ so that *C* is of rank *n* and observing *Y* is equivalent to observing *CY*.

The first component of CY is

$$\begin{aligned} \dot{Y}_{\cdot \cdot} &= n^{-1} \mathbf{1}'_{n} Y \\ &= \mu + n^{-1} \mathbf{1}'_{n} Z \alpha + n^{-1} \mathbf{1}'_{n} \mathscr{E} \\ &= \mu + \frac{1}{n} \sum_{i=1}^{m} n_{0} A_{i} + \frac{1}{n} \sum_{i=1}^{m} \sum_{j=1}^{n_{0}} \varepsilon_{ij} \\ &\sim \mathcal{N} \left(\mu, \ \frac{\sigma^{2} + n_{0} \sigma_{a}^{2}}{n} \right) \end{aligned}$$

Because $\tilde{H}_n \mathbf{1}_n = 0$, the last n - 1 component of *CY* is

 $\tilde{H}_n Y = \tilde{H}_n Z \alpha + \tilde{H}_n \mathscr{E} \sim N(0, \ \tilde{H}_n Z \mathrm{Var}(\alpha) Z' \tilde{H}'_n + \sigma^2 \tilde{H}_n \tilde{H}'_n)$

which does not involve μ , and $\overline{Y}_{..}$ and $\widetilde{H}_n Y$ are independent. Hence, the entire likelihood can have the decomposition

$$L(\mu,\sigma^2,\sigma_a^2|Y) = L_1(\mu|\bar{Y}_{\cdot\cdot},\sigma^2,\sigma_a^2)L_2(\sigma^2,\sigma_a^2|\tilde{H}_nY)$$

where the second factor actually depends SSE and SSA only.

MLE in a general linear mixed effects model

Consider a general linear mixed effects model

$$Y = X\beta + Z\alpha + \mathscr{E}$$

as defined in the beginning.

We assume that the matrix X is of rank = the dimension of β and denote $V_{\alpha} = \operatorname{Var}(\alpha)$ and $V = \operatorname{Var}(Y) = ZV_{\alpha}Z' + \sigma^2 I_n$.

Assuming that α and \mathscr{E} are independently normal, and letting

$$\widehat{eta}_{V^{-1}} = (X'V^{-1}X)^{-1}X'V^{-1}Y$$

we obtain the likelihood as

$$\begin{split} L(\beta,\sigma^2,V_{\alpha}|Y) &= \frac{\exp\left\{-\frac{(Y-X\beta)'V^{-1}(Y-X\beta)}{2}\right\}}{(2\pi)^{n/2}|V|^{1/2}} \\ &= \frac{\exp\left\{-\frac{(Y-X\widehat{\beta}_{V^{-1}})'V^{-1}(Y-X\widehat{\beta}_{V^{-1}})}{2} - \frac{(\beta-\widehat{\beta}_{V^{-1}})'X'V^{-1}X(\beta-\widehat{\beta}_{V^{-1}})}{2}\right\}}{(2\pi)^{n/2}|V|^{1/2}} \end{split}$$

because

$$(Y - X\beta)'V^{-1}(Y - X\beta) = (Y - X\widehat{\beta}_{V^{-1}})'V^{-1}(Y - X\widehat{\beta}_{V^{-1}}) + (\beta - \widehat{\beta}_{V^{-1}})'X'V^{-1}X(\beta - \widehat{\beta}_{V^{-1}})$$

since, by the definition of $\hat{\beta}_{V^{-1}}$,

$$(Y - X\widehat{\beta}_{V^{-1}})'V^{-1}X(\beta - \widehat{\beta}_{V^{-1}}) = Y'V^{-1}X - \widehat{\beta}'_{V^{-1}}X'V^{-1}X(\beta - \widehat{\beta}_{V^{-1}}) = 0$$

Hence, the MLE of β and *V* should be $\beta_{ML} = \beta_{\hat{V}_{ML}^{-1}}$ and V_{ML} , where V_{ML} is the solution to

$$\max_{V} \frac{1}{|V|^{1/2}} \exp\left\{-\frac{(Y - X\widehat{\beta}_{V^{-1}})'V^{-1}(Y - X\widehat{\beta}_{V^{-1}})}{2}\right\}$$

REML estimators in a general linear mixed effects model

The REML estimator of *V* is the solution to

$$\max_{V} \frac{1}{|V|^{1/2}|X'V^{-1}X|^{1/2}} \exp\left\{-\frac{(Y-X\widehat{\beta}_{V^{-1}})'V^{-1}(Y-X\widehat{\beta}_{V^{-1}})}{2}\right\}$$

In view of

$$\widehat{eta}_{V^{-1}} \sim N\left(eta, (X'V^{-1}X)^{-1}
ight)$$

the REML estimator is the MLE with adjustment factor $|X'V^{-1}X|^{1/2}$, which accounts the estimation of β when we estimate *V*.

In general, both ML and REML estimators do not have explicit forms, and we can iterate between the estimation of β and V.

We usually need some information about $V_{\alpha} = Var(\alpha)$ so that the function to be maximized can be simplified.

The one way random effects model is an example.

As we discussed in the last lecture, if $X(X'X)^{-1}X'V$ is symmetric, which is equivalent to $X(X'X)^{-1}X'V_{\alpha}$ is symmetric, then $\hat{\beta}_{V^{-1}} = (X'X)^{-1}X'Y = \hat{\beta}$ is the LSE and has an explicit form not depending on estimators of *V*.