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Lecture 8: Linear mixed effects models
Adding random effects
A linear model is of the form Y = Xβ +E , where X is a fixed matrix, β

is a parameter vector, and E is an unobserved random error.
In many applications we need to add a random-effect term, which
leads to the linear mixed effects model

Y = Xβ + Zα +E

where Z is a fixed matrix and α is an unobserved random effect
(vector).
The following are two main reasons for adding random effects.

We want to model the correlation among the errors.
Random effects present unobserved variables of practical
interests.

It is typically assumed that both α and E have mean 0 and finite
covariance matrices, and they are independent; thus,

E(Y ) = Xβ and Var(Y ) = ZVar(α)Z ′+ Var(E )
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Example: One-way random effects model
The one-way random effect model

Yij = µ + Ai + eij , j = 1, ...,ni , i = 1, ...,m,

discussed in the last lecture is a special case.
We can derive the MLE’s under the one-way random effects model
with Ai ∼ N(0,σ2

a ) and eij ∼ N(0,σ2).
Using the notation previously defined and the form of V−1, we obtain

(Y −µ1n)′V−1(Y −µ1n) =
m

∑
i=1

(Yi −µ1ni )
′(σ

2Ini + σ
2
a 1ni 1

′
ni

)−1(Yi −µ1ni )

=
1

σ2

m

∑
i=1

ni

∑
j=1

(Yij −µ)2− σ2
a

σ2

m

∑
i=1

n2
i (Ȳi ·−µ)2

σ2 + niσ
2
a

=
SSE
σ2 +

m

∑
i=1

ni(Ȳi ·−µ)2

σ2 + niσ
2
a

, SSE=
m

∑
i=1

ni

∑
j=1

(Yij − Ȳi ·)
2

Since V is block diagonal,

|V |=
m

∏
i=1
|σ2Ini + σ

2
a 1ni 1

′
ni
|=

m

∏
i=1

σ
2(ni−1)(σ

2 + niσ
2
a )
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We obtain the likelihood function

L(µ,σ2,σ2
a |Y ) =

exp
{
−1

2(Y −µ1n)′V−1(Y −µ1n)
}

(2π)n/2|V |1/2

=

exp
{
−SSE

2σ2 − 1
2

m

∑
i=1

ni (Ȳi ·−µ)2

σ2+ni σ
2
a

}
(2π)n/2σn−m

m

∏
i=1

(σ2 + niσ
2
a )1/2

Let θ = (µ,σ2,σ2
a ) and (µ̃, σ̃2, σ̃2

a ) be the root of ∂ logL(θ |Y )/∂θ = 0.
Then we have the following score equations:

µ̃ =
m

∑
i=1

ni Ȳi ·

σ̃2 + ni σ̃
2
a

/ m

∑
i=1

ni

σ̃2 + ni σ̃
2
a

0 =
SSE
σ̃4 +

m

∑
i=1

ni(Ȳi ·− µ̃)2

(σ̃2 + ni σ̃
2
a )2
− n−m

σ̃2 −
m

∑
i=1

1
σ̃2 + ni σ̃

2
a

0 =
m

∑
i=1

n2
i (Ȳi ·− µ̃)2

(σ̃2 + ni σ̃
2
a )2
−

m

∑
i=1

ni

σ̃2 + ni σ̃
2
a

There is no explicit formula for this solution.
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If σ̃2
a > 0, then (µ̃, σ̃2, σ̃2

a ) is the MLE of (µ,σ2,σ2
a ).

If σ̃2
a ≤ 0, then the MLE of σ2

a is 0, and substituting σ̃2
a = 0 in the first

two score equations we obtain the MLE of µ is Ȳ·· and the MLE of σ2 is

1
n

[
SSE +

m

∑
i=1

ni(Ȳi ·− Ȳ··)2

]
=

1
n

m

∑
i=1

ni

∑
j=1

(Yij − Ȳ··)2

In the balance case where ni = n0 for all i , we have shown that the
MLE of µ is Ȳ··.
Also, the 3rd score equation becomes

σ̃
2 + n0σ̃

2
a =

n0

m

m

∑
i=1

(Ȳi ·− Ȳ··)2

and because of the 3rd equation, the 2nd score equation becomes

σ̃
2 =

SSE
n−m

Then
σ̃

2
a =

1
m

m

∑
i=1

(Ȳi ·− Ȳ··)2− SSE
n0(n−m)

The MLE of (µ,σ2,σ2
a ) in the balanced case is (Ȳ··, σ̃2,max(σ̃2

a ,0)).
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The restricted maximum likelihood (REML) estimators
To introduce the idea, let’s first consider the example of
X = (X1, ...,Xn), where Xi ’s are iid N(µ,σ2) so that the likelihood is

L(µ,σ2|X ) =
1

(2πσ2)n/2 exp

{
− 1

2σ2

n

∑
i=1

(Xi −µ)2

}

=
1

(2πσ2)n/2 exp
{
−(X̄ −µ)2

2σ2/n
− (n−1)S2

2σ2

}
= L1(µ|X̄ ,σ2)L2(σ

2|S2)

where
L1(µ|X̄ ,σ2) =

C1

σ
exp

{
−(X̄ −µ)2

2σ2/n

}
L2(σ

2|S2) =
C2

σ (n−1)
exp

{
−(n−1)S2

2σ2

}
and C1 and C2 are constants not depending on parameters.
Maximizing L1 over µ we obtain the maximum µ̂ = X̄ and maximizing
L2 we obtain the maximum σ̂2 = S2.
The REML estimator of (µ,σ2) is (X̄ ,S2).
The MLE of (µ,σ2) is (X̄ ,(n−1)S2/n).
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REML estimators in balanced one-way random effects model
From the previous derivation we know that the likelihood under the
balanced (ni = n0 for all i) one-way random effects model is

L(µ,σ2,σ2
a |Y ) =

exp
{
−SSE

2σ2 − SSA
2(σ2+n0σ2

a )
− n(Ȳ··−µ)2

2(σ2+n0σ2
a )

}
(2π)n/2σn−m(σ2 + n0σ2

a )m/2

where
SSA =

m

∑
i=1

ni(Ȳi ·− Ȳ··)2

Maximizing

L1(µ|Ȳ··,σ2,σ2
a ) =

1
(σ2 + n0σ2

a )1/2
exp

{
− n(Ȳ··−µ)2

2(σ2 + n0σ2
a )

}
we obtain that the REML estimator of µ is µ̂ = Ȳ··; maximizing

L2(σ
2,σ2

a |SSE,SSA) =
exp

{
−SSE

2σ2 − SSA
2(σ2+n0σ2

a )

}
σn−m(σ2 + n0σ2

a )(m−1)/2

we obtain that the REML estimators of σ2 and σ2
a are, respectively,

σ̂
2 =

SSE
n−m

and σ̌
2
a = max(σ̃

2
a , 0), σ̌

2
a =

SSA
n−n0

− SSE
n0(n−m)
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In fact, σ̌2
a is the popular ANOVA estimator, although it may take

negative values.
Comparing the MLE derived previously with the REML estimators, we
find that the MLE and REML estimators of µ and σ2 are the same, but
the estimators of σ2

a are the positive parts of two different estimators,

σ̃
2
a =

SSA
n
− SSE

n0(n−m)
and σ̌

2
a =

SSA
n−n0

− SSE
n0(n−m)

The difference is in the denominator of the first term.
Consider the expectations of these two estimators.
First, since

SSE=
m

∑
i=1

ni

∑
j=1

(Yij − Ȳi ·)
2 =

m

∑
i=1

(ni −1)S2
i

where Si is the sample variance based on Yi1, ...,Yini ,

E(σ̂
2) = E

(
SSE

n−m

)
=

1
n−m

m

∑
i=1

(ni −1)E(S2
i ) =

σ2

n−m

m

∑
i=1

(ni −1) = σ
2

Hence, the MLE or REML estimator of σ2 is unbiased (UMVUE).
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Note that
Ȳi · = µ + Ai +

1
ni

ni

∑
j=1

εij ∼ N(µ,σ2
a + n−1

i σ
2)

When ni = n0 for all i , Ȳ1·, ..., Ȳm· are iid from N(µ,σ2
a + n−1

0 σ2) and,
hence SSA

n0(m−1)
=

1
m−1

m

∑
i=1

(Ȳi ·− Ȳ··)2

is the sample variance of Ȳ1·, ..., Ȳm· and

E
(

SSA
n−n0

)
= E

(
SSA

n0(m−1)

)
= σ

2
a +

σ2

n0

This implies

E(σ̌
2
a ) = E

(
SSA

n−n0

)
−E

(
SSE

n0(n−m)

)
= σ

2
a +

σ2

n0
− σ2

n0
= σ

2
a

i.e., the ANOVA estimator σ̌2
a is unbiased (UMVUE).

On the other hand,

E(σ̃
2
a ) = E

(
SSA

n
− SSE

n0(n−m)

)
=

n−n0

n

(
σ

2
a +

σ2

n0

)
− σ2

n0
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Thus, σ̃2
a is biased and the bias is

E(σ̃
2
a )−σ

2
a =−n0σ2

a
n
− σ2

n
=−σ2

a
m
− σ2

n
This bias becomes a serious issue when m is not large.

REML estimators in unbalanced one-way random effects model
For the unbalanced case, the previously derived likelihood is

L(µ,σ2,σ2
a |Y ) =

exp
{
−SSE

2σ2 − 1
2

m

∑
i=1

ni (Ȳi ·−µ)2

σ2+ni σ
2
a

}
(2π)n/2σn−m

m

∏
i=1

(σ2 + niσ
2
a )1/2

=

exp
{
−SSE

2σ2 − 1
2

m

∑
i=1

ni (Ȳi ·−µ̃)2

σ2+ni σ
2
a
− 1

2

m

∑
i=1

ni (µ̃−µ)2

σ2+ni σ
2
a

}
(2π)n/2σn−m

m

∏
i=1

(σ2 + niσ
2
a )1/2

where
µ̃ =

m

∑
i=1

ni Ȳi ·

σ2 + niσ
2
a

/ m

∑
i=1

ni

σ2 + niσ
2
a
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For each fixed (σ2,σ2
a ),

µ̃ ∼ N
(

µ,τ2
)
, τ

2 =

(
m

∑
i=1

ni

σ2 + niσ
2
a

)−1

and µ̃ maximizes

L1(µ|Y ,σ2,σ2
a ) =

1
(2π)1/2τ

exp
{
−1

2

m

∑
i=1

ni(µ̃−µ)2

σ2 + niσ
2
a

}
Let

L2(σ
2,σ2

a |SSE, Ȳi ·− µ̃, i = 1, ...,m) =

exp
{
−SSE

2σ2 − 1
2

m

∑
i=1

ni (Ȳi ·−µ̃)2

σ2+ni σ
2
a

}
(2π)(n−1)/2σn−m

m

∏
i=1

(σ2 + niσ
2
a )1/2τ−1

Then

L(µ,σ2,σ2
a |Y ) = L1(µ|µ̃,σ2,σ2

a )L2(σ
2,σ2

a |SSE, Ȳi ·− µ̃, i = 1, ...,m)

Note that the second factor in the product depends on µ̃, due to
unbalancedness.
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Like the MLE, the REML estimators have to be calculated iteratively.
At each iteration, first treat the previously calculated estimates of σ2

and σ2
a as known and calculate µ̃ (it is a WLSE).

Then treat µ̃ as known and calculate MLE of (σ2,σ2
a ) by maximizing

L2(σ
2,σ2

a |SSE, Ȳi ·− µ̃, i = 1, ...,m)

This step needs iteration, since no explicit solution exists due to
unbalancedness.
Also, we need to restrict the estimate of σ2

a to [0,∞).

The transformation approach to derive REML estimators
The matrix form of the one way balanced random effects model is

Y = µ1n + Zα +E

where

Z =


1n0 0 · · · 0
0 1n0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1n0

 α =


A1
A2
...

Am


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Note that Hn = In−n−11n1′n is an n×n projection matrix of rank n−1.
Let H̃n be the (n−1)×n matrix obtained by deleting the first row of Hn
and

C =

(
1′n
H̃n

)
Because H̃n is of rank n−1 and

Hn1n = (In−n−11n1′n)1n = 1n−1n = 0

we know that H̃n1n = 0 so that C is of rank n and observing Y is
equivalent to observing CY .
The first component of CY is

Ȳ·· = n−11′nY

= µ + n−11′nZα + n−11′nE

= µ +
1
n

m

∑
i=1

n0Ai +
1
n

m

∑
i=1

n0

∑
j=1

εij

∼ N
(

µ,
σ2 + n0σ2

a
n

)
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Because H̃n1n = 0, the last n−1 component of CY is

H̃nY = H̃nZα + H̃nE ∼ N(0, H̃nZVar(α)Z ′H̃ ′n + σ
2H̃nH̃ ′n)

which does not involve µ, and Ȳ·· and H̃nY are independent.
Hence, the entire likelihood can have the decomposition

L(µ,σ2,σ2
a |Y ) = L1(µ|Ȳ··,σ2,σ2

a )L2(σ
2,σ2

a |H̃nY )

where the second factor actually depends SSE and SSA only.

MLE in a general linear mixed effects model
Consider a general linear mixed effects model

Y = Xβ + Zα +E

as defined in the beginning.
We assume that the matrix X is of rank = the dimension of β and
denote Vα = Var(α) and V = Var(Y ) = ZVαZ ′+ σ2In.
Assuming that α and E are independently normal, and letting

β̂V−1 = (X ′V−1X )−1X ′V−1Y
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we obtain the likelihood as

L(β ,σ2,Vα |Y ) =
exp

{
− (Y−Xβ)′V−1(Y−Xβ)

2

}
(2π)n/2|V |1/2

=

exp
{
− (Y−X β̂V−1 )′V−1(Y−X β̂V−1 )

2 − (β−β̂V−1 )′X ′V−1X(β−β̂V−1 )

2

}
(2π)n/2|V |1/2

because

(Y −Xβ )′V−1(Y −Xβ ) = (Y −X β̂V−1)′V−1(Y −X β̂V−1)

+ (β − β̂V−1)′X ′V−1X (β − β̂V−1)

since, by the definition of β̂V−1 ,

(Y −X β̂V−1)′V−1X (β − β̂V−1) = Y ′V−1X − β̂
′
V−1X ′V−1X (β − β̂V−1) = 0

Hence, the MLE of β and V should be β̂ML = β̂V̂−1
ML

and V̂ML, where V̂ML

is the solution to

max
V

1
|V |1/2 exp

{
−(Y −X β̂V−1)′V−1(Y −X β̂V−1)

2

}
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REML estimators in a general linear mixed effects model
The REML estimator of V is the solution to

max
V

1
|V |1/2|X ′V−1X |1/2 exp

{
−(Y −X β̂V−1)′V−1(Y −X β̂V−1)

2

}
In view of

β̂V−1 ∼ N
(

β , (X ′V−1X )−1
)

the REML estimator is the MLE with adjustment factor |X ′V−1X |1/2,
which accounts the estimation of β when we estimate V .
In general, both ML and REML estimators do not have explicit forms,
and we can iterate between the estimation of β and V .
We usually need some information about Vα = Var(α) so that the
function to be maximized can be simplified.
The one way random effects model is an example.
As we discussed in the last lecture, if X (X ′X )−1X ′V is symmetric,
which is equivalent to X (X ′X )−1X ′Vα is symmetric, then
β̂V−1 = (X ′X )−1X ′Y = β̂ is the LSE and has an explicit form not
depending on estimators of V .
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