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Lecture 16: Pivotal quantities
Another popular method of constructing confidence sets is the use of
pivotal quantities defined as follows.

Definition 9.2.6.
A known function of (X ,ϑ), q(X ,ϑ), is called a pivotal quantity (or
pivot) iff the distribution of q(X ,ϑ) does not depend on any unknown
quantity.

A pivot is not a statistic, although its distribution is known.
With a pivot q(X ,ϑ), a level 1−α confidence set for any given α

can be obtained by finding a known Borel set A (typically
A = [c1,c2]) such that P(q(X ,ϑ) ∈ A)≥ 1−α.
Then a level 1−α confidence set is C(x)={ϑ : q(x ,ϑ) ∈ A}, since

inf
θ∈Θ

P
(
ϑ ∈ C(X )

)
= inf

θ∈Θ
P
(
q(X ,ϑ) ∈ A

)
= P

(
q(X ,ϑ) ∈ A

)
≥ 1−α

If q(X ,ϑ) has a continuous cdf, then we may choose A such that
C(X ) has confidence coefficient 1−α.
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Example (Fieller’s interval).
Let (Xi1,Xi2), i = 1, ...,n, be iid bivariate normal with unknown
µj = E(X1j), σ2

j = Var(X1j), j = 1,2, and σ12 = Cov(X11,X12).
Let ϑ = µ2/µ1 be the parameter of interest (µ1 6= 0).
Y1(ϑ), ...,Yn(ϑ) are iid N(0,σ2

2 −2ϑσ12 + ϑ 2σ2
1 ), Yi(ϑ) = Xi2−ϑXi1.

Let

S2(ϑ) =
1

n−1

n

∑
i=1

[Yi(ϑ)− Ȳ (ϑ)]2 = S2
2−2θS12 + θ

2S2
1 ,

where Ȳ (ϑ) is the average of Yi(ϑ)’s and S2
i and S12 are sample

variances and covariance based on Xij ’s.
We know that

√
nȲ (ϑ)/S(ϑ) has the t-distribution with n−1 degrees

of freedom and, therefore, is a pivotal quantity.
Then

C(X ) = {θ : n[Ȳ (ϑ)]2/S2(ϑ)≤ t2
n−1,α/2}

is a confidence set for ϑ with confidence coefficient 1−α.
Note that n[Ȳ (ϑ)]2 = t2

n−1,α/2S2(ϑ) defines a parabola in ϑ .
Depending on the roots of the parabola, C(X ) can be a finite interval,
the complement of a finite interval, or the whole real line.
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Example.
We show an example of a confidence set for a two-dimensional
parameter vector.
Let X1, ...,Xn be iid from N(µ,σ2) with unknown µ ∈R and σ2 > 0.
Consider a confidence set for θ = (µ,σ2).
Since (X̄ ,S2) is sufficient and complete for θ , we focus on C(X ) that is
a function of (X̄ ,S2).
From Chapter 5, X̄ and S2 are independent and (n−1)S2/σ2 has the
chi-square distribution with degrees of freedom n−1.
Since

√
n(X̄ −µ)/σ ∼ N(0,1), a two dimensional pivot is(√

n(X̄ −µ)/σ , (n−1)S2/σ
2
)

If c̃α = Φ−1
(

1+
√

1−α

2

)
, then

P
(
−c̃α ≤

X̄ −µ

σ/
√

n
≤ c̃α

)
=
√

1−α
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Since the chi-square distribution is a known distribution, we can find
two constants c1α and c2α such that

P
(

c1α ≤
(n−1)S2

σ2 ≤ c2α

)
=
√

1−α.

Then

P
(
−c̃α ≤

X̄ −µ

σ/
√

n
≤ c̃α ,c1α ≤

(n−1)S2

σ2 ≤ c2α

)
= 1−α,

or

P
(

n(X̄ −µ)2

c̃2
α

≤ σ
2,

(n−1)S2

c2α

≤ σ
2 ≤ (n−1)S2

c1α

)
= 1−α.

The left-hand side of the previous expression defines a set in the range
of θ = (µ,σ2) bounded by two straight lines

σ
2 = (n−1)S2/ciα , i = 1,2,

and a curve
σ

2 = n(X̄ −µ)2/c̃2
α

See the shadowed part of the figure.
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This set is a confidence set for θ with confidence coefficient 1−α,
since the probability in the previous expression does not depend on
any unknown parameter.
What happens if we replace

√
n(X̄ −µ)/σ by

√
n(X̄ −µ)/S in the

pivot?
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Example 9.2.7 (location-scale pivots).
The approach of using pivots works well when the pdf of X is in a
location-scale family.

Form of pdf Type of pdf Pivots
f (x−µ) Location X̄ −µ

σ−1f (x/σ) Scale X̄/σ , S2/σ2, X(n)/σ

σ−1f ((x−µ)/σ) Location-scale (X̄ −µ)/S, S2/σ2

The selection of a pivot depends on what parameter is of interest.
For example, (X̄ −µ)/σ is a pivot for getting a confidence set of the
two-dimensional vector θ = (µ,σ).
However, if we are interested in ϑ = µ, then (X̄ −µ)/σ is not the right
pivot, although its distribution does not depend on anything unknown.
The right pivot is (X̄ −µ)/S or

√
n(X̄ −µ)/S.

When f is normal, the use of
√

n(X̄ −µ)/S gives the interval estimator

[X̄ − tn−1,α/2S/
√

n, X̄ + tn−1,α/2S/
√

n]

If we also want a confidence interval for σ2 or σ , then (n−1)S2/σ2 is
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a pivot, which leads to confidence intervals[
(n−1)S2/b,(n−1)S2/a

]
and

[√
(n−1)S2/b,

√
(n−1)S2/a

]
where a and b are percentiles of the chi-square with degrees of
freedom n−1.

When f is uniform(0,1), σ−1f (x/σ) is uniform(0,σ), a scale family.
Note that X(n)/σ has pdf nxn−1, 0 < x < 1, and hence it is a pivot.
Using this pivot leads to an interval estimator [aX(n),bX(n)] for σ .
Since the coverage probability is a−n−b−n, setting a−n−b−n = 1−α

leads to a confidence coefficient 1−α.

Pivoting cdf’s
Consider the situation where ϑ = θ ∈Θ⊂R.
We can use a pivot based on the cdf of a real-valued sufficient statistic.

Theorem 9.2.12 (pivoting a continuous cdf).
Let T be a real-valued statistic with continuous cdf Fθ (t), where
θ ∈Θ⊂R. Let α1 + α2 = α, 0 < α < 1, be fixed nonnegative values.
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If Fθ (t) is non-increasing in θ for each t , define L(t) and U(t) by

FU(t)(t) = α1, FL(t)(t) = 1−α2

If Fθ (t) is non-decreasing in θ for each t , define L(t) and U(t) by

FU(t)(t) = 1−α2, FL(t)(t) = α1

The interval estimator [L(T ), U(T )] has confidence coefficient 1−α.

Proof.
The result follows from the fact that Fθ (T ) has the uniform distribution
of (0,1) and thus a pivot, and if α1 + α2 = α, then

P(α1 ≤ Fθ (T )≤ 1−α2) = 1−α2−α1 = 1−α

Hence, we obtain a confidence set {θ : α1 ≤ Fθ (T )≤ 1−α2}.

If some equations have no solution or multiple solutions, we define

U(t) = sup{θ : Fθ (t)≥ α1}, L(t) = inf{θ : Fθ (t)≤ 1−α2}

when Fθ (t) is non-increasing, or, when Fθ (t) is non-decreasing,

L(t) = inf{θ : Fθ (t)≥ α1}, U(t) = sup{θ : Fθ (t)≤ 1−α2}
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For each equation, we only need to solve it for the value of T = t
that is actually observed. Even if one of the equation has no
explicit solution, it can be solved numerically.
If we only want a lower (or upper) confidence bound, then we can
set one of the αj to 0 and solve only one equation.
If Fθ is from a family with MLR, then Fθ (t) is monotone in θ for
every t .
Even if Fθ (t) is not monotone in θ , we can still apply this idea. But
the resulting confidence set may not be an interval.

Example 9.2.13.

Let X1, ...,Xn be iid with pdf fθ (x) = e−(x−θ), x > θ , where θ ∈R.
The sufficient and complete statistic for θ is T = X(1) with pdf
ne−n(t−θ), t > θ , which is from a family with MLR so that Fθ (t) is
decreasing in θ for any t .
Then we define L(t) and U(t) by∫ t

U(t)
ne−n(u−U(t))du = α1,

∫ t

L(t)
ne−n(u−L(t))du = 1−α2
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These integrals can be solved and

U(t) = t + n−1 log(1−α1), L(t) = t + n−1 logα2

Theorem 9.2.14 (pivoting a discrete cdf).
Let T be a real-valued discrete statistic with cdf Fθ (t), where
θ ∈Θ⊂R. Let α1 + α2 = α, 0 < α < 1, be fixed nonnegative values.
If Fθ (t) is non-increasing in θ for each t , define L(t) and U(t) by

FU(t)(t) = α1, PL(t)(T ≥ t) = α2

If Fθ (t) is non-decreasing in θ for each t , define L(t) and U(t) by

PU(t)(T ≥ t) = α2, FL(t)(t) = α1

The interval estimator [L(T ), U(T )] has level 1−α.

The remarks after Theorem 9.2.12 still apply.
The proof is very similar to the proof of Theorem 9.2.12, except
that we do not obtain confidence coefficient 1−α because T is
discrete.

UW-Madison (Statistics) Stat 610 Lecture 16 2016 10 / 15



beamer-tu-logo

Example 9.2.15.
Let X1, ...,Xn be iid random variables from Poisson(θ) with unknown
θ > 0 and T = ∑

n
i=1 Xi , the sufficient and complete statistic for θ .

Since T ∼ Poisson(nθ),

Fθ (t) =
t

∑
j=0

e−nθ (nθ)j

j!
, t = 0,1,2, ....

Since the Poisson family has monotone likelihood ratio in T and
0 < Fθ (t) < 1 for any t , Fθ (t) is strictly decreasing in θ . (The fact that
Fθ (t) is strictly decreasing in θ can be directly proved.)
Also, Fθ (t) is continuous in θ and Fθ (t) tends to 1 and 0 as θ tends to
0 and ∞, respectively, and thus, Theorem 9.2.14 applies.
First, U(t) is the unique solution of Fθ (t) = α1 for any fixed t .
Since Pθ (T ≥ t) = 1−Fθ (t−1) for t > 0, L(t) is the unique solution of
Fθ (t−1) = 1−α2 when t > 0.
When t = 0, 1−Fθ (−1) = 1, we apply the remark after Theorem 9.2.12
and set L(0) = 0.
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Figure: A confidence interval obtained by pivoting Fθ (t), θL = L(t), θU = U(t)

In fact, in this case explicit forms of L(t) and U(t) can be obtained from
the equality

1
Γ(t)

∫
∞

λ

x t−1e−xdx =
t−1

∑
j=0

e−λ λ j

j!
, t = 1,2, ....
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By Fθ (T ) = α1,

α1 =
t

∑
k=0

e−nθ (nθ)k

k !
=

1
Γ(t + 1)

∫
∞

nθ

x te−xdx = P(χ
2
2(t+1) ≥ 2nθ)

where χ2
v is a random variable ∼ chi square with degrees of freedom v .

Similarly, Fθ (t−1) = 1−α2 gives

α2 =
∞

∑
k=t

e−nθ (nθ)k

k !
=

1
Γ(t)

∫ nθ

0
x t−1e−xdx = P(χ

2
2t ≤ 2nθ)

Hence,
U(t) = (2n)−1

χ
2
2(t+1),α1

L(t) = (2n)−1
χ

2
2t ,1−α2

,

where χ2
r ,α is the 100(1−α)th percentile of the chi-square distribution

with degrees of freedom r and χ2
0,a is defined to be 0.

Gamma-Poisson relationship
To complete the argument, we need to show that if Xα ∼ gamma(α,β )
with an integer α and Y ∼ Poisson(x/β ), then

P(Xα ≤ x) = P(Y ≥ α), x > 0
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We use induction to prove this relationship.
When α = 1,

P(X1 ≤ x) =
1
β

∫ x

0
e−t/β dt = e−t/β

∣∣∣∣0
x

= 1−e−x/β = P(Y ≥ 1)

Assume that P(Xα−1 ≤ x) = P(Y ≥ α−1).
From integration by parts,

P(Xα ≤ x) =
1

(α−1)!β α

∫ x

0
tα−1et/β dt

=
1

(α−1)!β α−1

[
tα−1e−t/β

∣∣∣∣0
x

+ (α−1)
∫ x

0
tα−2e−t/β dt

]

=
1

(α−2)!β α−1

∫ x

0
tα−2e−t/β dt− xα−1e−x/β

(α−1)!β α−1

= P(Xα−1 ≤ x)− e−x/β

(α−1)!

(
x
β

)α−1

= P(Y ≥ α−1)−P(Y = α−1) = P(Y ≥ α)
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Example.

Let X1, ...,Xn be iid from a distribution with pdf θxθ−1, 0 < x < 1, where
θ > 0 is unknown.
Note that T =−∑

n
i=1 logXi is a complete and sufficient statistic for θ ,

and θT ∼gamma(n,1).
Thus, θT is a pivot and we can obtain a class of confidence intervals
of the form [c1T−1,c2T−1] with∫ c2

c1

f (x)dx = 1−α f is the pdf of gamma(n,1)

to ensure the confidence coefficient = 1−α.
Consider testing hypotheses H0 : θ = θ0 versus H1 : θ 6= θ0.
By the result in Chapter 8, the acceptance region of a UMPU test is
A(θ0) = {X : c1 ≤ θ0T ≤ c2}, where c1 and c2 are determined by∫ c2

c1

f (x)dx = 1−α and
∫ c2

c1

xf (x)dx = n(1−α)

The 2nd equality ensures unbiasedness.
Thus, [c1T−1,c2T−1] is a UMAU confidence interval.
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