Lecture 16: Pivotal quantities

Another popular method of constructing confidence sets is the use of
pivotal quantities defined as follows.

Definition 9.2.6.

A known function of (X, ¢), q(X, ¢), is called a pivotal quantity (or

pivot) iff the distribution of g(X, ) does not depend on any unknown
quantity.

|

@ A pivot is not a statistic, although its distribution is known.

@ With a pivot q(X, ), a level 1 — a confidence set for any given o
can be obtained by finding a known Borel set A (typically
A=cy,0]) such that P(q(X,9) € A) >1—q.

Then a level 1 — o confidence setis C(x)={9: q(x, ) € A}, since

6ig(faP(zSl € C(X)) = eig(faP(q(X,ﬁ) €A)=P(q(X,9)eA)>1-a

If g(X,?) has a continuous cdf, then we may choose A such that
C(X) has confidence coefficient 1 — «.

v
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Example (Fieller’s interval).

Let (Xi1,Xi2), i =1,...,n, be iid bivariate normal with unknown

W= E(Xu), 612 = Var(X1/-), j=1,2, and o2 = Cov(Xi1, Xi2).

Let ¥ = uo/uq be the parameter of interest (uy # 0).

Y1(9),..., Ya(®) are iid N(O, Gg —2%012+ 192612), Yi(9) = Xjp — 9 Xj4.
Let

S _1 Z[Y 19)]2 29312+928

where Y(z&*) is the average of Y;(¥)’'s and S,? and Si, are sample
variances and covariance based on Xj's.

We know that /nY(9)/S(¥) has the t-distribution with n— 1 degrees
of freedom and, therefore, is a pivotal quantity.

Then _

C(X) ={0: n[Y(9)]?/S?(D) <15 4 4o}
is a confidence set for ¥ with confidence coefficient 1 — a
Note that n[Y(9)]2 =12, /257 (0) defines a parabola in ¥

Depending on the roots of the parabola, C(X) can be a finite interval,
the complement of a finite interval, or the whole real line.
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Example.

We show an example of a confidence set for a two-dimensional
parameter vector.

Let X, ..., X, be iid from N(u,5?) with unknown u € Z and ¢ > 0.
Consider a confidence set for 8 = (u,c?).

Since (X, S?) is sufficient and complete for 6, we focus on C(X) that is
a function of (X, S$?).

From Chapter 5, X and S? are independent and (n—1)S?/c2 has the
chi-square distribution with degrees of freedom n— 1.

Since v/n(X —u)/o ~ N(0,1), a two dimensional pivot is
(VAX —p)/o, (n-1)8%/0?)

It 8 = @1 (H25=%), then

(ashee)ams
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Since the chi-square distribution is a known distribution, we can find
two constants ¢y, and ¢y, such that

_ 2
P<C1a§(nc12)8§02a>: =y

Then
. X— N —1)82
P<_Ca< 2 §Coc,c1oc§(n)8§02a> =1—-aqa,

~o/vn 02

or

S0, (o

Y _11)2 _ 2 _ 2
(A L2 00 a2V,
Co Coa Cla

The left-hand side of the previous expression defines a set in the range
of 8 = (u,0?) bounded by two straight lines
62=(n-1)8%/ciy, i=1,2,
and a curve = .
0% =n(X - p)?/&
See the shadowed part of the figure.
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variance

mean

This set is a confidence set for 8 with confidence coefficient 1 — «,
since the probability in the previous expression does not depend on
any unknown parameter.

What happens if we replace v/n(X — u)/o by /n(X —u)/S in the
pivot?
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Example 9.2.7 (location-scale pivots).

The approach of using pivots works well when the pdf of X is in a
location-scale family.

Form of pdf Type of pdf Pivots
f(x—pu) Location X—u
o~ 'f(x/o) Scale X/o, §2/6%, Xn)/0

o '"f((x—u)/o) Location-scale (X—u)/S, S?/c?

The selection of a pivot depends on what parameter is of interest.

For example, (X — u)/c is a pivot for getting a confidence set of the
two-dimensional vector 6 = (u, o).

However, if we are interested in © = u, then (X — u)/c is not the right
pivot, although its distribution does not depend on anything unknown.
The right pivot is (X —u)/S or v/n(X — u)/S.

When f is normal, the use of \/n(X — u)/S gives the interval estimator
[)_(_ tn—1,a/28/ﬁa )_(+ tn—1,a/28/ﬁ]

If we also want a confidence interval for 2 or o, then (n—1)S?/62 is
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a pivot, which leads to confidence intervals

(n—1)82/b,(n—1)8%/a]  and [\/(n1)82/b,\/(n1)82/a]

where a and b are percentiles of the chi-square with degrees of
freedom n—1.

When f is uniform(0,1), o~ 'f(x/c) is uniform(0, ), a scale family.
Note that X, /o has pdf nx"~1,0 < x < 1, and hence it is a pivot.
Using this pivot leads to an interval estimator [aX(,,), bX|] for .
Since the coverage probability is a”— b~ ", settinga™—-b"=1—-«
leads to a confidence coefficient 1 — a.

Pivoting cdf’s
Consider the situation where 9 =0 € © C Z.
We can use a pivot based on the cdf of a real-valued sufficient statistic.

Theorem 9.2.12 (pivoting a continuous cdf).

Let T be a real-valued statistic with continuous cdf Fy(t), where
6cOCZ. Letayj+a=0a,0< a< 1, be fixed nonnegative values.
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If Fo(t) is non-increasing in 6 for each ¢, define L(t) and U(t) by
Fup(t)=a1,  Frp(t)=1-a

If Fo(t) is non-decreasing in 6 for each t, define L(t) and U(t) by
Fup(t)=1—-0,  Frp(t) =

The interval estimator [L(T), U(T)] has confidence coefficient 1 — a.

Proof.
The result follows from the fact that Fg(T) has the uniform distribution
of (0,1) and thus a pivot, and if oy + a2 = o, then

P(Ot1 < FQ(T) < 1 —062):1 — Ol — 04 =1—«
Hence, we obtain a confidence set {0 : ay < Fo(T) <1—0p}.

@ If some equations have no solution or multiple solutions, we define
U(t) =sup{0 : Fo(t) > a4}, L(t)=inf{6: Fo(t) <1—o0p}
when Fy(t) is non-increasing, or, when Fy(t) is non-decreasing,
L(t)=inf{6: Fo(t) > a1}, U(t) =sup{B: Fo(t) <1—ap}
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@ For each equation, we only need to solve it for the value of T =t
that is actually observed. Even if one of the equation has no
explicit solution, it can be solved numerically.

@ If we only want a lower (or upper) confidence bound, then we can
set one of the ¢; to 0 and solve only one equation.

@ If Fy is from a family with MLR, then Fy(t) is monotone in 6 for
every t.

@ Even if Fy(t) is not monotone in 6, we can still apply this idea. But
the resulting confidence set may not be an interval.

Example 9.2.13.

Let Xi,..., X, be iid with pdf fy(x) = e~ *~9), x > 6, where 6 € Z.

The sufficient and complete statistic for 6 is T = X(4) with pdf

ne~"(1=9) t > @, which is from a family with MLR so that Fy(t) is

decreasing in 6 for any t.

Then we define L(t) and U(t) by

/t ne~ "=V gy = o, /t ne "=t gy =1 — oy
L(t)

u(t)
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These integrals can be solved and

U(t)=t+n"log(1 - ), L(t)=t+n"logoep

Theorem 9.2.14 (pivoting a discrete cdf).

Let T be a real-valued discrete statistic with cdf Fg(t), where
6cOCZ. Letayj+a=0a,0< a< 1, be fixed nonnegative values.
If Fo(t) is non-increasing in 6 for each ¢, define L(t) and U(t) by

Fup(t)=aq,  Pyp(T>t)=op

If Fo(t) is non-decreasing in 6 for each t, define L(t) and U(t) by
Pu(t)(TZt):Otg, FL(t)(t):OC1

The interval estimator [L(T), U(T)] has level 1 —a.

@ The remarks after Theorem 9.2.12 still apply.

@ The proof is very similar to the proof of Theorem 9.2.12, except
that we do not obtain confidence coefficient 1 — o because T is
discrete.

v
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Example 9.2.15.

Let Xj,..., X, be iid random variables from Poisson(6) with unknown
6 >0and T =Y, X, the sufficient and complete statistic for 6.

Since T ~ Poisson(no),
L)
Since the Poisson family has monotone likelihood ratio in T and

0 < Fy(t) <1 forany t, Fg(t) is strictly decreasing in 6. (The fact that
Fo(t) is strictly decreasing in 6 can be directly proved.)

Also, Fy(t) is continuous in 6 and Fy(t) tends to 1 and 0 as 6 tends to
0 and «, respectively, and thus, Theorem 9.2.14 applies.

First, U(t) is the unique solution of Fy(t) = a4 for any fixed t.

Since Po(T >t)=1—Fp(t—1) for t > 0, L(t) is the unique solution of
Fo(t—1)=1—ap whent>0.

When t =0, 1— Fg(—1) =1, we apply the remark after Theorem 9.2.12
and set L(0) =0.
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Figure: A confidence interval obtained byepivoting Fo(t), 6, = L(t), 6y = U(t)

In fact, in this case explicit forms of L(t) and U(t) can be obtained from
the equality

Y RN Lt
[ xtlexdx= I
r(t)./a /;’) J!
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L e "(no) 1 P X 2
“=X :r(t+1)/nexe ox = P(xz(+1) > 219)

where y2 is a random variable ~ chi square with degrees of freedom v.
Similarly, Fe(t—1)=1— (Zg gives

e "% (ng)k _
az—kz_‘,t k| t)/ e *dx — P(x2, < 2n6)

Hence,

Ut =@n) "%3pi1ye LD =@ "Hot1 g,
where %2, is the 100(1 — a)th percentile of the chi-square distribution
with degrees of freedom r and x§ , is defined to be 0.

Gamma-Poisson relationship

To complete the argument, we need to show that if X, ~ gamma(c, B)
with an integer a and Y ~ Poisson(x/f), then

PXo <x)=P(Y>a), x>0
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We use induction to prove this relationship.
@ When o =1,

1 ¥ 0
P(X1<x):B/O e /Pat=et/P| =1_eX/P=p(Y>1)

X

@ Assume that P(Xy,_1 <x)=P(Y >oa—1).
@ From integration by parts,

P(Xy < x) = e 11 lﬁa/ o1 gt/B g

)

1 et
- G|

1

0 X
+(a— 1)/ t“ef/ﬁdt]
o 0

o Xa*1e*X/B
:(az)lpm/" te VPt —yipa
—x/ﬁ x o—1
- P10 (5)

= P(Y>a—-1)—P(Y=a-1)=P(Y > a)
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Example.
Let Xi,..., X, be iid from a distribution with pdf 6x°~', 0 < x < 1, where
6 > 0 is unknown.

Note that T = —Y7 ,log X; is a complete and sufficient statistic for 6,
and 6 T ~gamma(n,1).

Thus, 6T is a pivot and we can obtain a class of confidence intervals
of the form [¢; T, ¢, T~ '] with

C:
/ i f(x)dx=1—-o f is the pdf of gamma(n,1)
Cy
to ensure the confidence coefficient =1 — «.

Consider testing hypotheses Hp : 6 = 6 versus H : 6 # 6g.

By the result in Chapter 8, the acceptance region of a UMPU test is
A(6p) ={X:c1 <6yT <y}, where ¢y and ¢, are determined by

/02 f(x)dx=1-o and /02 xf(x)dx =n(1— o)

1 1
The 2nd equality ensures unbiasedness.

Thus, [c; T—1, ¢, T~ 1] is a UMAU confidence interval.
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