Lecture 16: Pivotal quantities

Another popular method of constructing confidence sets is the use of pivotal quantities defined as follows.

Definition 9.2.6.

A known function of (X, ϑ) , $q(X, \vartheta)$, is called a pivotal quantity (or pivot) iff the distribution of $q(X, \vartheta)$ does not depend on any unknown quantity.

- A pivot is not a statistic, although its distribution is known.
- With a pivot q(X, ϑ), a level 1 α confidence set for any given α can be obtained by finding a known Borel set A (typically A = [c₁, c₂]) such that P(q(X, ϑ) ∈ A) ≥ 1 α. Then a level 1 α confidence set is C(x) = {ϑ: q(x, ϑ) ∈ A}, since inf P(ϑ ∈ C(X)) = inf P(q(X, ϑ) ∈ A) = P(q(X, ϑ) ∈ A) ≥ 1 α If q(X, ϑ) has a continuous cdf, then we may choose A such that C(X) has confidence coefficient 1 α.

Example (Fieller's interval).

Let (X_{i1}, X_{i2}) , i = 1, ..., n, be iid bivariate normal with unknown $\mu_j = E(X_{1j})$, $\sigma_j^2 = \operatorname{Var}(X_{1j})$, j = 1, 2, and $\sigma_{12} = \operatorname{Cov}(X_{11}, X_{12})$. Let $\vartheta = \mu_2/\mu_1$ be the parameter of interest $(\mu_1 \neq 0)$. $Y_1(\vartheta), ..., Y_n(\vartheta)$ are iid $N(0, \sigma_2^2 - 2\vartheta \sigma_{12} + \vartheta^2 \sigma_1^2)$, $Y_i(\vartheta) = X_{i2} - \vartheta X_{i1}$. Let

$$S^{2}(\vartheta) = \frac{1}{n-1} \sum_{i=1}^{n} [Y_{i}(\vartheta) - \bar{Y}(\vartheta)]^{2} = S_{2}^{2} - 2\theta S_{12} + \theta^{2} S_{1}^{2},$$

where $\overline{Y}(\vartheta)$ is the average of $Y_i(\vartheta)$'s and S_i^2 and S_{12} are sample variances and covariance based on X_{ij} 's.

We know that $\sqrt{n}\overline{Y}(\vartheta)/S(\vartheta)$ has the t-distribution with n-1 degrees of freedom and, therefore, is a pivotal quantity. Then

 $C(X) = \{\theta : n[\bar{Y}(\vartheta)]^2 / S^2(\vartheta) \le t_{n-1,\alpha/2}^2\}$

is a confidence set for ϑ with confidence coefficient $1 - \alpha$. Note that $n[\bar{Y}(\vartheta)]^2 = t_{n-1,\alpha/2}^2 S^2(\vartheta)$ defines a parabola in ϑ . Depending on the roots of the parabola, C(X) can be a finite interval, the complement of a finite interval, or the whole real line.

Example.

We show an example of a confidence set for a two-dimensional parameter vector.

Let $X_1, ..., X_n$ be iid from $N(\mu, \sigma^2)$ with unknown $\mu \in \mathscr{R}$ and $\sigma^2 > 0$. Consider a confidence set for $\theta = (\mu, \sigma^2)$.

Since (\bar{X}, S^2) is sufficient and complete for θ , we focus on C(X) that is a function of (\bar{X}, S^2) .

From Chapter 5, \bar{X} and S^2 are independent and $(n-1)S^2/\sigma^2$ has the chi-square distribution with degrees of freedom n-1.

Since $\sqrt{n}(\bar{X}-\mu)/\sigma \sim N(0,1)$, a two dimensional pivot is

$$\left(\sqrt{n}(\bar{X}-\mu)/\sigma,\ (n-1)S^2/\sigma^2
ight)$$

If
$$\tilde{c}_{\alpha} = \Phi^{-1}\left(\frac{1+\sqrt{1-\alpha}}{2}\right)$$
, then
 $P\left(-\tilde{c}_{\alpha} \leq \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \leq \tilde{c}_{\alpha}\right) = \sqrt{1-\alpha}$

Since the chi-square distribution is a known distribution, we can find two constants $c_{1\alpha}$ and $c_{2\alpha}$ such that

$$P\left(c_{1\alpha}\leq \frac{(n-1)S^2}{\sigma^2}\leq c_{2\alpha}\right)=\sqrt{1-\alpha}.$$

Then

$$P\left(-\tilde{c}_{\alpha} \leq \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \leq \tilde{c}_{\alpha}, c_{1\alpha} \leq \frac{(n-1)S^2}{\sigma^2} \leq c_{2\alpha}\right) = 1-\alpha,$$

or

$$P\left(\frac{n(\bar{X}-\mu)^2}{\tilde{c}_{\alpha}^2} \leq \sigma^2, \frac{(n-1)S^2}{c_{2\alpha}} \leq \sigma^2 \leq \frac{(n-1)S^2}{c_{1\alpha}}\right) = 1-\alpha.$$

The left-hand side of the previous expression defines a set in the range of $\theta = (\mu, \sigma^2)$ bounded by two straight lines

$$\sigma^2 = (n-1)S^2/c_{i\alpha}, \qquad i=1,2,$$

and a curve

$$\sigma^2 = n(\bar{X} - \mu)^2 / \tilde{c}_{\alpha}^2$$

See the shadowed part of the figure.

This set is a confidence set for θ with confidence coefficient $1 - \alpha$, since the probability in the previous expression does not depend on any unknown parameter.

What happens if we replace $\sqrt{n}(\bar{X}-\mu)/\sigma$ by $\sqrt{n}(\bar{X}-\mu)/S$ in the pivot?

Example 9.2.7 (location-scale pivots).

The approach of using pivots works well when the pdf of X is in a location-scale family.

Form of pdf	Type of pdf	Pivots
$f(x-\mu)$	Location	$\bar{X} - \mu$
$\sigma^{-1} f(x/\sigma)$	Scale	$ar{X}/\sigma,S^2/\sigma^2,X_{(n)}/\sigma$
$\sigma^{-1}f((x-\mu)/\sigma)$	Location-scale	$(\bar{X}-\mu)/S, S^2/\sigma^2$

The selection of a pivot depends on what parameter is of interest. For example, $(\bar{X} - \mu)/\sigma$ is a pivot for getting a confidence set of the two-dimensional vector $\theta = (\mu, \sigma)$.

However, if we are interested in $\vartheta = \mu$, then $(\bar{X} - \mu)/\sigma$ is not the right pivot, although its distribution does not depend on anything unknown. The right pivot is $(\bar{X} - \mu)/S$ or $\sqrt{n}(\bar{X} - \mu)/S$.

When f is normal, the use of $\sqrt{n}(\bar{X}-\mu)/S$ gives the interval estimator

$$[\bar{X} - t_{n-1,\alpha/2}S/\sqrt{n}, \ \bar{X} + t_{n-1,\alpha/2}S/\sqrt{n}]$$

If we also want a confidence interval for σ^2 or σ , then $(n-1)S^2/\sigma^2$ is

a pivot, which leads to confidence intervals

$$[(n-1)S^2/b, (n-1)S^2/a]$$
 and $\sqrt{(n-1)S^2/b}, \sqrt{(n-1)S^2/a}$

where *a* and *b* are percentiles of the chi-square with degrees of freedom n-1.

When *f* is uniform(0,1), $\sigma^{-1}f(x/\sigma)$ is $uniform(0,\sigma)$, a scale family. Note that $X_{(n)}/\sigma$ has pdf nx^{n-1} , 0 < x < 1, and hence it is a pivot. Using this pivot leads to an interval estimator $[aX_{(n)}, bX_{(n)}]$ for σ . Since the coverage probability is $a^{-n} - b^{-n}$, setting $a^{-n} - b^{-n} = 1 - \alpha$ leads to a confidence coefficient $1 - \alpha$.

Pivoting cdf's

Consider the situation where $\vartheta = \theta \in \Theta \subset \mathscr{R}$.

We can use a pivot based on the cdf of a real-valued sufficient statistic.

Theorem 9.2.12 (pivoting a continuous cdf).

Let *T* be a real-valued statistic with continuous cdf $F_{\theta}(t)$, where $\theta \in \Theta \subset \mathscr{R}$. Let $\alpha_1 + \alpha_2 = \alpha$, $0 < \alpha < 1$, be fixed nonnegative values.

If $F_{\theta}(t)$ is non-increasing in θ for each t, define L(t) and U(t) by

$$F_{U(t)}(t) = \alpha_1, \qquad F_{L(t)}(t) = 1 - \alpha_2$$

If $F_{\theta}(t)$ is non-decreasing in θ for each t, define L(t) and U(t) by

$$F_{U(t)}(t) = 1 - \alpha_2, \qquad F_{L(t)}(t) = \alpha_1$$

The interval estimator [L(T), U(T)] has confidence coefficient $1 - \alpha$.

Proof.

The result follows from the fact that $F_{\theta}(T)$ has the uniform distribution of (0,1) and thus a pivot, and if $\alpha_1 + \alpha_2 = \alpha$, then

$$P(\alpha_1 \leq F_{\theta}(T) \leq 1-\alpha_2) = 1-\alpha_2-\alpha_1 = 1-\alpha_2$$

Hence, we obtain a confidence set $\{\theta : \alpha_1 \leq F_{\theta}(T) \leq 1 - \alpha_2\}$.

• If some equations have no solution or multiple solutions, we define $U(t) = \sup\{\theta : F_{\theta}(t) \ge \alpha_1\},$ $L(t) = \inf\{\theta : F_{\theta}(t) \le 1 - \alpha_2\}$ when $F_{\theta}(t)$ is non-increasing, or, when $F_{\theta}(t)$ is non-decreasing, $L(t) = \inf\{\theta : F_{\theta}(t) \ge \alpha_1\},$ $U(t) = \sup\{\theta : F_{\theta}(t) \le 1 - \alpha_2\}$

UW-Madison (Statistics)

Stat 610 Lecture 16

- For each equation, we only need to solve it for the value of T = t that is actually observed. Even if one of the equation has no explicit solution, it can be solved numerically.
- If we only want a lower (or upper) confidence bound, then we can set one of the α_i to 0 and solve only one equation.
- If *F_θ* is from a family with MLR, then *F_θ(t)* is monotone in *θ* for every *t*.
- Even if *F*_θ(*t*) is not monotone in *θ*, we can still apply this idea. But the resulting confidence set may not be an interval.

Example 9.2.13.

Let $X_1, ..., X_n$ be iid with pdf $f_{\theta}(x) = e^{-(x-\theta)}$, $x > \theta$, where $\theta \in \mathscr{R}$. The sufficient and complete statistic for θ is $T = X_{(1)}$ with pdf $ne^{-n(t-\theta)}$, $t > \theta$, which is from a family with MLR so that $F_{\theta}(t)$ is decreasing in θ for any t. Then we define L(t) and U(t) by

$$\int_{U(t)}^{t} n e^{-n(u-U(t))} du = \alpha_1, \quad \int_{L(t)}^{t} n e^{-n(u-L(t))} du = 1 - \alpha_2$$

These integrals can be solved and

$$U(t) = t + n^{-1} \log(1 - \alpha_1), \quad L(t) = t + n^{-1} \log \alpha_2$$

Theorem 9.2.14 (pivoting a discrete cdf).

Let *T* be a real-valued discrete statistic with cdf $F_{\theta}(t)$, where $\theta \in \Theta \subset \mathscr{R}$. Let $\alpha_1 + \alpha_2 = \alpha$, $0 < \alpha < 1$, be fixed nonnegative values. If $F_{\theta}(t)$ is non-increasing in θ for each *t*, define L(t) and U(t) by

$$F_{U(t)}(t) = \alpha_1, \qquad P_{L(t)}(T \ge t) = \alpha_2$$

If $F_{\theta}(t)$ is non-decreasing in θ for each t, define L(t) and U(t) by

$$P_{U(t)}(T \ge t) = \alpha_2, \qquad F_{L(t)}(t) = \alpha_1$$

The interval estimator [L(T), U(T)] has level $1 - \alpha$.

- The remarks after Theorem 9.2.12 still apply.
- The proof is very similar to the proof of Theorem 9.2.12, except that we do not obtain confidence coefficient 1α because *T* is discrete.

Example 9.2.15.

Let $X_1, ..., X_n$ be iid random variables from $Poisson(\theta)$ with unknown $\theta > 0$ and $T = \sum_{i=1}^{n} X_i$, the sufficient and complete statistic for θ . Since $T \sim Poisson(n\theta)$,

$$F_{\theta}(t) = \sum_{j=0}^{t} \frac{e^{-n\theta} (n\theta)^j}{j!}, \qquad t = 0, 1, 2, \dots$$

Since the Poisson family has monotone likelihood ratio in *T* and $0 < F_{\theta}(t) < 1$ for any *t*, $F_{\theta}(t)$ is strictly decreasing in θ . (The fact that $F_{\theta}(t)$ is strictly decreasing in θ can be directly proved.)

Also, $F_{\theta}(t)$ is continuous in θ and $F_{\theta}(t)$ tends to 1 and 0 as θ tends to 0 and ∞ , respectively, and thus, Theorem 9.2.14 applies.

First, U(t) is the unique solution of $F_{\theta}(t) = \alpha_1$ for any fixed *t*.

Since $P_{\theta}(T \ge t) = 1 - F_{\theta}(t-1)$ for t > 0, L(t) is the unique solution of $F_{\theta}(t-1) = 1 - \alpha_2$ when t > 0.

When t = 0, $1 - F_{\theta}(-1) = 1$, we apply the remark after Theorem 9.2.12 and set L(0) = 0.

Figure: A confidence interval obtained by pivoting $F_{\theta}(t)$, $\theta_L = L(t)$, $\theta_U = U(t)$

In fact, in this case explicit forms of L(t) and U(t) can be obtained from the equality

$$\frac{1}{\Gamma(t)} \int_{\lambda}^{\infty} x^{t-1} e^{-x} dx = \sum_{j=0}^{t-1} \frac{e^{-\lambda} \lambda^{j}}{j!}, \qquad t = 1, 2, \dots$$

By
$$F_{\theta}(T) = \alpha_1$$
,
 $\alpha_1 = \sum_{k=0}^t \frac{e^{-n\theta}(n\theta)^k}{k!} = \frac{1}{\Gamma(t+1)} \int_{n\theta}^{\infty} x^t e^{-x} dx = P(\chi^2_{2(t+1)} \ge 2n\theta)$

where χ_v^2 is a random variable \sim chi square with degrees of freedom *v*. Similarly, $F_{\theta}(t-1) = 1 - \alpha_2$ gives

$$\alpha_{2} = \sum_{k=t}^{\infty} \frac{e^{-n\theta} (n\theta)^{k}}{k!} = \frac{1}{\Gamma(t)} \int_{0}^{n\theta} x^{t-1} e^{-x} dx = P(\chi_{2t}^{2} \le 2n\theta)$$

Hence,

$$U(t) = (2n)^{-1} \chi^2_{2(t+1),\alpha_1} \qquad L(t) = (2n)^{-1} \chi^2_{2t,1-\alpha_2},$$

where $\chi^2_{r,\alpha}$ is the 100(1 – α)th percentile of the chi-square distribution with degrees of freedom *r* and $\chi^2_{0,a}$ is defined to be 0.

Gamma-Poisson relationship

To complete the argument, we need to show that if $X_{\alpha} \sim gamma(\alpha, \beta)$ with an integer α and $Y \sim Poisson(x/\beta)$, then

$$P(X_{lpha} \leq x) = P(Y \geq lpha), \quad x > 0$$

We use induction to prove this relationship.

• When $\alpha = 1$,

$$P(X_1 \le x) = \frac{1}{\beta} \int_0^x e^{-t/\beta} dt = e^{-t/\beta} \Big|_x^0 = 1 - e^{-x/\beta} = P(Y \ge 1)$$

- Assume that $P(X_{\alpha-1} \leq x) = P(Y \geq \alpha 1)$.
- From integration by parts,

$$P(X_{\alpha} \le x) = \frac{1}{(\alpha - 1)!\beta^{\alpha}} \int_{0}^{x} t^{\alpha - 1} e^{t/\beta} dt$$

= $\frac{1}{(\alpha - 1)!\beta^{\alpha - 1}} \left[t^{\alpha - 1} e^{-t/\beta} \Big|_{x}^{0} + (\alpha - 1) \int_{0}^{x} t^{\alpha - 2} e^{-t/\beta} dt \right]$
= $\frac{1}{(\alpha - 2)!\beta^{\alpha - 1}} \int_{0}^{x} t^{\alpha - 2} e^{-t/\beta} dt - \frac{x^{\alpha - 1} e^{-x/\beta}}{(\alpha - 1)!\beta^{\alpha - 1}}$
= $P(X_{\alpha - 1} \le x) - \frac{e^{-x/\beta}}{(\alpha - 1)!} \left(\frac{x}{\beta} \right)^{\alpha - 1}$
= $P(Y \ge \alpha - 1) - P(Y = \alpha - 1) = P(Y \ge \alpha)$

Example.

Let $X_1, ..., X_n$ be iid from a distribution with pdf $\theta x^{\theta-1}$, 0 < x < 1, where $\theta > 0$ is unknown.

Note that $T = -\sum_{i=1}^{n} \log X_i$ is a complete and sufficient statistic for θ , and $\theta T \sim \text{gamma}(n,1)$.

Thus, θT is a pivot and we can obtain a class of confidence intervals of the form $[c_1 T^{-1}, c_2 T^{-1}]$ with

$$\int_{c_1}^{c_2} f(x) dx = 1 - \alpha \qquad f \text{ is the pdf of } gamma(n, 1)$$

to ensure the confidence coefficient = $1 - \alpha$.

Consider testing hypotheses $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$.

By the result in Chapter 8, the acceptance region of a UMPU test is $A(\theta_0) = \{X : c_1 \le \theta_0 T \le c_2\}$, where c_1 and c_2 are determined by

$$\int_{c_1}^{c_2} f(x) dx = 1 - \alpha \quad \text{and} \quad \int_{c_1}^{c_2} x f(x) dx = n(1 - \alpha)$$

The 2nd equality ensures unbiasedness.

Thus, $[c_1 T^{-1}, c_2 T^{-1}]$ is a UMAU confidence interval.

UW-Madison (Statistics)

Stat 610 Lecture 16