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Chapter 10: Asymptotic Evaluations
Lecture 22: Consistency
In this chapter, we consider a sample (X1, ...,Xn) not for fixed n, but as
a member of a sequence corresponding to n = n0,n0 + 1, ....

We first consider limiting behaviors (as n→ ∞) of point estimators
Tn = Tn(X1, ...,Xn).

Consistency
A reasonable point estimator is expected to perform better, at least on
the average, if more information about the unknown population is
available.

With a fixed model assumption and sampling plan, more data (larger
sample size n) provide more information about the unknown
population.

Thus, it is distasteful to use a point estimator Tn which, if sampling
were to continue indefinitely, could possibly have a nonzero estimation
error, although the estimation error of Tn for a fixed n may never be 0.
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Definition 10.1.1.
A sequence of estimators Tn is a consistent sequence of estimators of
g(θ) (or simply say Tn is a consistent estimator of g(θ)) if, for every
ε > 0 and every θ ∈Θ,

lim
n→∞

Pθ (|Tn−g(θ)| ≥ ε) = 0.

Note that this consistency is related to convergence in probability, and
is often called weak consistency.
It is implied by Tn converges almost surely to g(θ), which is often
called strong consistency.

How to find or check consistency?
Evaluate Pθ (|Tn−g(θ)| ≥ ε) directly.
Use WLLN or SLLN; e.g., the sample moment is consistent for the
population moment, as long as the population moment exists.
Use continuity mapping: if Tn is consistent for g(θ), then h(Tn) is
consistent for h(g(θ)) if h is continuous.
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For example, if Tn1 is consistent for g1(θ) and Tn2 is consistent for
g2(θ), then Tn1 + Tn2 is consistent for g1(θ) + g2(θ) and Tn1Tn2 is
consistent for g1(θ)g2(θ). (Theorem 10.1.5 is a special case of this.)

The next theorem provides a useful method.

Theorem 10.1.3.
An estimator Tn is consistent if limn→∞ BiasTn (θ) = limn→∞ Eθ (Tn)−g(θ)
= 0 and limn→∞ Varθ (Tn) = 0 for every θ ∈Θ.

Proof.
By Chebychev’s inequality, for every ε > 0 and every θ ∈Θ,

Pθ (|Tn−g(θ)| ≥ ε)≤ ε
−2Eθ [Tn−g(θ)]2 = ε

−2{Varθ (Tn) + [BiasTn (θ)]2}

which converges to 0 as n→ ∞ under the given condition.

Example (consistency of the UMVUE).
Suppose that Tn is the UMVUE of g(θ) for any n based on a random
sample X1, ...,Xn.

Let Un = n−1
∑

n
i=1 T1(Xi).
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Then Un is unbiased for g(θ) since T1(X1) is unbiased for g(θ).

Since Tn is the UMVUE, Varθ (Tn)≤ Varθ (Un) and

lim
n→∞

Varθ (Tn)≤ lim
n→∞

Varθ (Un) = lim
n→∞

1
n

Varθ (T1(X1)) = 0

Hence, Tn is consistent by Theorem 10.1.3.

What if Tn is defined only when n ≥ n0 for a positive integer n0?

Example.
Let X1, ...,Xn be iid from a cdf F satisfying F (θ) = 1 for some θ ∈R
and F (x) < 1 for any x < θ (the uniform(0,θ) is a special case).

To prove the consistency of the largest order statistic X(n) as an
estimator of θ , we can evaluate Pθ (|X(n)−θ | ≥ ε) directly, for every
ε > 0 and θ ∈R,

Pθ (|X(n)−θ | ≥ ε) = Pθ (X(n) ≤ θ − ε) = [Pθ (Xi ≤ θ − ε)]n = [F (θ − ε)]n

which converges to 0 since θ − ε < θ and hence F (θ − ε) < 1.

In fact, ∑
∞

n=1[F (θ − ε)]n < ∞ and hence X(n) is strongly consistent.
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Example.
Let X1, ...,Xn be iid from a population with unknown mean µ ∈R and
variance σ2 > 0, and let g(µ) = 0 if µ 6= 0 and g(0) = 1.

Can we find a consistent estimator of g(µ)?

By the SLLN, the sample mean X̄ is consistent for µ, but g is not
continuous at µ = 0, so g(X̄ ) is usually inconsistent, where

g(X̄ ) =

{
1 X̄ = 0
0 X̄ 6= 0

When µ = 0, g(µ) = g(0) = 1 and, for any 0 < ε < 1,

P(|g(X̄ )−1| ≥ ε) = P(|g(X̄ )−1| ≥ ε, X̄ = 0) + P(|g(X̄ )−1| ≥ ε, X̄ 6= 0)

= P(X̄ 6= 0)

which usually does not converge to 0 (e.g., P(X̄ 6= 0) = 1 when Xi has
a continuous cdf).

If µ 6= 0, then g(µ) = 0 and

P(|g(X̄ )| ≥ ε) = P(|g(X̄ )| ≥ ε, X̄ = 0) +P(|g(X̄ )| ≥ ε, X̄ 6= 0) = P(X̄ = 0)

which may converge to 0.
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But g(X̄ ) is still inconsistent because, for consistency, the probability
has to converge to 0 for every parameter value.

Consider the estimator

Tn =

{
1 0≤ |X̄ |< n−1/4

0 otherwise

To show the consistency of Tn, we only need to show that

lim
n→∞

P(Tn = 1) =

{
1 when g(µ) = 1 (i.e., µ = 0)
0 when g(µ) = 0 (i.e., µ 6= 0)

If µ = 0, by the CLT,
√

nX̄ converges in distribution to N(0,σ2) and,

lim
n→∞

P(Tn = 1) = lim
n→∞

P(
√

n|X̄ |< n1/4) = lim
n→∞

Φ(n1/4) = 1

where Φ is the cdf of N(0,1).
If µ 6= 0, then by the WLLN and continuity map theorem, |X̄ | converges
in probability to |µ|> 0 and by Slutsky’s theorem, n−1/4/|X̄ | converges
in probability to 0, and

lim
n→∞

P(Tn = 1) = lim
n→∞

P(1 < n−1/4/|X̄ |) = 0.
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Theorem 10.1.6 (consistency of MLEs)

Let X1, ...,Xn be iid with pdf or pmf fθ (x) and θ̂n be the MLE of θ .
Under some conditions (see §10.6.2), g(θ̂n) is consistent for g(θ) for
any continuous function g.

Proof.

We only need to prove that θ̂n converges in probability to θ .

We prove the case where Θ is a compact (bounded close) set in Rk .

The proof for general case is complicated and omitted.

Since Θ is compact, every sub-sequence of θ̂n,n = 1,2... has a limit in
Θ, say ϑ .

The proof is completed if we can show that ϑ = θ for any arbitrary
sub-sequence of θ̂n,n = 1,2....

The log likelihood function is

logL(θ |X ) = log

(
n

∏
i=1

fθ (Xi)

)
=

n

∑
i=1

log fθ (Xi)
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By the SLLN, n−1 logL(θ |X ) converges almost surely to Eθ [log fθ (Xi)].

Also, n−1 logL(ϑ |X ) converges almost surely to Eθ [log fϑ (Xi)] for any
ϑ 6= θ .

One of the conditions in §10.6.2 is that fθ (x) is a continuous function of
θ for every x .

Hence, n−1 logL(θ |X ) is a continuous function of θ .

Then, for a sub-sequence nj , j = 1,2, ... with θ̂nj → ϑ ,

n−1 logL(θ̂nj |X )−n−1 logL(ϑ |X )→ 0

Since θ̂nj is the MLE,

n−1 logL(θ̂nj |X )≥ n−1 logL(θ |X )

By the earlier results, we obtain that

Eθ [log fϑ (Xi)]≥ Eθ [log fθ (Xi)]

which is the same as∫
X

[log fϑ (x)]fθ (x)dx ≥
∫

X
[log fθ (x)]fθ (x)dx
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or the same as ∫
X

[
log

fϑ (x)

fθ (x)

]
fθ (x)dx ≥ 0

By Jensen’s inequality and the example given in Chapter 3 (lecture 16
of stat 609), ∫

X

[
log

fϑ (x)

fθ (x)

]
fθ (x)dx ≤ 0

Combing the two inequalities, we obtain that∫
X

[
log

fϑ (x)

fθ (x)

]
fθ (x)dx = 0

i.e., the equality in Jensen’s inequality holds.

In Jensen’s inequality, since the function − log t is strictly convex, the
equality holds iff fθ (x)/fϑ (x) = c is a constant for all x ∈X .

Since fθ (x) is a pdf, we must have c = 1, i.e., fθ (x) = fϑ (x), x ∈X .

Hence, θ = ϑ and the proof is completed.

The technique used in this proof can also be used to prove the
consistency of θ̂n obtained under the GMM approach.
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Example (consistency of MLE’s)
In many cases the consistency of MLE’s may be directly checked,
especially the required conditions for Theorem 10.1.6 are not satisfied.
We consider the following example.
Let X1, ...,Xn be a random sample from uniform(θ ,θ + 1), θ ∈R.
Note that the cdf F satisfies F (θ + 1) = 1 and F (x) < 1 if x < θ + 1.
From the previous example we conclude that X(n) is strongly consistent
for θ + 1, or X(n)−1 is strongly consistent for θ .
A similar argument shows that X(1) is strongly consistent for θ .
We have shown previously that any T (X1, ...,Xn) satisfies

X(n)−1≤ T (X1, ...,Xn)≤ X(1)

is an MLE of θ .
Then

1 = P
(

lim
n→∞

X(n)−1 = θ

)
= P

(
lim
n→∞

T (X1, ...,Xn) = θ

)
= P

(
lim
n→∞

X(1) = θ

)
Hence, any MLE is strongly consistent for θ , although MLE’s are not
unique.
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Consistency of the LSE in a linear model
Large sample results in a general linear model, Y = Xβ +E , are useful
in cases where E is not normal or the matrix V = Var(E ) is complex.
We consider n→ ∞ and a fixed p (the dimension of β ).

The consistency of the LSE β̂ can be easily established under very
weak conditions: since β̂ is unbiased for β , we only need to show that
Var(l ′β̂ )→ 0 as n→ ∞ for any fixed l ∈Rp, l 6= 0.
Assuming that V = Var(E ) exists, for any l ∈Rp, we have

Var(l ′β̂ ) = l ′(X ′X )−1X ′VX (X ′X )−1l ≤ λ+(V )l ′(X ′X )−1l

where λ+(V ) is the largest eigenvalue of V .

Hence, for a particular l , Var(l ′β̂ )→ 0, i.e., l ′β̂ is consistent for l ′β , if
l ′(X ′X )−1l → 0.

For the consistency of l ′β̂ for all l ∈Rp, which is equivalent to the
convergence of β̂ in probability to β , a necessary and sufficient
condition is the largest eigenvalue of (X ′X )−1, which is the same as
the smallest eigenvalue of (X ′X )−1, tends to 0 as n→ ∞.
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Consistency of the error variance estimator in a linear model

Consider the linear model Y = Xβ +E with Var(E ) = σ2In.
We now show that σ̂2 = SSR/(n−p) is a consistent estimator of σ2.
(without normality).
We know that σ̂2 is unbiased; if we show the consistency by proving
the variance of σ̂2 tends to 0, we need the finiteness of the 4th
moment of εi .
Instead, we consider

SSR
n−p

=
1

n−p

n

∑
i=1

(Yi −x ′i β̂ )2 =
1

n−p

n

∑
i=1

[εi −x ′i (β̂ −β )]2

=
1

n−p

n

∑
i=1

ε
2
i +

1
n−p

n

∑
i=1

[x ′i (β̂ −β )]2− 2
n−p

n

∑
i=1

εix ′i (β̂ −β )

By the SLLN, the first term converges almost surely to σ2.
By the Cauchy-Schwartz inequality, the squared last term is bounded
by 4× the product of the first and second terms.
Hence, it remains to show that the second term tends to 0.
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The result follows from

E

(
n

∑
i=1

[x ′i (β̂ −β )]2

)
=

n

∑
i=1

E [x ′i (X
′X )−1X ′E ]2

=
n

∑
i=1

E [E ′X (X ′X )−1xix ′i (X
′X )−1X ′E ]

= E [E ′X (X ′X )−1X ′E ]

= trace[X (X ′X )−1X ′E(E E ′)]

= σ
2p

Note that Var(β̂ ) = σ2(X ′X )−1.
Hence, a consistent estimator of the variance matrix of the LSE is
σ̂2(X ′X )−1, which will be useful in large sample inference under a
linear model without normality assumption.
When estimating a p×p full rank matrix V that depends on n by V̂ ,
consistency of V̂ means

‖V̂V−1− Ip‖max converges in probability to 0,
where ‖A‖max is the maximum of the absolute values of elements in A.
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We still consider the linear model, but assume that εi ’s are
independent with mean 0 and for each i , Var(εi) = σ2

i .
In this case,

Var(β̂ ) =
n

∑
i=1

σ
2
i (X ′X )−1xix ′i (X

′X )−1

How do we obtain a consistent estimator of this variance matrix?
The unknown quantities are σi ’s.

If we estimate each σ2
i by (Yi −x ′i β̂ )2, then

V̂ =
n

∑
i=1

(Yi −x ′i β̂ )2(X ′X )−1xix ′i (X
′X )−1

is a consistent estimator of Var(β̂ ) under some weak conditions.
The consistency can be proved similarly, because

V̂ =
n

∑
i=1

ε
2
i (X ′X )−1xix ′i (X

′X )−1 +
n

∑
i=1

[x ′i (β − β̂ )]2(X ′X )−1xix ′i (X
′X )−1

+2
n

∑
i=1

εix ′i (β − β̂ )(X ′X )−1xix ′i (X
′X )−1
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Estimation of the distribution function
Let X1, ...,Xn be iid from a distribution F .
If we have a parametric model F = Fθ , then a consistent estimator of F
can be obtained using a consistent estimator of θ .
We now consider the nonparametric case and want to estimate F .
The empirical distribution defined previously is

F̂n(x) =
1
n

n

∑
i=1

I(Xi ≤ x)

By the SLLN, for each fixed x , F̂n(x) is a consistent estimator of F (x).

What can we say about F̂n as an estimator of the function F?
We use the following metric:

‖F̂n−F‖∞ = sup
x
|F̂n(x)−F (x)|

From Dvoretzky, Kiefer and Wolfowitz (1956) inequality,

P
(
‖F̂n−F‖∞ > z

)
≤ Ce−2nz2

, z > 0, n = 1,2, ...

we have
P
(

lim
n→∞
‖F̂n−F‖∞ = 0

)
= 1.
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