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Lecture 34: Properties of the LSE
The following results explain why the LSE is popular.

Gauss-Markov Theorem
Assume a general linear model previously described: Y = Xβ +E with
assumption A2, i.e., Var(E ) = σ2In and X is of full rank p < n. Let β̂ be
the LSE and l ∈Rp be a fixed vector. Then the l ′β̂ is the best linear
unbiased estimator (BLUE) of l ′β in the sense that it has the minimum
variance in the class of unbiased estimators of l ′β that are linear
functions of Y .

Proof.

Since β̂ = (X ′X )−1X ′Y , it is a linear function of Y and

E(β̂ ) = (X ′X )−1X ′E(Y ) = (X ′X )−1X ′Xβ = β

Thus, l ′β̂ is unbiased for l ′β .
Let c′Y be any linear unbiased estimator of l ′β , where c ∈Rp is a fixed
vector.
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Since c′Y is unbiased, E(c′Y ) = c′E(Y ) = c′Xβ = l ′β for all β , which
implies that c′X = l ′, i.e., l = X ′c.
Then

Var(c′Y ) = Var(c′Y − l ′β̂ + l ′β̂ )

= Var(c′Y − l ′β̂ ) + Var(l ′β̂ )

+2Cov(c′Y − l ′β̂ , l ′β̂ )

= Var(c′Y − l ′β̂ ) + Var(l ′β̂ )

≥ Var(l ′β̂ )

where the third equality follows from

Cov(c′Y − l ′β̂ , l ′β̂ ) = Cov(c′Y − l ′(X ′X )−1X ′Y , l ′(X ′X )−1X ′Y )

= Cov(c′Y , l ′(X ′X )−1X ′Y )−Var(l ′(X ′X )−1X ′Y )

= c′Var(Y )X (X ′X )−1l− l ′(X ′X )−1X ′Var(Y )X (X ′X )−1l

= σ
2c′X (X ′X )−1l−σ

2l ′(X ′X )−1X ′X (X ′X )−1l

= σ
2l ′(X ′X )−1l−σ

2l ′(X ′X )−1l
= 0.

UW-Madison (Statistics) Stat 610 Lecture 34 2014 2 / 10



beamer-tu-logo

An unbiased estimator of σ2

Because the LSE β̂ satisfies X ′X β̂ = X ′Y ,

‖Y −Xβ‖2 = ‖Y −X β̂ + X (β̂ −β )‖2 + 2(β̂ −β )′X ′(Y −X β̂ )

= ‖Y −X β̂‖2 +‖X β̂ −Xβ‖2

Hence

E‖Y −X β̂‖2 = E‖Y −Xβ‖2−E‖X β̂ −Xβ‖2

= E(Y −Xβ )′(Y −Xβ )−E(β − β̂ )′X ′X (β − β̂ )

= trace
(

Var(Y )−Var(X β̂ )
)

= σ
2
[
trace(In)− trace

(
X (X ′X )−1X ′Var(Y )X (X ′X )−1X ′

)]
= σ

2
[
n− trace

(
X (X ′X )−1X ′X (X ′X )−1X ′

)]
= σ

2
[
n− trace

(
(X ′X )−1X ′X

)]
= σ

2(n−p)

Therefore, an unbiased estimator of σ2 is ‖Y −X β̂‖2/(n−p).
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Residual and SSR

The i th component of the n-dimensional vector Y −X β̂ is Yi −x ′i β̂ ,
which is called the i th residual.
The vector Y −X β̂ is then called the residual vector and ‖Y −X β̂‖2 is
the sum of squared residuals and denoted by SSR.
The unbiased estimator of σ2 we derived is then equal to SSR/(n−p).

Examples.
Since simple linear regression is a special case of the general
linear model, the SSR defined here is the same as the SSR
defined in simple linear regression.
In the case of one-way ANOVA, the LSE (Ȳ1, ..., Ȳk )′ and

SSR =
k

∑
i=1

ni

∑
j=1

(Yij − Ȳi)
2

In the case of two-way balanced ANOVA, if c > 1, then

SSR =
a

∑
i=1

b

∑
j=1

c

∑
k=1

(Yijk − Ȳij ·)
2
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The result for the two-way ANOVA can be seen as follows.

E(Yijk ) = µ + αi + βj + γij

Hence, the LSE of E(Yijk ), which is a linear function of regression
parameters, is

µ̂ + α̂i + β̂j + γ̂ij = Ȳij ·

Thus, the (i , j ,k)th residual is Yijk − Ȳij ·.
The residual vector, however, is 0 when c = 1.

Correlation between the LSE and the residual vector
The LSE and the residual vector is always uncorrelated, because

Cov(β̂ ,Y −X β̂ ) = Cov
(

(X ′X )−1X ′Y , [In−X (X ′X )−1X ′]Y
)

= (X ′X )−1X ′Var(Y )[In−X (X ′X )−1X ′]

= σ
2(X ′X )−1X ′[In−X (X ′X )−1X ′]

= σ
2[(X ′X )−1X ′− (X ′X )−1X ′X (X ′X )−1X ′]

= 0
We now consider distributions of the LSE and SSR under normality.
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Theorem.
Consider the general linear model Y = Xβ +E with assumption A1,
i.e., E ∼ N(0,σ2In), where σ2 > 0 is unknown.

(i) The LSE β̂ ∼N(β ,σ2(X ′X )−1) and l ′β̂ is the UMVUE of l ′β for any
l ∈Rp.

(ii) SSR/σ2 has the central chi-square distribution with degrees of
freedom n−p and the UMVUE of σ2 is SSR/(n−p).

(iii) SSR and β̂ are independent.

(iv) The MLE of β and σ2 are respectively β̂ and σ̂2 = SSR/n.

Proof.

The result β̂ ∼ N(β ,σ2(X ′X )−1) follows from the fact that
β̂ = (X ′X )−1X ′Y is a linear function of Y ∼ N(Xβ ,σ2In) and E(β̂ ) = β ,
Var(β̂ ) = σ2(X ′X )−1.
The joint pdf of Y is

1
(2πσ2)n/2 exp

{
−(Y−Xβ )′(Y−Xβ )

2σ2

}
=

1
(2πσ2)n/2 exp

{
−‖Y −Xβ‖2

2σ2

}
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=
1

(2πσ2)n/2 exp

{
−‖Y −X β̂‖2 +‖X β̂ −Xβ‖2

2σ2

}

=
1

(2πσ2)n/2 exp

{
−‖Y −X β̂‖2 +‖X β̂‖2 +‖Xβ‖2−2β ′X ′X β̂

2σ2

}

=
1

(2πσ2)n/2 exp

{
β ′X ′Y

σ2 − ‖Y −X β̂‖2 +‖X β̂‖2

2σ2 − ‖Xβ‖2

2σ2

}
This pdf is from an exponential family with (X ′Y ,‖Y −X β̂‖2 +‖X β̂‖2)
as a complete and sufficient statistic for (β ,σ2).

Since X β̂ = X (X ′X )−1X ′Y is a function of X ′Y with X considered as
fixed, (X ′Y ,‖Y −X β̂‖2) is complete and sufficient.

Since l ′β̂ is unbiased for l ′β and β̂ is a function of a complete and
sufficient statistic, l ′β̂ is the UMVUE of l ′β .
This completes the proof of (i).
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We have already shown that SSR/(n−p) is unbiased for σ2.

Since SSR = ‖Y −X β̂‖2 is a function of a complete and sufficient
statistic, it is the UMVUE of σ2.
From

Y ′Y = Y ′[X (X ′X )−1X ′]Y + Y ′[In−X (X ′X )−1X ′]Y
and the fact that the rank of X (X ′X )−1X ′ is p and the rank of
In−X (X ′X )−1X ′ is n−p, by Cochran’s theorem, SSR/σ2 has the
chi-square distribution with degrees of freedom n−p and noncentrality
parameter

σ
−2

β
′X ′[In−X (X ′X )−1X ′]Xβ = σ

2
β
′(X ′X −X ′X ) = 0

This proves (ii).

Previously we showed that the LSE β̂ and the residual vector Y −X β̂

are uncorrelated.
Since both of them are linear functions of Y , they are independent
and, thus, their functions β̂ and SSR = ‖Y −X β̂‖2 are independent.
The proof of (iii) is completed.
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The log likelihood function is

`(β ,σ2) =−‖Y −X β̂‖2 +‖X β̂ −Xβ‖2

2σ2 − n
2

log(2πσ
2)

It is clear that β̂ maximizes this function over β ∈Rp.

To maximize `(β̂ ,σ2) over σ2 > 0, we obtain that the MLE of σ2 is
σ̂2 = ‖Y −X β̂‖2/n = SSR/n.
This finishes the proof of (iv).

Fisher information matrix
To derive the Fisher information matrix about (β ,σ2), we differentiate
the log likelihood:

`(β ,σ2) =−‖Y −Xβ‖2

2σ2 − n
2

log(2πσ
2),

∂`(β ,σ2)

∂β
=

X ′(Y −Xβ )

σ2

∂`(β ,σ2)

∂σ2 =
‖Y −Xβ‖2

2σ4 − n
2σ2 ,

∂ 2`(β ,σ2)

∂β∂β ′
=−X ′X

σ2
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∂ 2`(β ,σ2)

∂σ4 =−‖Y −Xβ‖2

σ6 +
n

2σ4 ,
∂ 2`(β ,σ2)

∂β∂σ2 =−X ′(Y −Xβ )

σ4

E
[

∂ 2`(β ,σ2)

∂β∂β ′

]
=−X ′X

σ2

E
[

∂ 2`(β ,σ2)

∂σ4

]
=−E‖Y −Xβ‖2

σ6 +
n

2σ4

=− trace[Var(Y )]

σ6 +
n

2σ4 =− n
2σ4

E
[

∂ 2`(β ,σ2)

∂β∂σ2

]
=−X ′E(Y −Xβ )

σ4 = 0

Thus, the Fisher information matrix is

1
σ2

(
X ′X 0

0 n
2σ2

)
The UMVUE l ′β̂ attains the information lower bound, whereas the
UMVUE of σ2 does not attain the information lower bound, since the
variance of SSR/(n−p) is 2σ4/(n−p).
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