Lecture 34: Properties of the LSE

The following results explain why the LSE is popular. )

Gauss-Markov Theorem

Assume a general linear model previously described: Y = XB + & with
assumption A2, i.e., Var(&) = 62l, and X is of full rank p < n. Let B be

the LSE and / € #” be a fixed vector. Then the I’B is the best linear
unbiased estimator (BLUE) of /'B in the sense that it has the minimum
variance in the class of unbiased estimators of /' that are linear
functions of Y.

Since f = (X'X)~'X"Y, itis a linear function of Y and
E(B) = (X'X)'X'E(Y) = (X'X) "' X'Xp =
Thus, I’B is unbiased for /.

Let 'Y be any linear unbiased estimator of /'3, where ¢ € #” is a fixed
vector.
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Since ¢'Y is unbiased, E(c'Y) =CcE(Y)=c'XB =/I'B for all B, which
implies that /X =1/, i.e., = X'c.
Then

~ o~

Var(c'Y) = Var(c'Y —I'B+ 1)
= Var(c'Y — I'B) + Var(/'B)
+2Cov(c'Y —I'B,I'B)
= Var(c'Y — I'B) + Var(/'B)
> Var(l'[/f)
where the third equality follows from
Cov(C'Y —I'B,I'B) = Cov(c'Y —I'(X'X) ' X'Y,I(X'X) ' X'Y)
= Cov(c'Y,I'(X'X) ' X'Y) = Var(/ (X' X)1X"Y)

= Var(Y)X(X'X) = 1'(X'X) " X' Var(Y)X (X' X) 71

=2 X(X'X) " =a?I(X'X) X' X(X'X) "]
=c?I(X'X) " —-a2I(X'X)" 1
=0.
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An unbiased estimator of 62

Because the LSE E satisfies X’XE =X'Y,
1Y —XBI2 =Y — XB+X(B—PB)II+2(B— B)X'(Y — XB)
=[|Y = XB|*+ | XB — XB|?
Hence
E||Y - XB|? = E| Y — XB|[>— E||XB — XB|I?
= E(Y - XB)' (Y —XB)— E(B—B)X'X(B—PB)
=trace (Var( Y) — Var(X E ))
= o2 [trace(ln) —trace (X(x')()—1 X'Var(Y)X(X'X) ™! x’)}
= 2 [n— trace (X(X’X)*‘X’X(X’X)*1 x)]
=i {n—trace ((X’X)“X’X)}
= o*(n—p)

Therefore, an unbiased estimator of 62 is || Y — XB|?/(n— p).
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Residual and SSR
The ith component of the n-dimensional vector Y—XE is Y; —x,-’ﬁ,
which is called the ith residual.

The vector Y — Xﬁ is then called the residual vector and || Y—XEH2 iS
the sum of squared residuals and denoted by SSR.

The unbiased estimator of 2 we derived is then equal to SSR/(n— p)

V.
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Residual and SSR
The ith component of the n-dimensional vector Y—XE is Y; —x,-’ﬁ,
which is called the ith residual.

The vector Y — XB is then called the residual vector and || Y—XEHQ iS
the sum of squared residuals and denoted by SSR.

The unbiased estimator of 62 we derived is then equal to SSR/(n— p).

Examples.
@ Since simple linear regression is a special case of the general
linear model, the SSR defined here is the same as the SSR
defined in simple linear regression.

@ In the case of one-way ANOVA, the LSE (Yi,..., Yx)' and
SSR = i i(y,-,— Yi)?
@ In the case of two-way balanc;oleANOVA, if c> 1, then
SSR = Za: Zb: ZC: (Vik— Yi)?

i=1j=1k=1
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The result for the two-way ANOVA can be seen as follows.
E(Yik) = u+oi+Bj+v

Hence, the LSE of E(Yjk), which is a linear function of regression
parameters, is . _
B+0+Bi+7 =Y
Thus, the (/,/, k)th residual is Yjy — Yj..

The residual vector, however, is 0 when ¢ = 1.
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The result for the two-way ANOVA can be seen as follows.
E(Yik) = u+oi+Bj+v

Hence, the LSE of E(Yjk), which is a linear function of regression
parameters, is

ﬁ+ai+[§j+§’\:j: i
Thus, the (/,/, k)th residual is Yjy — Yj..
The residual vector, however, is 0 when ¢ = 1.

Correlation between the LSE and the residual vector

The LSE and the residual vector is always uncorrelated, because
Cov(B,Y — XB) = Cov ((X/X)”X/ Y, [ — X(X'X) 1 X] Y)
= (X'X) 1 X'Var(Y)[ I — X(X'X) 1 X']
= c?(X'X) ' X[l - X(X'X)1X]
= c2[(X' X)X — (X' X)X X(X'X) ' X]
=0
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The result for the two-way ANOVA can be seen as follows.
E(Yik) = u+oi+Bj+v

Hence, the LSE of E(Yjk), which is a linear function of regression
parameters, is

ﬁ+ai+gj+§’\:j: i
Thus, the (/,/, k)th residual is Yjy — Yj..
The residual vector, however, is 0 when ¢ = 1.

Correlation between the LSE and the residual vector

The LSE and the residual vector is always uncorrelated, because
Cov(B,Y — XB) = Cov ((X/X)*1X/ Y, [ — X(X'X) 1 X] Y)
= (X'X) 1 X'Var(Y)[ I — X(X'X) 1 X']
= c?(X'X) ' X[l - X(X'X)1X]
= c2[(X' X)X — (X' X)X X(X'X) ' X]
=0

We now consider distributions of the LSE and SSR under normality.




Theorem.
Consider the general linear model Y = X + & with assumption A1,
i.e., & ~ N(0,06%l,), where 62 > 0 is unknown.
(i) The LSE B ~ N(B,c2(X'X)~") and /'B is the UMVUE of /'8 for any
I € %P.
(i) SSR/c? has the central chi-square distribution with degrees of
freedom n— p and the UMVUE of 62 is SSR/(n— p).

(iii) SSR and B are independent.
(iv) The MLE of B and o2 are respectively B and 62 = SSR/n.

Proof.

The result B ~ N(B,52(X'X) ") follows from the fact that

B = (X'X)~'X"Y is a linear function of Y ~ N(XB,c2l,) and E(B) = B,

Var(B) = o?(X'X)~".

The joint pdf of Y'is
—(Y=XBY(Y—XB)

(2mo2)n/2 exp{ 202
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exp | Y = XBIZ +11XB—XBJ?
(2mo2)n/2 202

_ 1 IY=XBIP+XBI+ IXBIP —2p'X'XB
(2mo?)n/2 202

=1 ol BXY Y- XBIP+IXBIE _ IXBIF
(2ma?)n/ o2 202 202

This pdf is from an exponential family with (XY, ||Y — X[?H2 + ||XE||2)

as a complete and sufficient statistic for (8, c2).

Since XE = X(X'X)~'X"Y is a function of X"Y with X considered as
fixed, (XY, || Y—XE||2) is complete and sufficient.

Since /’ﬁ is unbiased for /'8 and E is a function of a complete and
sufficient statistic, /'B is the UMVUE of /'B.

This completes the proof of (i).
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We have already shown that SSR/(n— p) is unbiased for o2.
Since SSR=||Y — X[?H2 is a function of a complete and sufficient
statistic, it is the UMVUE of ¢2.

From
Y'Y = Y[X(X'X) ' XY+ Y- X(X'X)"' XY

and the fact that the rank of X(X’X)~' X" is p and the rank of
In—X(X'X)~1X"is n— p, by Cochran’s theorem, SSR/c? has the
chi-square distribution with degrees of freedom n— p and noncentrality
parameter

6 2B' X[l — X(X'X) ' X1XB = 2B/ (X'X-X'X)=0
This proves (ii).
Previously we showed that the LSE B and the residual vector Y—XB
are uncorrelated.
Since both of them are Iingar functions of Y, trley are independent
and, thus, their functions B and SSR = || Y — X3||? are independent.
The proof of (iii) is completed.
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The log likelihood function is

2y_ _IY=XBI2+|XB-XB|? n 2
Up,o%) = 552 5 log(2mwo©)
It is clear that E maximizes this function over 8 € #”.

To maximize ¢(B, 52) over 62 > 0, we obtain that the MLE of 62 is
62 =||Y — XB|2/n=SSR/n.
This finishes the proof of (iv).
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The log likelihood function is

Y —XBI2+|IXB—XBIZ2 n
K(B,GZ):—H ﬁ” 26H2 B ﬁ” —Elog(27r62)

It is clear that E maximizes this function over 8 € #”.

To maximize ¢(B, 52) over 62 > 0, we obtain that the MLE of 62 is
62=||Y —XB|2/n=SSR/n.

This finishes the proof of (iv).

|

Fisher information matrix

To derive the Fisher information matrix about (8, 52), we differentiate
the log likelihood:

— 2 2 "y
p ot =LY Piogongy, 2B X0 X
2UB.0%) _|Y-XBIZ n B0} _ XX
do2 204 202 dBop’ o2
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PUB.o?) _ IIY-XBIZ n  2UBo?) _ X(Y-XP)

dot ob 204’ dBdoc2 ot
£[2B.0?)] _ XX
L 9dBIB’ | o2
E'aZe(ﬁ,o2)' :_EHY—XﬁH2+ n
| do* | ob 204
trace[Var(Y)] n  n
T ob 564 T 200
[920(B,62)]  X'E(Y — XB)
E =— =0
| dBdoc? | ot

Thus, the Fisher information matrix is

1<x’x 0)
o2 0 #

The UMVUE I’E attains the information lower bound, whereas the
UMVUE of 62 does not attain the information lower bound, since the
variance of SSR/(n— p) is 26*/(n— p).
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