Stat 710: Mathematical Statistics Lecture 22

Jun Shao

Department of Statistics University of Wisconsin Madison, WI 53706, USA

Lecture 22: Monotone likelihood ratio and UMP tests

Monotone likelihood ratio

A simple hypothesis involves only one population.

If a hypothesis is not simple, it is called composite.

UMP tests for a composite H_1 exist in Example 6.2.

We now extend this result to a class of parametric problems in which the likelihood functions have a special property.

Definition 6.2

Suppose that the distribution of X is in $\mathscr{P} = \{P_{\theta} : \theta \in \Theta\}$, a parametric family indexed by a real-valued θ , and that \mathscr{P} is dominated by a σ -finite measure v.

Let $f_{\theta} = dP_{\theta}/dv$

The family \mathscr{P} is said to have *monotone likelihood ratio* in Y(X) (a real-valued statistic) if and only if, for any $\theta_1 < \theta_2$, $f_{\theta_2}(x)/f_{\theta_1}(x)$ is a nondecreasing function of Y(x) for values x at which at least one of $f_{\theta_1}(x)$ and $f_{\theta_2}(x)$ is positive.

Lecture 22: Monotone likelihood ratio and UMP tests

Monotone likelihood ratio

A simple hypothesis involves only one population.

If a hypothesis is not simple, it is called composite.

UMP tests for a composite H_1 exist in Example 6.2.

We now extend this result to a class of parametric problems in which the likelihood functions have a special property.

Definition 6.2

Suppose that the distribution of X is in $\mathscr{P} = \{P_{\theta} : \theta \in \Theta\}$, a parametric family indexed by a real-valued θ , and that \mathscr{P} is dominated by a σ -finite measure v.

Let $f_{\theta} = dP_{\theta}/dv$.

The family \mathscr{P} is said to have *monotone likelihood ratio* in Y(X) (a real-valued statistic) if and only if, for any $\theta_1 < \theta_2$, $f_{\theta_2}(x)/f_{\theta_1}(x)$ is a nondecreasing function of Y(x) for values x at which at least one of $f_{\theta_1}(x)$ and $f_{\theta_2}(x)$ is positive.

Lemma 6.3

Suppose that the distribution of X is in a parametric family \mathscr{P} indexed by a real-valued θ and that \mathscr{P} has monotone likelihood ratio in Y(X). If ψ is a nondecreasing function of Y, then $g(\theta) = E[\psi(Y)]$ is a nondecreasing function of θ .

Take $\psi(y) = I_{(t,\infty)}(y)$. Then $g(\theta) = P(Y > t) = 1 - F_Y(t)$ is nondecreasing in θ

Example 6.3

Let θ be real-valued and $\eta(\theta)$ be a nondecreasing function of θ . Then the one-parameter exponential family with

$$f_{\theta}(x) = \exp\{\eta(\theta)Y(x) - \xi(\theta)\}h(x)$$

has monotone likelihood ratio in Y(X).

Lemma 6.3

Suppose that the distribution of X is in a parametric family \mathscr{P} indexed by a real-valued θ and that \mathscr{P} has monotone likelihood ratio in Y(X). If ψ is a nondecreasing function of Y, then $g(\theta) = E[\psi(Y)]$ is a nondecreasing function of θ .

Take $\psi(y) = I_{(t,\infty)}(y)$. Then $g(\theta) = P(Y > t) = 1 - F_Y(t)$ is nondecreasing in θ .

Example 6.3

Let θ be real-valued and $\eta(\theta)$ be a nondecreasing function of θ . Then the one-parameter exponential family with

$$f_{\theta}(x) = \exp\{\eta(\theta)Y(x) - \xi(\theta)\}h(x)$$

has monotone likelihood ratio in Y(X).

Lemma 6.3

Suppose that the distribution of X is in a parametric family \mathscr{P} indexed by a real-valued θ and that \mathscr{P} has monotone likelihood ratio in Y(X). If ψ is a nondecreasing function of Y, then $g(\theta) = E[\psi(Y)]$ is a nondecreasing function of θ .

Take $\psi(y) = I_{(t,\infty)}(y)$. Then $g(\theta) = P(Y > t) = 1 - F_Y(t)$ is nondecreasing in θ .

Example 6.3

Let θ be real-valued and $\eta(\theta)$ be a nondecreasing function of θ . Then the one-parameter exponential family with

$$f_{\theta}(x) = \exp{\{\eta(\theta)Y(x) - \xi(\theta)\}}h(x)$$

has monotone likelihood ratio in Y(X).

4日 > 4日 > 4目 > 4目 > 目 り9○

Let $X_1,...,X_n$ be i.i.d. from the uniform distribution on $(0,\theta)$, where $\theta > 0$.

The Lebesgue p.d.f. of $X = (X_1, ..., X_n)$ is $f_{\theta}(x) = \theta^{-n} I_{(0,\theta)}(x_{(n)})$, where $x_{(n)}$ is the value of the largest order statistic $X_{(n)}$. For $\theta_1 < \theta_2$,

$$\frac{f_{\theta_2}(x)}{f_{\theta_1}(x)} = \frac{\theta_1^n}{\theta_2^n} \frac{I_{(0,\theta_2)}(x_{(n)})}{I_{(0,\theta_1)}(x_{(n)})},$$

which is a nondecreasing function of $x_{(n)}$ for x's at which at least one of $f_{\theta_1}(x)$ and $f_{\theta_2}(x)$ is positive, i.e., $x_{(n)} < \theta_2$.

Hence the family of distributions of X has monotone likelihood ratio in $X_{(n)}$.

The following families have monotone likelihood ratio:

- the double exponential distribution family $\{DE(\theta,c)\}$ with a known C;
- the exponential distribution family $\{E(\theta,c)\}$ with a known c;
- the logistic distribution family $\{LG(\theta,c)\}$ with a known c;
- the uniform distribution family $\{U(\theta, \theta+1)\}$;
- the hypergeometric distribution family $\{HG(r, \theta, N-\theta)\}$ with known r and N (Table 1.1, page 18).

An example of a family that does not have monotone likelihood ratio is the Cauchy distribution family $\{C(\theta, c)\}$ with a known c.

The following families have monotone likelihood ratio:

- the double exponential distribution family $\{DE(\theta,c)\}$ with a known c;
- the exponential distribution family $\{E(\theta,c)\}$ with a known c;
- the logistic distribution family $\{LG(\theta,c)\}$ with a known c;
- the uniform distribution family $\{U(\theta, \theta+1)\}$;
- the hypergeometric distribution family $\{HG(r, \theta, N-\theta)\}$ with known r and N (Table 1.1, page 18).

An example of a family that does not have monotone likelihood ratio is the Cauchy distribution family $\{C(\theta, c)\}$ with a known c.

Testing one sided hypotheses

Hypotheses of the form $H_0: \theta \leq \theta_0$ (or $H_0: \theta \geq \theta_0$) versus $H_1: \theta > \theta_0$ (or $H_1: \theta < \theta_0$) are called *one-sided* hypotheses for any fixed constant θ_0 .

Jun Shao (UW-Madison) Stat 710. Lecture 22 March 23, 2009 5/11

Theorem 6.2

Suppose that X has a distribution in $\mathscr{P} = \{P_{\theta} : \theta \in \Theta\}$ ($\Theta \subset \mathscr{R}$) that has monotone likelihood ratio in Y(X).

Consider the problem of testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$, where θ_0 is a given constant.

(i) There exists a UMP test of size α , which is given by

$$T_*(X) = \left\{ \begin{array}{ll} 1 & Y(X) > c \\ \gamma & Y(X) = c \\ 0 & Y(X) < c, \end{array} \right.$$

where c and γ are determined by $\beta_{T_*}(\theta_0) = \alpha$, and $\beta_T(\theta) = E[T(X)]$ is the power function of a test T.

- (ii) $\beta_{\mathcal{T}_*}(\theta)$ is strictly increasing for all θ 's for which $0 < \beta_{\mathcal{T}_*}(\theta) < 1$.
- (iii) For any $\theta < \theta_0$, T_* minimizes $\beta_T(\theta)$ (the type I error probability of T) among all tests T satisfying $\beta_T(\theta_0) = \alpha$.
- (iv) Assume that $P_{\theta}(f_{\theta}(X) = cf_{\theta_0}(X)) = 0$ for any $\theta > \theta_0$ and $c \ge 0$, where f_{θ} is the p.d.f. of P_{θ} .

If T is a test with $\beta_T(\theta_0) = \beta_{T_*}(\theta_0)$, then for any $\theta > \theta_0$, either $\beta_T(\theta) < \beta_{T_*}(\theta)$ or $T = T_*$ a.s. P_{θ} .

Theorem 6.2 (continued)

(v) For any fixed θ_1 , T_* is UMP for testing H_0 : $\theta \leq \theta_1$ versus H_1 : $\theta > \theta_1$, with size $\beta_{T_*}(\theta_1)$.

Remark

By reversing inequalities throughout, we can obtain UMP tests for testing $H_0: \theta \ge \theta_0$ versus $H_1: \theta < \theta_0$.

Proof of Theorem 6.2

(i) Consider the hypotheses $\theta=\theta_0$ versus $\theta=\theta_1$ with any $\theta_1>\theta_0$. A UMP test is given in Theorem 6.1 with $f_j=$ the p.d.f. of $P_{\theta_j}, j=0,1$. Since $\mathscr P$ has monotone likelihood ratio in Y(X), this UMP test can be chosen to be the same as T_* with possibly different c and γ satisfying $\beta_{T_*}(\theta_0)=\alpha$.

Since T_* does not depend on θ_1 , it follows from Lemma 6.1 that T_* is UMP for testing the hypothesis $\theta = \theta_0$ versus H_1 .

Theorem 6.2 (continued)

(v) For any fixed θ_1 , T_* is UMP for testing $H_0: \theta \leq \theta_1$ versus $H_1: \theta > \theta_1$, with size $\beta_{T_*}(\theta_1)$.

Remark

By reversing inequalities throughout, we can obtain UMP tests for testing $H_0: \theta \ge \theta_0$ versus $H_1: \theta < \theta_0$.

Proof of Theorem 6.2

(i) Consider the hypotheses $\theta=\theta_0$ versus $\theta=\theta_1$ with any $\theta_1>\theta_0$. A UMP test is given in Theorem 6.1 with $f_j=$ the p.d.f. of $P_{\theta_j}, j=0,1$. Since $\mathscr P$ has monotone likelihood ratio in Y(X), this UMP test can be chosen to be the same as T_* with possibly different c and γ satisfying $\beta_{T_*}(\theta_0)=\alpha$.

Since T_* does not depend on θ_1 , it follows from Lemma 6.1 that T_* is UMP for testing the hypothesis $\theta = \theta_0$ versus H_1 .

Theorem 6.2 (continued)

(v) For any fixed θ_1 , T_* is UMP for testing $H_0: \theta \leq \theta_1$ versus $H_1: \theta > \theta_1$, with size $\beta_{T_*}(\theta_1)$.

Remark

By reversing inequalities throughout, we can obtain UMP tests for testing $H_0: \theta \ge \theta_0$ versus $H_1: \theta < \theta_0$.

Proof of Theorem 6.2

(i) Consider the hypotheses $\theta = \theta_0$ versus $\theta = \theta_1$ with any $\theta_1 > \theta_0$. A UMP test is given in Theorem 6.1 with $f_j =$ the p.d.f. of P_{θ_j} , j = 0, 1. Since $\mathscr P$ has monotone likelihood ratio in Y(X), this UMP test can be chosen to be the same as T_* with possibly different c and γ satisfying $\beta_{T_*}(\theta_0) = \alpha$.

Since T_* does not depend on θ_1 , it follows from Lemma 6.1 that T_* is UMP for testing the hypothesis $\theta = \theta_0$ versus H_1 .

Proof (continued)

Note that if T_* is UMP for testing $\theta = \theta_0$ versus H_1 , then it is UMP for testing H_0 versus H_1 , provided that $\beta_{T_*}(\theta) \leq \alpha$ for all $\theta \leq \theta_0$, i.e., the size of T_* is α .

But this follows from Lemma 6.3, i.e., $\beta_{T_*}(\theta)$ is nondecreasing in θ .

- (ii) See Exercise 2 in §6.6.
- (iii) The result can be proved using Theorem 6.1 with all inequalities reversed.
- (iv) The proof for (iv) is left as an exercise.
- (v) The proof for (v) is similar to that of (i).

Corollary 6.1 (one-parameter exponential families

Suppose that X has a p.d.f. in a one-parameter exponential family with η being a strictly monotone function of θ . If η is increasing, then T_* given by Theorem 6.2 is UMP for testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ where γ and c are determined by $\beta_{T_*}(\theta_0) = \alpha$.

If η is decreasing or $H_0: \theta \ge \theta_0$ ($H_1: \theta < \theta_0$), the result is still valid by reversing inequalities in the definition of T_* .

Proof (continued)

Note that if T_* is UMP for testing $\theta = \theta_0$ versus H_1 , then it is UMP for testing H_0 versus H_1 , provided that $\beta_{T_*}(\theta) \leq \alpha$ for all $\theta \leq \theta_0$, i.e., the size of T_* is α .

But this follows from Lemma 6.3, i.e., $\beta_{T_*}(\theta)$ is nondecreasing in θ .

- (ii) See Exercise 2 in §6.6.
- (iii) The result can be proved using Theorem 6.1 with all inequalities reversed.
- (iv) The proof for (iv) is left as an exercise.
- (v) The proof for (v) is similar to that of (i).

reversing inequalities in the definition of T_* .

Corollary 6.1 (one-parameter exponential families

Suppose that X has a p.d.f. in a one-parameter exponential family with η being a strictly monotone function of θ . If η is increasing, then T_* given by Theorem 6.2 is UMP for testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$, where γ and c are determined by $\beta_{T_*}(\theta_0) = \alpha$. If η is decreasing or $H_0: \theta \geq \theta_0$ ($H_1: \theta < \theta_0$), the result is still valid by

Let $X_1,...,X_n$ be i.i.d. from the $N(\mu,\sigma^2)$ distribution with an unknown $\mu \in \mathcal{R}$ and a known σ^2 .

Consider $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$, where μ_0 is a fixed constant. The p.d.f. of $X = (X_1, ..., X_n)$ is from a one-parameter exponential family with $Y(X) = \bar{X}$ and $\eta(\mu) = n\mu/\sigma^2$.

By Corollary 6.1 and the fact that \bar{X} is $N(\mu, \sigma^2/n)$, the UMP test is $T_*(X) = I_{(c_\alpha, \infty)}(\bar{X})$, where $c_\alpha = \sigma z_{1-\alpha}/\sqrt{n} + \mu_0$ and $z_a = \Phi^{-1}(a)$.

Discussion

To derive a UMP test for testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ when X has a p.d.f. in a one-parameter exponential family, it is essential to know the distribution of Y(X).

Typically, a nonrandomized test can be obtained if the distribution of *Y* is continuous; otherwise UMP tests are randomized.

Let $X_1,...,X_n$ be i.i.d. from the $N(\mu,\sigma^2)$ distribution with an unknown $\mu \in \mathcal{R}$ and a known σ^2 .

Consider $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$, where μ_0 is a fixed constant. The p.d.f. of $X = (X_1, ..., X_n)$ is from a one-parameter exponential family with $Y(X) = \bar{X}$ and $\eta(\mu) = n\mu/\sigma^2$.

By Corollary 6.1 and the fact that \bar{X} is $N(\mu, \sigma^2/n)$, the UMP test is $T_*(X) = I_{(c_\alpha, \infty)}(\bar{X})$, where $c_\alpha = \sigma z_{1-\alpha}/\sqrt{n} + \mu_0$ and $z_a = \Phi^{-1}(a)$.

Discussion

To derive a UMP test for testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ when X has a p.d.f. in a one-parameter exponential family, it is essential to know the distribution of Y(X).

Typically, a nonrandomized test can be obtained if the distribution of *Y* is continuous; otherwise UMP tests are randomized.

Let $X_1,...,X_n$ be i.i.d. random variables from the Poisson distribution $P(\theta)$ with an unknown $\theta > 0$.

The p.d.f. of $X = (X_1, ..., X_n)$ is from a one-parameter exponential family with $Y(X) = \sum_{i=1}^{n} X_i$ and $\eta(\theta) = \log \theta$.

Note that Y has the Poisson distribution $P(n\theta)$.

By Corollary 6.1, a UMP test for $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ is given by Theorem 6.2 with c and γ satisfying

$$\alpha = \sum_{j=c+1}^{\infty} \frac{e^{n\theta_0} (n\theta_0)^j}{j!} + \gamma \frac{e^{n\theta_0} (n\theta_0)^c}{c!}.$$

Example 6.9

Let $X_1,...,X_n$ be i.i.d. random variables from the uniform distribution $U(0,\theta), \theta > 0$.

Consider the hypotheses $H_0: \theta \leq \theta_0$ and $H_1: \theta > \theta_0$.

The p.d.f. of $X = (X_1, ..., X_n)$ is in a family with monotone likelihood ratio in $Y(X) = X_{(n)}$ (Example 6.4).

Let $X_1,...,X_n$ be i.i.d. random variables from the Poisson distribution $P(\theta)$ with an unknown $\theta > 0$.

The p.d.f. of $X = (X_1, ..., X_n)$ is from a one-parameter exponential family with $Y(X) = \sum_{i=1}^{n} X_i$ and $\eta(\theta) = \log \theta$.

Note that Y has the Poisson distribution $P(n\theta)$.

By Corollary 6.1, a UMP test for $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ is given by Theorem 6.2 with c and γ satisfying

$$\alpha = \sum_{j=c+1}^{\infty} \frac{e^{n\theta_0} (n\theta_0)^j}{j!} + \gamma \frac{e^{n\theta_0} (n\theta_0)^c}{c!}.$$

Example 6.9

Let $X_1,...,X_n$ be i.i.d. random variables from the uniform distribution $U(0,\theta)$, $\theta > 0$.

Consider the hypotheses $H_0: \theta \leq \theta_0$ and $H_1: \theta > \theta_0$.

The p.d.f. of $X = (X_1, ..., X_n)$ is in a family with monotone likelihood ratio in $Y(X) = X_{(n)}$ (Example 6.4).

10 / 11

Example 6.9 (continued)

By Theorem 6.2, a UMP test is T_* .

Since $X_{(n)}$ has the Lebesgue p.d.f. $n\theta^{-n}x^{n-1}I_{(0,\theta)}(x)$, the UMP test T_* is nonrandomized and

$$\alpha = \beta_{T_*}(\theta_0) = \frac{n}{\theta_0^n} \int_c^{\theta_0} x^{n-1} dx = 1 - \frac{c^n}{\theta_0^n}.$$

Hence $c = \theta_0 (1 - \alpha)^{1/n}$.

The power function of T_* when $\theta > \theta_0$ is

$$\beta_{T_*}(\theta) = \frac{n}{\theta^n} \int_c^{\theta} x^{n-1} dx = 1 - \frac{\theta_0^n (1 - \alpha)}{\theta^n}.$$

In this problem, however, UMP tests are not unique.

(Note that the condition $P_{\theta}(f_{\theta}(X) = cf_{\theta_0}(X)) = 0$ in Theorem 6.2(iv) is not satisfied.)

It can be shown (exercise) that the following test is also UMP with size α :

$$T(X) = \begin{cases} 1 & X_{(n)} > \theta_0 \\ \alpha & X_{(n)} \le \theta_0. \end{cases}$$