Stat 710: Mathematical Statistics Lecture 40

Jun Shao

Department of Statistics University of Wisconsin Madison, WI 53706, USA

Jun Shao (UW-Madison)

Stat 710, Lecture 40

May 6, 2009 1 / 11

Lecture 40: Simultaneous confidence intervals and Scheffe's method

So far we have studied confidence sets for a real-valued θ or a vector-valued θ with a finite dimension *k*. In some applications, we need a confidence set for real-valued θ_t with $t \in \mathcal{T}$, where \mathcal{T} is an index set that may contain infinitely many elements, for example, $\mathcal{T} = [0, 1]$ or $\mathcal{T} = \mathcal{R}$.

Definition 7.6

Let *X* be a sample from $P \in \mathscr{P}$, let θ_t , $t \in \mathscr{T}$, be real-valued parameters related to *P*, and let $C_t(X)$, $t \in \mathscr{T}$, be a class of (one-sided or two-sided) confidence intervals.

(i) Intervals $C_t(X)$, $t \in \mathscr{T}$, are level $1 - \alpha$ simultaneous confidence intervals for θ_t , $t \in \mathscr{T}$, iff

$$\inf_{\mathcal{P}\in\mathscr{P}} P\big(\theta_t\in C_t(X) \text{ for all } t\in\mathscr{T}\big)\geq 1-\alpha.$$

The left-hand side of the above expression is the confidence coefficient of $C_t(X)$, $t \in \mathcal{T}$.

Jun Shao (UW-Madison)

Lecture 40: Simultaneous confidence intervals and Scheffe's method

So far we have studied confidence sets for a real-valued θ or a vector-valued θ with a finite dimension *k*.

In some applications, we need a confidence set for real-valued θ_t with $t \in \mathcal{T}$, where \mathcal{T} is an index set that may contain infinitely many elements, for example, $\mathcal{T} = [0, 1]$ or $\mathcal{T} = \mathcal{R}$.

Definition 7.6

Let *X* be a sample from $P \in \mathscr{P}$, let θ_t , $t \in \mathscr{T}$, be real-valued parameters related to *P*, and let $C_t(X)$, $t \in \mathscr{T}$, be a class of (one-sided or two-sided) confidence intervals.

(i) Intervals $C_t(X)$, $t \in \mathscr{T}$, are level $1 - \alpha$ simultaneous confidence intervals for θ_t , $t \in \mathscr{T}$, iff

$$\inf_{P\in\mathscr{P}} P(\theta_t \in C_t(X) \text{ for all } t \in \mathscr{T}) \geq 1-\alpha.$$

The left-hand side of the above expression is the confidence coefficient of $C_t(X)$, $t \in \mathcal{T}$.

Jun Shao (UW-Madison)

Stat 710, Lecture 40

Definition 7.6 (continued)

(ii) Intervals $C_t(X)$, $t \in \mathscr{T}$, are simultaneous confidence intervals for θ_t , $t \in \mathscr{T}$, with asymptotic confidence level $1 - \alpha$ iff

$$\lim_{n\to\infty} P(\theta_t \in C_t(X) \text{ for all } t \in \mathscr{T}) \geq 1-\alpha.$$

Intervals $C_t(X)$, $t \in \mathcal{T}$, are $1 - \alpha$ asymptotically correct iff the equality in the above expression holds.

If the index set \mathscr{T} contains $k < \infty$ elements, then $\theta = (\theta_t, t \in \mathscr{T})$ is a k-vector and the methods studied in the previous sections can be applied to construct a level $1 - \alpha$ confidence set C(X) for θ . If C(X) can be expressed as $\prod_{t \in \mathscr{T}} C_t(X)$ for some intervals $C_t(X)$, then $C_t(X)$, $t \in \mathscr{T}$, are level $1 - \alpha$ simultaneous confidence intervals. This simple method, however, does not always work.

A simple method for the case of \mathcal{T} containing finite many elements is introduced next.

Definition 7.6 (continued)

(ii) Intervals $C_t(X)$, $t \in \mathscr{T}$, are simultaneous confidence intervals for θ_t , $t \in \mathscr{T}$, with asymptotic confidence level $1 - \alpha$ iff

$$\lim_{\eta\to\infty} P\big(\theta_t\in C_t(X) \text{ for all } t\in\mathscr{T}\big)\geq 1-\alpha.$$

Intervals $C_t(X)$, $t \in \mathcal{T}$, are $1 - \alpha$ asymptotically correct iff the equality in the above expression holds.

If the index set \mathscr{T} contains $k < \infty$ elements, then $\theta = (\theta_t, t \in \mathscr{T})$ is a k-vector and the methods studied in the previous sections can be applied to construct a level $1 - \alpha$ confidence set C(X) for θ . If C(X) can be expressed as $\prod_{t \in \mathscr{T}} C_t(X)$ for some intervals $C_t(X)$, then $C_t(X)$, $t \in \mathscr{T}$, are level $1 - \alpha$ simultaneous confidence intervals. This simple method, however, does not always work.

A simple method for the case of \mathscr{T} containing finite many elements is introduced next.

Bonferroni's method

Bonferroni's method, which works when \mathscr{T} contains $k < \infty$ elements, is based on the following simple inequality for k events $A_1, ..., A_k$:

$$P\left(\bigcup_{i=1}^{k}A_{i}\right) \leq \sum_{i=1}^{k}P(A_{i})$$
 i.e., $P\left(\bigcap_{i=1}^{k}A_{i}^{c}\right) \geq 1-\sum_{i=1}^{k}P(A_{i}).$

For each $t \in \mathscr{T}$, let $C_t(X)$ be a level $1 - \alpha_t$ confidence interval for θ_t . If α_t 's are chosen so that $\sum_{t \in \mathscr{T}} \alpha_t = \alpha$ (e.g., $\alpha_t = \alpha/k$ for all t), then Bonferroni's simultaneous confidence intervals are $C_t(X)$, $t \in \mathscr{T}$, since

$$\mathsf{P}(\theta_t \in \mathsf{C}_t(X), t \in \mathscr{T}) \geq 1 - \sum_{t \in \mathscr{T}} \mathsf{P}(\theta_t \notin \mathsf{C}_t(X)) = 1 - \sum_{t \in \mathscr{T}} \alpha_t = 1 - \alpha$$

Bonferroni's intervals are of level $1 - \alpha$, but they are not of confidence coefficient $1 - \alpha$ even if $C_t(X)$ has confidence coefficient $1 - \alpha_t$ for any fixed *t*.

Bonferroni's method does not require that $C_t(X)$, $t \in \mathcal{T}$, be independent.

Bonferroni's method is easy to use, but may be too conservative.

Bonferroni's method

Bonferroni's method, which works when \mathscr{T} contains $k < \infty$ elements, is based on the following simple inequality for k events $A_1, ..., A_k$:

$$P\left(\bigcup_{i=1}^{k}A_{i}\right) \leq \sum_{i=1}^{k}P(A_{i})$$
 i.e., $P\left(\bigcap_{i=1}^{k}A_{i}^{c}\right) \geq 1-\sum_{i=1}^{k}P(A_{i}).$

For each $t \in \mathscr{T}$, let $C_t(X)$ be a level $1 - \alpha_t$ confidence interval for θ_t . If α_t 's are chosen so that $\sum_{t \in \mathscr{T}} \alpha_t = \alpha$ (e.g., $\alpha_t = \alpha/k$ for all t), then Bonferroni's simultaneous confidence intervals are $C_t(X)$, $t \in \mathscr{T}$, since

$$\mathsf{P}(\theta_t \in \mathsf{C}_t(X), t \in \mathscr{T}) \geq 1 - \sum_{t \in \mathscr{T}} \mathsf{P}(\theta_t \not\in \mathsf{C}_t(X)) = 1 - \sum_{t \in \mathscr{T}} \alpha_t = 1 - \alpha$$

Bonferroni's intervals are of level $1 - \alpha$, but they are not of confidence coefficient $1 - \alpha$ even if $C_t(X)$ has confidence coefficient $1 - \alpha_t$ for any fixed *t*.

Bonferroni's method does not require that $C_t(X)$, $t \in \mathscr{T}$, be independent.

Bonferroni's method is easy to use, but may be too conservative.

Consider the normal linear model

$$X=N_n(Z\beta,\sigma^2I_n),$$

where β is a *p*-vector of unknown parameters, $\sigma^2 > 0$ is unknown, and Z is an $n \times p$ known matrix of rank $r \leq p$. Let L be an $s \times p$ matrix of rank $s \leq r$. Suppose that $\mathscr{R}(L) \subset \mathscr{R}(Z)$ and we would like to construct simultaneous confidence intervals for $t^{\tau}L\beta$, where $t \in \mathscr{T} = \mathscr{R}^s - \{0\}$. Using the argument in Example 7.15, for each $t \in \mathscr{T}$, we can obtain the following confidence interval for $t^{\tau}L\beta$ with confidence coefficient $1 - \alpha$:

$$[t^{\tau} L\widehat{\beta} - t_{n-r,\alpha/2}\widehat{\sigma}\sqrt{t^{\tau} Dt}, t^{\tau} L\widehat{\beta} + t_{n-r,\alpha/2}\widehat{\sigma}\sqrt{t^{\tau} Dt}],$$

where $\hat{\beta}$ is the LSE of β , $\hat{\sigma}^2 = ||X - Z\hat{\beta}||^2/(n-r)$, $D = L(Z^{\tau}Z)^{-}L^{\tau}$, and $t_{n-r,\alpha}$ is the $(1 - \alpha)$ th quantile of the t-distribution t_{n-r} . However, these intervals are not level $1 - \alpha$ simultaneous confidence intervals for $t^{\tau}L\beta$, $t \in \mathcal{T}$.

Scheffé's method

Scheffé's (1959) method of constructing simultaneous confidence intervals for $t^{\tau}L\beta$ is based on the following equality (exercise):

$$x^{\tau}A^{-1}x = \max_{y \in \mathscr{R}^k, y \neq 0} \frac{(y^{\tau}x)^2}{y^{\tau}Ay},$$

where $x \in \mathscr{R}^k$ and A is a $k \times k$ positive definite matrix.

Theorem 7.10

Assume the normal linear model. Let *L* be an $s \times p$ matrix of rank $s \leq r$. Assume that $\mathscr{R}(L) \subset \mathscr{R}(Z)$ and $D = L(Z^{\tau}Z)^{-}L^{\tau}$ is of full rank. Then

$$C_t(X) = \left[t^{\tau} L\widehat{\beta} - \widehat{\sigma} \sqrt{sc_{\alpha}t^{\tau} Dt}, t^{\tau} L\widehat{\beta} + \widehat{\sigma} \sqrt{sc_{\alpha}t^{\tau} Dt}\right], \quad t \in \mathscr{T},$$

are simultaneous confidence intervals for $t^{r}L\beta$, $t \in \mathcal{T}$, with confidence coefficient $1 - \alpha$, where $\hat{\sigma}^{2} = ||X - Z\hat{\beta}||^{2}/(n-r)$, $\mathcal{T} = \mathcal{R}^{s} - \{0\}$, and c_{α} is the $(1 - \alpha)$ th quantile of the F-distribution $F_{s,n-r}$.

Scheffé's method

Scheffé's (1959) method of constructing simultaneous confidence intervals for $t^{\tau}L\beta$ is based on the following equality (exercise):

$$x^{\tau}A^{-1}x = \max_{y \in \mathscr{R}^k, y \neq 0} \frac{(y^{\tau}x)^2}{y^{\tau}Ay},$$

where $x \in \mathscr{R}^k$ and A is a $k \times k$ positive definite matrix.

Theorem 7.10

Assume the normal linear model. Let *L* be an $s \times p$ matrix of rank $s \leq r$. Assume that $\mathscr{R}(L) \subset \mathscr{R}(Z)$ and $D = L(Z^{\tau}Z)^{-}L^{\tau}$ is of full rank. Then

$$C_t(X) = \big[t^{\tau} L \widehat{\beta} - \widehat{\sigma} \sqrt{sc_{\alpha} t^{\tau} D t}, t^{\tau} L \widehat{\beta} + \widehat{\sigma} \sqrt{sc_{\alpha} t^{\tau} D t} \big], \quad t \in \mathscr{T},$$

are simultaneous confidence intervals for $t^{\tau}L\beta$, $t \in \mathscr{T}$, with confidence coefficient $1 - \alpha$, where $\widehat{\sigma}^2 = ||X - Z\widehat{\beta}||^2/(n-r)$, $\mathscr{T} = \mathscr{R}^s - \{0\}$, and c_{α} is the $(1 - \alpha)$ th quantile of the F-distribution $F_{s,n-r}$.

Proof

Note that $t^{\tau}L\beta \in C_t(X)$ for all $t \in \mathscr{T}$ is equivalent to

$$rac{(t^ au L\widehateta - t^ au Leta)^2}{s\widehat\sigma^2 t^ au Dt} \leq c_lpha \quad ext{for all } t\in \mathscr{T},$$

i.e.,

$$\max_{t\in\mathscr{T}}\frac{(t^{\tau}L\widehat{\beta}-t^{\tau}L\beta)^2}{s\widehat{\sigma}^2t^{\tau}Dt}\leq c_{\alpha}.$$

From the inequality

$$x^{\tau}A^{-1}x = \max_{y \in \mathscr{R}^k, y \neq 0} \frac{(y^{\tau}x)^2}{y^{\tau}Ay},$$

we have

$$\max_{t\in\mathscr{T}}\frac{(t^{\tau}L\widehat{\beta}-t^{\tau}L\beta)^{2}}{s\widehat{\sigma}^{2}t^{\tau}Dt}=\frac{(L\widehat{\beta}-L\beta)^{\tau}D^{-1}(L\widehat{\beta}-L\beta)}{s\widehat{\sigma}^{2}}=F.$$

Note that *F* has the F-distribution $F_{s,n-r}$. Then

$$P(t^{\tau}L\beta \in C_t(X) \text{ for all } t \in \mathscr{T}) = P(F \leq c_{\alpha}) = 1 - \alpha.$$

Remarks

- If the normality assumption is removed but conditions in Theorem 3.12 are assumed, then Scheffé's intervals in Theorem 7.10 are 1α asymptotically correct (exercise).
- The choice of the matrix *L* depends on the purpose of analysis.
 - One particular choice is L = Z, in which case $t^{\tau}L\beta$ is the mean of $t^{\tau}X$.
 - When Z is of full rank, we can choose $L = I_p$, in which case $\{t^{\tau}L\beta : t \in \mathscr{T}\}$ is the class of all linear functions of β .
 - Another *L* commonly used when *Z* is of full rank is the following $(p-1) \times p$ matrix:

It can be shown (exercise) that for this L,

$$\left\{t^{\mathsf{T}}L\beta:t\in\mathscr{R}^{p-1}-\{0\}\right\}=\left\{c^{\mathsf{T}}\beta:c\in\mathscr{R}^{p}-\{0\},c^{\mathsf{T}}J=0\right\},$$

where *J* is the *p*-vector of ones.

Jun Shao (UW-Madison)

Remarks

- Functions $c^{\tau}\beta$ satisfying $c^{\tau}J = 0$ are called *contrasts*.
- Setting simultaneous confidence intervals for t^τLβ, t ∈ 𝔅, with the above L is the same as setting simultaneous confidence intervals for all nonzero contrasts.

Example 7.28 (Simple linear regression)

Consider the special case where

$$X_i = N(\beta_0 + \beta_1 z_i, \sigma^2), \qquad i = 1, ..., n,$$

and $z_i \in \mathscr{R}$ satisfying $S_z = \sum_{i=1}^n (z_i - \bar{z})^2 > 0$, $\bar{z} = n^{-1} \sum_{i=1}^n z_i$. In this case, we are usually interested in simultaneous confidence intervals for the regression function $\beta_0 + \beta_1 z$, $z \in \mathscr{R}$. Note that the result in Theorem 7.10 (with $L = l_2$) can be applied to obtain simultaneous confidence intervals for $\beta_0 y + \beta_1 z$, $t \in \mathscr{T} = \mathscr{R}^2 - \{0\}$, where t = (y, z). If we let $y \equiv 1$, Scheffé's intervals in Theorem 7.10 are

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Remarks

- Functions $c^{\tau}\beta$ satisfying $c^{\tau}J = 0$ are called *contrasts*.
- Setting simultaneous confidence intervals for t^τLβ, t ∈ 𝔅, with the above L is the same as setting simultaneous confidence intervals for all nonzero contrasts.

Example 7.28 (Simple linear regression)

Consider the special case where

$$X_i = N(\beta_0 + \beta_1 z_i, \sigma^2), \qquad i = 1, ..., n,$$

and $z_i \in \mathscr{R}$ satisfying $S_z = \sum_{i=1}^n (z_i - \bar{z})^2 > 0$, $\bar{z} = n^{-1} \sum_{i=1}^n z_i$. In this case, we are usually interested in simultaneous confidence intervals for the regression function $\beta_0 + \beta_1 z$, $z \in \mathscr{R}$. Note that the result in Theorem 7.10 (with $L = I_2$) can be applied to obtain simultaneous confidence intervals for $\beta_0 y + \beta_1 z$, $t \in \mathscr{T} = \mathscr{R}^2 - \{0\}$, where t = (y, z). If we let $y \equiv 1$, Scheffé's intervals in Theorem 7.10 are

Example 7.28 (continued)

$$\begin{split} \big[\widehat{\beta}_0 + \widehat{\beta}_1 z - \widehat{\sigma} \sqrt{2c_\alpha D(z)}, \, \widehat{\beta}_0 + \widehat{\beta}_1 z + \widehat{\sigma} \sqrt{2c_\alpha D(z)} \big], \quad z \in \mathscr{R}, \quad \ \text{(1)} \\ \text{where } D(z) = n^{-1} + (z - \bar{z})^2 / S_z. \\ \text{Unless} \end{split}$$

$$\max_{z\in\mathscr{R}}\frac{(\widehat{\beta}_{0}+\widehat{\beta}_{1}z-\beta_{0}-\beta_{1}z)^{2}}{D(z)}=\max_{t=(y,z)\in\mathscr{T}}\frac{(\widehat{\beta}_{0}y+\widehat{\beta}_{1}z-\beta_{0}y-\beta_{1}z)^{2}}{t^{\tau}(Z^{\tau}Z)^{-1}t}$$
(2)

holds with probability 1, where *Z* is the $n \times 2$ matrix whose *i*th row is the vector $(1, z_i)$, the confidence coefficient of the intervals in (1) is larger than $1 - \alpha$.

We now show that (2) actually holds with probability 1 so that the intervals in (1) have confidence coefficient $1 - \alpha$. First.

$$P(n(\widehat{\beta}_0-\beta_0)+n(\widehat{\beta}_1-\beta_1)\overline{z}\neq 0)=1.$$

Second, it can be shown (exercise) that the maximum on the right-hand side of (2) is achieved at

Example 7.28 (continued)

$$t = \begin{pmatrix} y \\ z \end{pmatrix} = \frac{Z^{\tau}Z}{n(\widehat{\beta}_0 - \beta_0) + n(\widehat{\beta}_1 - \beta_1)\overline{z}} \begin{pmatrix} \widehat{\beta}_0 - \beta_0 \\ \widehat{\beta}_1 - \beta_1 \end{pmatrix}.$$
 (3)

Finally, (2) holds since y in (3) is equal to 1 (exercise).

Jun Shao (UW-Madison)

< //● → < ■ →