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Chapter 4: Estimation in Parametric Models
Lecture 1: Bayesian approach

X is from a population in a parametric family P = {Pθ : θ ∈Θ}, where
Θ⊂Rk for a fixed integer k ≥ 1

Bayes approach
Optimal rules in the Bayesian approach, which is fundamentally
different from the classical frequentist approach that we have
been adopting
θ is viewed as a realization of a random vector ~θ ∈Θ whose prior
distribution is Π

Prior distribution: past experience, past data, or a statistician’s
belief (subjective)
Sample X ∈X : from Pθ = Px |θ , the conditional distribution of X
given ~θ = θ

Posterior distribution: updated prior distribution using observed
X = x
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How to construct the posterior?

By Theorem 1.7, the joint distribution of X and ~θ is a probability
measure on X ×Θ determined by

P(A×B) =
∫

B
Px |θ (A)dΠ(θ), A ∈BX , B ∈BΘ

The posterior distribution is the conditional distribution Pθ |x whose
existence is guaranteed by Theorem 1.7 a.s. x ∈X

Theorem 4.1 (Bayes formula)
Assume P = {Px |θ : θ ∈Θ} is dominated by a σ -finite measure ν and
fθ (x) = dPx |θ/dν is a Borel function on (X ×Θ,σ(BX ×BΘ)). Let Π
be a prior distribution on Θ. Suppose that m(x) =

∫
Θ fθ (x)dΠ > 0.

(m(x) is called the marginal p.d.f. of X w.r.t. ν)
(i) The posterior distribution Pθ |x � Π and

dPθ |x/dΠ = fθ (x)/m(x)

(ii) If Π� λ and dΠ/dλ = π(θ) for a σ -finite measure λ , then
dPθ |x/dλ = fθ (x)π(θ)/m(x)

If T is a sufficient statistic for θ , then the posterior depends only on T .
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Discrete X and ~θ : The Bayes formula in elementary probability

P(~θ = θ |X = x) =
P(X = x |~θ = θ)P(~θ = θ)

∑θ∈Θ P(X = x |~θ = θ)P(~θ = θ)

Remarks on the Bayesian approach
Without loss of generality we may assume m(x) > 0
If m(x) = 0 for an x ∈X , then fθ (x) = 0 a.s. Π
Either x should be eliminated from X or the prior Π is incorrect
and a new prior should be specified
The posterior Pθ |x contains all the information we have about θ

Statistical decisions and inference should be made based on Pθ |x ,
conditional on the observed X = x
In estimating θ , Pθ |x can be viewed as a randomized decision rule
under the approach discussed in §2.3
After X = x is observed, Pθ |x is a randomized rule, which is a
probability distribution on the action space A = Θ

The Bayesian method can be applied iteratively
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Definition 4.1 (Bayes action)
Let A be an action space in a decision problem and L(θ ,a)≥ 0 be a
loss function
For any x ∈X , a Bayes action w.r.t. Π is any δ (x) ∈A such that

E [L(~θ ,δ (x))|X = x ] = min
a∈A

E [L(~θ ,a)|X = x ]

where the expectation is w.r.t. the posterior distribution Pθ |x

Remarks
The Bayes action minimizes the posterior expected loss
x is fixed, although δ (x) depends on x
The Bayes action depends on the prior
The Bayes action depends on the loss function
The existence and uniqueness of Bayes actions are discussed in
Proposition 4.1
If δ (x) is a measurable function of x , then δ (X ) is a
nonrandomized decision rule under the frequentist approach
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Example 4.1: the estimation of ϑ = g(θ )

Assume
∫

Θ[g(θ)]2dΠ < ∞, A = the range of g(θ), and
L(θ ,a) = [g(θ)−a]2 (squared error loss).
Using the argument in Example 1.22, we obtain the Bayes action

δ (x) =

∫
Θ g(θ)fθ (x)dΠ

m(x)
=

∫
Θ g(θ)fθ (x)dΠ∫

Θ fθ (x)dΠ
,

which is the posterior expectation of g(~θ), given X = x .

A more specific case

g(θ) = θ j for some integer j ≥ 1
fθ (x) = e−θ θ x I{0,1,2,...}(x)/x! (the Poisson distribution) with θ > 0
Π has a Lebesgue p.d.f. π(θ) = θ α−1e−θ/γ I(0,∞)(θ)/[Γ(α)γα ]
(the gamma distribution Γ(α,γ) with known α > 0 and γ > 0)
Then, for x = 0,1,2, ..., and some function c(x),

fθ (x)π(θ)/m(x) = c(x)θ
x+α−1e−θ(γ+1)/γ I(0,∞)(θ),

This is the gamma distribution Γ(x + α,γ/(γ + 1)).
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Without actually working out the integral m(x), we know that

c(x) = (1 + γ
−1)x+α/Γ(x + α),

δ (x) = c(x)
∫

∞

0
θ

j+x+α−1e−θ(γ+1)/γdθ .

The integrand is proportional to the p.d.f. of the gamma distribution
Γ(j + x + α,γ/(γ + 1)).
Hence

δ (x) = c(x)Γ(j + x + α)/(1 + γ
−1)j+x+α

= (j + x + α−1) · · ·(x + α)/(1 + γ
−1)j .

In particular, δ (x) = (x + α)γ/(γ + 1) when j = 1.

Conjugate prior
An interesting phenomenon is that the prior and the posterior are in the
same parametric family of distributions.
Such a prior is called a conjugate prior.
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Remarks
Whether a prior is conjugate involves a pair of families, the family
P = {fθ : θ ∈Θ} and the family from which Π is chosen.
Example 4.1 shows that the Poisson family and the gamma family
produce conjugate priors.
Many pairs of families in Table 1.1 (page 18) and Table 1.2 (pages
20-21) produce conjugate priors.
Under a conjugate prior, Bayes actions often have explicit forms
(in x) when the loss function is simple.
Even under a conjugate prior, the integral in δ (x) in Example 4.1
involving a general g may not have an explicit form.
In general, numerical methods have to be used in evaluating the
integrals in δ (x) under general loss functions.

Example 2.25/4.8

X1, ...,Xn i.i.d. ∼ N(µ,σ2), where µ ∈R is unknown and σ2 is known.
Let π(µ) be the pdf of N(µ0,σ

2
0 ).

Since X̄ ∼ N(µ,σ2/n) is sufficient, we treat X̄ = x̄ as the observation.
UW-Madison (Statistics) Stat 710 Lecture 1 Jan 2019 7 / 16



beamer-tu-logo

fµ (x̄)π(µ) = exp

(
−(x̄−µ)2

2σ2/n

)
exp

(
−(µ−µ0)2

2σ2
0

)

=exp

(
−1

2

[(
n

σ2 +
1

σ2
0

)
µ

2−2

(
nx̄
σ2 +

µ0

σ2
0

)
µ +

nx̄2

σ2 +
µ2

0

σ2
0

])

=exp

(
−1

2

[
Aµ

2−2Bµ + C
])

= exp

(
−1

2

[
A(µ−B/A)2−B2/A + C

])
Integrating out µ, we obtain that the marginal density of X̄ is

m(x̄) ∝ exp

(
−1

2

[
C−B2/A

])
∝ exp

(
− (x̄−µ0)2

2(σ2/n + σ2
0 )

)
i.e., m(x̄) is the density of N(µ0,σ

2/n + σ2
0 ).

Also, the posterior of µ given x̄ is N(B/A,A−1).
Then the Bayes estimate of µ under the squared error loss is

δ (x̄) = B/A =
σ2

0

σ2
0 + σ2/n

x̄ +
σ2/n

σ2
0 + σ2/n

µ0
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Next, assume that both µ and σ2 are unknown, the prior for
ω = (2σ2)−1 is the gamma distribution Γ(α,γ) with known α and γ, and
the prior for µ is N(µ0,σ

2
0 /ω) (conditional on ω).

Then the posterior p.d.f. of (µ,ω) is proportional to

ω(n+1)/2+α−1 exp
{
−
[
γ−1 + (n−1)s2 + n(x̄ −µ)2 + (µ−µ0)2

2σ2
0

]
ω

}
,

From

n(x̄ −µ)2 + (µ−µ0)2

2σ2
0

=
(

n + 1
2σ2

0

)
µ2−2

(
nx̄ + µ0

2σ2
0

)
µ + nx̄2 +

µ2
0

2σ2
0
.

the posterior p.d.f. of (µ,ω) is proportional to

ω(n+1)/2+α−1 exp
{
−
[
γ−1 + W +

(
n + 1

2σ2
0

)
{µ−ζ (x̄)}2

]
ω

}
,

ζ (x̄) =
nx̄ + µ0

2σ2
0

n + 1
2σ2

0

and W =
n

∑
i=1

x2
i +

µ2
0

2σ2
0
−

(
n +

1
2σ2

0

)
[ζ (x̄)]2.

Thus, the posterior of ω is Γ(n/2 + α,(γ−1 + W )−1) and the posterior of
µ (given ω and x) is N

(
ζ (x̄), [(2n + σ

−2
0 )ω]−1).

Under the squared error loss, the Bayes estimate of µ is ζ (x̄) and the
Bayes estimate of σ2 = (2ω)−1 is (γ−1 + W )/(n + 2α−2), n + 2α > 2.
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Generalized Bayes action
The minimization in Definition 4.1 is the same as the minimizing∫

Θ
L(θ ,δ (x))fθ (x)dΠ = min

a∈A

∫
Θ

L(θ ,a)fθ (x)dΠ

This is still defined even if Π is not a probability measure but a σ -finite
measure on Θ, in which case m(x) may not be finite.
If Π(Θ) 6= 1, Π is called an improper prior.
δ (x) is called a generalized Bayes action.
With no past information, one has to choose a prior subjectively.
In such cases, one would like to select a noninformative prior that tries
to treat all parameter values in Θ equitably.
A noninformative prior is often improper.

Example 4.3

Suppose that X = (X1, ...,Xn) and Xi ’s are i.i.d. from N(µ,σ2), where
µ ∈Θ⊂R is unknown and σ2 is known.
Consider the estimation of ϑ = µ under the squared error loss.
If Θ = [a,b] with −∞ < a < b < ∞, then a noninformative prior that treats
all parameter values equitably is the uniform distribution on [a,b].
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If Θ = R, however, the corresponding “uniform distribution" is the
Lebesgue measure on R, which is an improper prior.
If Π is the Lebesgue measure on R, then

(2πσ
2)−n/2

∫
∞

−∞

(µ−a)2 exp

{
−

n

∑
i=1

(xi −µ)2

2σ2

}
dµ

By differentiating a and using ∑
n
i=1(xi −µ)2 = ∑

n
i=1(xi − x̄)2 + n(x̄−µ)2,

we obtain that

δ (x) =

∫
∞

−∞
µ exp

{
−n(x̄ −µ)2/(2σ2)

}
dµ∫

∞

−∞
exp
{
−n(x̄−µ)2/(2σ2)

}
dµ

= x̄ .

Thus, the sample mean is a generalized Bayes action under the
squared error loss.
From Example 2.25, if Π is N(µ0,σ

2
0 ), then the Bayes action is

δ (x) =
σ2

nσ2
0 + σ2

µ0 +
nσ2

0

nσ2
0 + σ2

x̄

Note that in this case x̄ is a limit of δ (x) as σ2
0 → ∞.
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More detailed discussions of the use of improper priors can be found in
Jeffreys (1939, 1948, 1961), Box and Tiao (1973), and Berger (1985).

Hyperparameters and empirical Bayes
A Bayes action depends on the chosen prior with a vector ξ of
parameters called hyperparameters.
So far, hyperparameters are assumed to be known.
If the hyperparameter ξ is unknown, one way to solve the problem is to
estimate ξ using some historical data; the resulting Bayes action is
called an empirical Bayes action.
If there is no historical data, we may estimate ξ using data x and the
resulting Bayes action is also called an empirical Bayes action.
The simplest empirical Bayes method is to estimate ξ by viewing x as
a “sample" from the marginal distribution

Px |ξ (A) =
∫

Θ
Px |θ (A)dΠθ |ξ , A ∈BX ,

where Πθ |ξ is a prior depending on ξ or from the marginal p.d.f.
m(x) =

∫
Θ fθ (x)dΠ, if Px |θ has a p.d.f. fθ .

The method of moments can be applied to estimate ξ .
UW-Madison (Statistics) Stat 710 Lecture 1 Jan 2019 12 / 16



beamer-tu-logo

Example 4.4
Let X = (X1, ...,Xn) and Xi ’s be i.i.d. with an unknown mean µ ∈R and
a known variance σ2.
Assume the prior Πµ|ξ has mean µ0 and variance σ2

0 , ξ = (µ0,σ
2
0 ).

To obtain a moment estimate of ξ , we need to calculate∫
Rn

x1m(x)dx and
∫

Rn
x2

1 m(x)dx , x = (x1, ...,xn).

These two integrals can be obtained without knowing m(x).
Note that∫

Rn
x1m(x)dx =

∫
Θ

∫
Rn

x1fµ (x)dxdΠµ|ξ =
∫

R
µdΠµ|ξ = µ0

and ∫
Rn

x2
1 m(x)dx =

∫
Θ

∫
Rn

x2
1 fµ (x)dxdΠµ|ξ = σ

2 +
∫

R
µ

2dΠµ|ξ

= σ
2 + µ

2
0 + σ

2
0
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Thus, by viewing x1, ...,xn as a sample from m(x), we obtain the
moment estimates

µ̂0 = x̄ and σ̂
2
0 =

1
n

n

∑
i=1

(xi − x̄)2−σ
2,

where x̄ is the sample mean of xi ’s.
Replacing µ0 and σ2

0 in

µ∗(x) =
σ2

nσ2
0 + σ2

µ0 +
nσ2

0

nσ2
0 + σ2

x̄ and c2 =
σ2

0 σ2

nσ2
0 + σ2

(Example 2.25) by µ̂0 and σ̂2
0 , respectively, we find that the empirical

Bayes action under the squared error loss is simply the sample mean
x̄ (which is the generalized Bayes action in Example 4.3).

Note that σ̂2
0 in Example 4.4 can be negative.

Better empirical Bayes methods can be found, for example, in
Berger (1985, §4.5)
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Hierarchical Bayes
Instead of estimating hyperparameters, in the hierarchical Bayes
approach we put a prior on hyperparameters.
Let Πθ |ξ be a (first-stage) prior with a hyperparameter vector ξ and let
Λ be a prior on Ξ, the range of ξ .
Then the “marginal" prior for θ is defined by

Π(B) =
∫

Ξ
Πθ |ξ (B)dΛ(ξ ), B ∈BΘ.

If the second-stage prior Λ also depends on some unknown
hyperparameters, then one can go on to consider a third-stage prior.
In most applications, however, two-stage priors are sufficient, since
misspecifying a second-stage prior is much less serious than
misspecifying a first-stage prior (Berger, 1985, §4.6).
In addition, the second-stage prior can be noninformative (improper).
Bayes actions can be obtained in the same way as before.
Thus, the hierarchical Bayes method is simply a Bayes method with a
hierarchical prior.

UW-Madison (Statistics) Stat 710 Lecture 1 Jan 2019 15 / 16



beamer-tu-logo

Remarks
Empirical Bayes methods deviate from the Bayes method since x
is used to estimate hyperparameters.
The hierarchical Bayes method is generally better than empirical
Bayes methods.

Suppose that Πθ |ξ has a p.d.f. πθ |ξ (θ) and the prior Λ has a p.d.f. λ (ξ )
w.r.t. a σ -finite measure κ.
Then the marginal prior of θ has a p.d.f. (w.r.t. κ)

π(θ) =
∫

Ξ
πθ |ξ (θ)λ (ξ )dκ

Example 2.25.

If X̄ ∼ N(µ,σ2/n) with a known σ2, the prior π(µ|ξ ) is the p.d.f. of
N(ξ ,σ2

0 ) with a known σ2
0 , and the prior of ξ is N(µ0,τ

2) with known µ0
and τ2, then the marginal prior p.d.f. of µ is N(µ0,σ

2
0 + τ2).

This can be derived using the result in Example 2.25 previously
discussed with (x̄ ,µ) replaced by (µ,ξ ).
Because of the hierarchical prior, the prior of µ has more variation.
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