Chapter 4: Estimation in Parametric Models Lecture 1: Bayesian approach

X is from a population in a parametric family $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$, where $\Theta \subset \mathscr{R}^k$ for a fixed integer $k \geq 1$

Bayes approach

- Optimal rules in the *Bayesian approach*, which is fundamentally different from the classical frequentist approach that we have been adopting
- **e** θ is viewed as a realization of a random vector $\vec{\theta} \in \Theta$ whose *prior* distribution is Π
- **•** Prior distribution: past experience, past data, or a statistician's belief (subjective)
- Sample $X \in \mathscr{X}$: from $P_\theta = P_{\scriptscriptstyle{X}|\theta},$ the conditional distribution of X aiven $\vec{\theta} = \theta$
- Posterior distribution: updated prior distribution using observed | $X = x$

UW-Madison (Statistics) and [Stat 710 Lecture 1](#page-15-0) Jan 2019 1/16

How to construct the posterior?

By Theorem 1.7, the joint distribution of X and $\vec{\theta}$ is a probability measure on $\mathscr{X} \times \Theta$ determined by

$$
P(A \times B) = \int_B P_{x|\theta}(A) d\Pi(\theta), \qquad A \in \mathscr{B}_{\mathscr{X}}, \ B \in \mathscr{B}_{\Theta}
$$

The posterior distribution is the conditional distribution $P_{\theta|x}$ whose existence is quaranteed by Theorem 1.7 a.s. $x \in \mathcal{X}$

Theorem 4.1 (Bayes formula)

Assume $\mathscr{P} = \{\mathcal{P}_{\textsf{x} | \theta} : \theta \in \Theta\}$ is dominated by a σ -finite measure v and $f_{\theta}(x) = dP_{x|\theta}/dv$ is a Borel function on $(\mathscr{X} \times \Theta, \sigma(\mathscr{B}_{\mathscr{X}} \times \mathscr{B}_{\Theta}))$. Let Π be a prior distribution on Θ . Suppose that $m(x) = \int_{\Theta} f_{\theta}(x) d\Pi > 0$. (*m*(*x*) is called the marginal p.d.f. of *X* w.r.t. ν) (i) The posterior distribution $P_{\theta}|_X \ll \Pi$ and

$$
dP_{\theta|x}/d\Pi = f_{\theta}(x)/m(x)
$$

(ii) If $\Pi \ll \lambda$ and $d\Pi/d\lambda = \pi(\theta)$ for a σ -finite measure λ , then

$$
dP_{\theta|x}/d\lambda = f_{\theta}(x)\pi(\theta)/m(x)
$$

If T is a sufficient statistic fo[r](#page-2-0) θ θ θ , then the post[erio](#page-0-0)r [d](#page-0-0)[ep](#page-1-0)e[nd](#page-0-0)[s](#page-15-0) [on](#page-0-0)[ly](#page-15-0) [o](#page-0-0)[n](#page-15-0) T . UW-Madison (Statistics) and [Stat 710 Lecture 1](#page-0-0) Jan 2019 2/16

Discrete *X* and $\vec{\theta}$: The Bayes formula in elementary probability

$$
P(\vec{\theta} = \theta | X = x) = \frac{P(X = x | \vec{\theta} = \theta) P(\vec{\theta} = \theta)}{\sum_{\theta \in \Theta} P(X = x | \vec{\theta} = \theta) P(\vec{\theta} = \theta)}
$$

Remarks on the Bayesian approach

- Without loss of generality we may assume $m(x) > 0$ If $m(x) = 0$ for an $x \in \mathcal{X}$, then $f_{\theta}(x) = 0$ a.s. Π Either x should be eliminated from $\mathscr X$ or the prior Π is incorrect and a new prior should be specified
- **•** The posterior $P_{\theta}|_X$ contains all the information we have about θ
- Statistical decisions and inference should be made based on $P_{\theta\mid x},$ conditional on the observed $X = x$
- beamer-tu-logo **In estimating** θ **,** $P_{\theta|X}$ **can be viewed as a randomized decision rule** under the approach discussed in §2.3 After X $=$ x is observed, $P_{\theta | X}$ is a randomized rule, which is a probability distribution on the action space $\mathscr{A} = \Theta$
- The Bayesian method can be applied iter[ativ](#page-1-0)[el](#page-3-0)[y](#page-1-0)

UW-Madison (Statistics) [Stat 710 Lecture 1](#page-0-0) Jan 2019 3/16

Definition 4.1 (Bayes action)

Let $\mathscr A$ be an action space in a decision problem and $L(\theta, a) > 0$ be a loss function

For any $x \in \mathcal{X}$, a *Bayes action* w.r.t. Π is any $\delta(x) \in \mathcal{A}$ such that

$$
E[L(\vec{\theta}, \delta(x))|X = x] = \min_{a \in \mathscr{A}} E[L(\vec{\theta}, a)|X = x]
$$

where the expectation is w.r.t. the posterior distribution $P_{\theta|x}$

Remarks

- The Bayes action minimizes the posterior expected loss
- \bullet *x* is fixed, although $\delta(x)$ depends on *x*
- The Bayes action depends on the prior
- The Bayes action depends on the loss function
- The existence and uniqueness of Bayes actions are discussed in Proposition 4.1
- beamer-tu-logo \bullet If $\delta(x)$ is a measurable function of x, then $\delta(X)$ is a nonrandomized decision rule under the fr[eq](#page-2-0)[ue](#page-4-0)[n](#page-2-0)[tis](#page-3-0)[t](#page-4-0) [a](#page-0-0)[pp](#page-15-0)[ro](#page-0-0)[ac](#page-15-0)[h](#page-0-0)

UW-Madison (Statistics) [Stat 710 Lecture 1](#page-0-0) Jan 2019 4/16

Example 4.1: the estimation of $\vartheta = q(\theta)$

Assume $\int_{\Theta} [g(\theta)]^2 d\Pi < \infty, \, \mathscr{A} =$ the range of $g(\theta),$ and $L(\theta, a) = [g(\theta) - a]^2$ (squared error loss).

Using the argument in Example 1.22, we obtain the Bayes action

$$
\delta(x) = \frac{\int_{\Theta} g(\theta) f_{\theta}(x) d\Pi}{m(x)} = \frac{\int_{\Theta} g(\theta) f_{\theta}(x) d\Pi}{\int_{\Theta} f_{\theta}(x) d\Pi},
$$

which is the posterior expectation of $g(\vec{\theta})$, given $X = x$.

A more specific case

 $g(\theta)=\theta^j$ for some integer $j\geq 1$ $f_{\theta}(x)=e^{-\theta} \theta^{\chi} I_{\{0,1,2,...\}}(x)/x!$ (the Poisson distribution) with $\theta>0$ Π has a Lebesgue p.d.f. $\pi(\theta)=\theta^{\alpha-1}e^{-\theta/\gamma}I_{(0, \infty)}(\theta)/[\Gamma(\alpha)\gamma^{\alpha}]$ (the gamma distribution $\Gamma(\alpha, \gamma)$ with known $\alpha > 0$ and $\gamma > 0$) Then, for $x = 0, 1, 2, \dots$, and some function $c(x)$,

$$
f_{\theta}(x)\pi(\theta)/m(x) = c(x)\theta^{x+\alpha-1}e^{-\theta(\gamma+1)/\gamma}I_{(0,\infty)}(\theta),
$$

This is the gamma distribution $\Gamma(x+\alpha, \gamma/(\gamma+1))$ $\Gamma(x+\alpha, \gamma/(\gamma+1))$ [.](#page-5-0)

Without actually working out the integral *m*(*x*), we know that

$$
c(x) = (1 + \gamma^{-1})^{x+\alpha}/\Gamma(x+\alpha),
$$

$$
\delta(x) = c(x) \int_0^\infty \theta^{j+x+\alpha-1} e^{-\theta(\gamma+1)/\gamma} d\theta.
$$

The integrand is proportional to the p.d.f. of the gamma distribution $\Gamma(i + x + \alpha, \gamma/(\gamma + 1)).$ **Hence**

$$
\delta(x) = c(x)\Gamma(j+x+\alpha)/(1+\gamma^{-1})^{j+x+\alpha}
$$

= $(j+x+\alpha-1)\cdots(x+\alpha)/(1+\gamma^{-1})^j$.

In particular, $\delta(x) = (x + \alpha)\gamma/(\gamma + 1)$ when $j = 1$.

Conjugate prior

beamer-tu-logo An interesting phenomenon is that the prior and the posterior are in the same parametric family of distributions. Such a prior is called a *conjugate* prior.

UW-Madison (Statistics) [Stat 710 Lecture 1](#page-0-0) Jan 2019 6/16

Remarks

- Whether a prior is conjugate involves a pair of families, the family $\mathscr{P} = \{f_{\theta} : \theta \in \Theta\}$ and the family from which Π is chosen.
- Example 4.1 shows that the Poisson family and the gamma family produce conjugate priors.
- Many pairs of families in Table 1.1 (page 18) and Table 1.2 (pages 20-21) produce conjugate priors.
- Under a conjugate prior, Bayes actions often have explicit forms (in *x*) when the loss function is simple.
- **E**ven under a conjugate prior, the integral in $\delta(x)$ in Example 4.1 involving a general *g* may not have an explicit form.
- **In general, numerical methods have to be used in evaluating the** integrals in $\delta(x)$ under general loss functions.

Example 2.25/4.8

beamer-tu-logo $X_1,...,X_n$ i.i.d. \sim $N(\mu,\sigma^2),$ where $\mu\in\mathscr{R}$ is unknown and σ^2 is known. Let $\pi(\mu)$ be the pdf of $N(\mu_0, \sigma_0^2)$. Sinc[e](#page-0-0) $\bar{X} \sim N(\mu, \sigma^2/n)$ $\bar{X} \sim N(\mu, \sigma^2/n)$ $\bar{X} \sim N(\mu, \sigma^2/n)$ is sufficient, we tre[at](#page-0-0) $\bar{X} = \bar{x}$ $\bar{X} = \bar{x}$ $\bar{X} = \bar{x}$ a[s t](#page-6-0)[h](#page-7-0)e [ob](#page-15-0)[se](#page-0-0)[rv](#page-15-0)at[ion](#page-15-0). UW-Madison (Statistics) and [Stat 710 Lecture 1](#page-0-0) Jan 2019 1/16

$$
f_{\mu}(\bar{x})\pi(\mu) = \exp\left(-\frac{(\bar{x} - \mu)^2}{2\sigma^2/n}\right) \exp\left(-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right)
$$

= $\exp\left(-\frac{1}{2}\left[\left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}\right)\mu^2 - 2\left(\frac{n\bar{x}}{\sigma^2} + \frac{\mu_0}{\sigma_0^2}\right)\mu + \frac{n\bar{x}^2}{\sigma^2} + \frac{\mu_0^2}{\sigma_0^2}\right]\right)$
= $\exp\left(-\frac{1}{2}\left[A\mu^2 - 2B\mu + C\right]\right) = \exp\left(-\frac{1}{2}\left[A(\mu - B/A)^2 - B^2/A + C\right]\right)$

Integrating out μ , we obtain that the marginal density of \bar{X} is

$$
m(\bar{x}) \propto \exp\left(-\frac{1}{2}\left[C - B^2/A\right]\right) \propto \exp\left(-\frac{(\bar{x} - \mu_0)^2}{2(\sigma^2/n + \sigma_0^2)}\right)
$$

i.e., $m(\bar{x})$ is the density of $N(\mu_0, \sigma^2/n + \sigma_0^2)$. Also, the posterior of μ given \bar{x} is $\mathcal{N}(B/A,\bar{A}^{-1}).$ Then the Bayes estimate of μ under the squared error loss is

$$
\delta(\bar{x}) = B/A = \frac{\sigma_0^2}{\sigma_0^2 + \sigma^2/n} \bar{x} + \frac{\sigma^2/n}{\sigma_0^2 + \sigma^2/n} \mu_0
$$

Next, assume that both μ and σ^2 are unknown, the prior for $\omega = (2\sigma^2)^{-1}$ is the gamma distribution Γ (α, γ) with known α and γ , and the prior for μ is $N(\mu_0, \sigma_0^2/\omega)$ (conditional on ω). Then the posterior p.d.f. of (μ, ω) is proportional to

$$
\omega^{(n+1)/2+\alpha-1} \exp \left\{-\left[\gamma^{-1} + (n-1)s^2 + n(\bar{x}-\mu)^2 + \frac{(\mu-\mu_0)^2}{2\sigma_0^2}\right]\omega\right\},\,
$$

From

$$
n(\bar{x}-\mu)^2+\frac{(\mu-\mu_0)^2}{2\sigma_0^2}=\left(n+\frac{1}{2\sigma_0^2}\right)\mu^2-2\left(n\bar{x}+\frac{\mu_0}{2\sigma_0^2}\right)\mu+n\bar{x}^2+\frac{\mu_0^2}{2\sigma_0^2}.
$$

the posterior p.d.f. of (μ, ω) is proportional to

$$
\omega^{(n+1)/2+\alpha-1} \exp \left\{-\left[\gamma^{-1} + W + \left(n + \frac{1}{2\sigma_0^2}\right)\{\mu - \zeta(\bar{x})\}^2\right]\omega\right\},
$$

$$
\zeta(\bar{x}) = \frac{n\bar{x} + \frac{\mu_0}{2\sigma_0^2}}{n + \frac{1}{2\sigma_0^2}} \quad \text{and} \quad W = \sum_{i=1}^n x_i^2 + \frac{\mu_0^2}{2\sigma_0^2} - \left(n + \frac{1}{2\sigma_0^2}\right)[\zeta(\bar{x})]^2.
$$

Under the squared error loss, the Bayes estimate of μ is $\zeta(\bar{x})$ and the $\|\cdot\|$ Thus, the posterior of ω is $\Gamma(n/2+\alpha,(\gamma^{-1}+{\sf W})^{-1})$ and the posterior of μ (given ω and *x*) is $N(\zeta(\bar{x}),[(2n+\sigma_0^{-2}$ $\int_0^{-2} |\omega|^{-1}$. Bayes estimate of $\sigma^2 = (2\omega)^{-1}$ is $(\gamma^{-1} + W)/(\mathit{n} + 2\alpha - 2), \, \mathit{n} + 2\alpha > 2.$ $(\gamma^{-1} + W)/(\mathit{n} + 2\alpha - 2), \, \mathit{n} + 2\alpha > 2.$ $(\gamma^{-1} + W)/(\mathit{n} + 2\alpha - 2), \, \mathit{n} + 2\alpha > 2.$ $(\gamma^{-1} + W)/(\mathit{n} + 2\alpha - 2), \, \mathit{n} + 2\alpha > 2.$ $(\gamma^{-1} + W)/(\mathit{n} + 2\alpha - 2), \, \mathit{n} + 2\alpha > 2.$ $(\gamma^{-1} + W)/(\mathit{n} + 2\alpha - 2), \, \mathit{n} + 2\alpha > 2.$ $(\gamma^{-1} + W)/(\mathit{n} + 2\alpha - 2), \, \mathit{n} + 2\alpha > 2.$ $(\gamma^{-1} + W)/(\mathit{n} + 2\alpha - 2), \, \mathit{n} + 2\alpha > 2.$ $(\gamma^{-1} + W)/(\mathit{n} + 2\alpha - 2), \, \mathit{n} + 2\alpha > 2.$

UW-Madison (Statistics) [Stat 710 Lecture 1](#page-0-0) Jan 2019 9/16

Generalized Bayes action

The minimization in Definition 4.1 is the same as the minimizing

$$
\int_{\Theta} L(\theta, \delta(x)) f_{\theta}(x) d\Pi = \min_{a \in \mathscr{A}} \int_{\Theta} L(\theta, a) f_{\theta}(x) d\Pi
$$

This is still defined even if Π is not a probability measure but a σ -finite measure on Θ, in which case *m*(*x*) may not be finite.

If $\Pi(\Theta) \neq 1$, Π is called an improper prior.

 $\delta(x)$ is called a generalized Bayes action.

With no past information, one has to choose a prior subjectively.

In such cases, one would like to select a noninformative prior that tries to treat all parameter values in Θ equitably.

A noninformative prior is often improper.

Example 4.3

If $\Theta = [a, b]$ with $-\infty < a < b < \infty$, then a noninformative prior that treats Suppose that X = $(X_1,...,X_n)$ and X_i 's are i.i.d. from $\mathcal{N}(\mu, \sigma^2),$ where $\mu\in\Theta\subset\mathscr{R}$ is unknown and σ^2 is known. Consider the estimation of $\vartheta = \mu$ under the squared error loss. all parameter values equitably is the uniform d[ist](#page-8-0)r[ib](#page-10-0)[u](#page-8-0)[tio](#page-9-0)[n](#page-10-0) [o](#page-0-0)[n](#page-15-0) [*[a](#page-0-0)*,*[b](#page-15-0)*][.](#page-0-0) UW-Madison (Statistics) and [Stat 710 Lecture 1](#page-0-0) Jan 2019 10/16

If $\Theta = \mathscr{R}$, however, the corresponding "uniform distribution" is the Lebesque measure on $\mathscr R$, which is an improper prior. If Π is the Lebesgue measure on $\mathcal R$, then

$$
(2\pi\sigma^2)^{-n/2}\int_{-\infty}^{\infty}(\mu-a)^2\exp\left\{-\sum_{i=1}^n\frac{(x_i-\mu)^2}{2\sigma^2}\right\}d\mu
$$

By differentiating *a* and using $\sum_{i=1}^{n}(x_i - \mu)^2 = \sum_{i=1}^{n}(x_i - \bar{x})^2 + n(\bar{x} - \mu)^2$, we obtain that

$$
\delta(x)=\frac{\int_{-\infty}^{\infty}\mu\exp\left\{-n(\bar{x}-\mu)^2/(2\sigma^2)\right\}d\mu}{\int_{-\infty}^{\infty}\exp\left\{-n(\bar{x}-\mu)^2/(2\sigma^2)\right\}d\mu}=\bar{x}.
$$

Thus, the sample mean is a generalized Bayes action under the squared error loss.

From Example 2.25, if Π is $\mathcal{N}(\mu_0, \sigma_0^2)$, then the Bayes action is

$$
\delta(x) = \frac{\sigma^2}{n\sigma_0^2 + \sigma^2}\mu_0 + \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2}\bar{x}
$$

Note that in this case \bar{x} is a limit of $\delta(x)$ as $\sigma_0^2 \rightarrow \infty.$

More detailed discussions of the use of improper priors can be found in Jeffreys (1939, 1948, 1961), Box and Tiao (1973), and Berger (1985).

Hyperparameters and empirical Bayes

A Bayes action depends on the chosen prior with a vector ξ of parameters called *hyperparameters*.

So far, hyperparameters are assumed to be known.

If the hyperparameter ξ is unknown, one way to solve the problem is to estimate ξ using some historical data; the resulting Bayes action is called an *empirical Bayes* action.

If there is no historical data, we may estimate ξ using data *x* and the resulting Bayes action is also called an empirical Bayes action. The simplest empirical Bayes method is to estimate ξ by viewing *x* as a "sample" from the marginal distribution

$$
P_{x|\xi}(A) = \int_{\Theta} P_{x|\theta}(A) d\Pi_{\theta|\xi}, \qquad A \in \mathscr{B}_{\mathscr{X}},
$$

where Π $_{\theta|\xi}$ is a prior depending on ξ or from the marginal p.d.f. $m(x) = \int_{\Theta} f_{\theta}(x) d\Pi$, if $P_{x|\theta}$ has a p.d.f. f_{θ} . The method of moments can be applied to est[im](#page-10-0)[at](#page-12-0)[e](#page-10-0) ξ [.](#page-12-0)

Example 4.4

Let $X = (X_1,...,X_n)$ and X_i 's be i.i.d. with an unknown mean $\mu \in \mathscr{R}$ and a known variance σ^2 .

Assume the prior $\Pi_{\mu|\xi}$ has mean μ_0 and variance σ_0^2 , $\xi = (\mu_0, \sigma_0^2)$. To obtain a moment estimate of ξ , we need to calculate

$$
\int_{\mathscr{R}^n} x_1 m(x) dx \text{ and } \int_{\mathscr{R}^n} x_1^2 m(x) dx, x = (x_1, ..., x_n).
$$

These two integrals can be obtained without knowing *m*(*x*). Note that

$$
\int_{\mathscr{R}^n} x_1 m(x) dx = \int_{\Theta} \int_{\mathscr{R}^n} x_1 f_\mu(x) dx d\Pi_{\mu|\xi} = \int_{\mathscr{R}} \mu d\P_{\mu|\xi} = \mu_0
$$

and

$$
\int_{\mathcal{R}^n} x_1^2 m(x) dx = \int_{\Theta} \int_{\mathcal{R}^n} x_1^2 f_\mu(x) dx d\Pi_{\mu|\xi} = \sigma^2 + \int_{\mathcal{R}} \mu^2 d\Pi_{\mu|\xi}
$$

$$
=\sigma^2+\mu_0^2+\sigma_0^2
$$

Thus, by viewing $x_1,...,x_n$ as a sample from $m(x)$, we obtain the moment estimates

$$
\hat{\mu}_0 = \bar{x}
$$
 and $\hat{\sigma}_0^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 - \sigma^2$,

where \bar{x} is the sample mean of x_i 's. Replacing μ_0 and σ_0^2 in

$$
\mu_*(x) = \frac{\sigma^2}{n\sigma_0^2 + \sigma^2}\mu_0 + \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2}\bar{x}
$$
 and $c^2 = \frac{\sigma_0^2\sigma^2}{n\sigma_0^2 + \sigma^2}$

(Example 2.25) by $\hat{\mu}_0$ and $\hat{\sigma}_0^2$, respectively, we find that the empirical $\hat{\sigma}_0$ Bayes action under the squared error loss is simply the sample mean \bar{x} (which is the generalized Bayes action in Example 4.3).

- Note that $\hat{\sigma}_0^2$ in Example 4.4 can be negative.
- beamer-tu-logo **•** Better empirical Bayes methods can be found, for example, in Berger (1985, §4.5)

Hierarchical Bayes

Instead of estimating hyperparameters, in the hierarchical Bayes approach we put a prior on hyperparameters.

Let $\Pi_{\theta|\xi}$ be a (first-stage) prior with a hyperparameter vector ξ and let Λ be a prior on Ξ, the range of ξ .

Then the "marginal" prior for θ is defined by

$$
\Pi(B)=\int_{\Xi}\Pi_{\theta|\xi}(B)d\Lambda(\xi), \qquad B\in\mathscr{B}_{\Theta}.
$$

beamer-tu-logo If the second-stage prior Λ also depends on some unknown hyperparameters, then one can go on to consider a third-stage prior. In most applications, however, two-stage priors are sufficient, since misspecifying a second-stage prior is much less serious than misspecifying a first-stage prior (Berger, 1985, §4.6). In addition, the second-stage prior can be noninformative (improper). Bayes actions can be obtained in the same way as before. Thus, the hierarchical Bayes method is simply a Bayes method with a hierarchical prior.

Remarks

- Empirical Bayes methods deviate from the Bayes method since *x* is used to estimate hyperparameters.
- **•** The hierarchical Bayes method is generally better than empirical Bayes methods.

Suppose that Π $_{\theta|\xi}$ has a p.d.f. $\pi_{\theta|\xi}(\theta)$ and the prior Λ has a p.d.f. $\lambda(\xi)$ w.r.t. a σ -finite measure κ .

Then the marginal prior of θ has a p.d.f. (w.r.t. κ)

$$
\pi(\theta) = \int_{\Xi} \pi_{\theta|\xi}(\theta) \lambda(\xi) d\kappa
$$

Example 2.25.

If \bar{X} \sim *N*($\mu, \sigma^2/n$) with a known σ^2 , the prior $\pi(\mu | \xi)$ is the p.d.f. of *N*(ξ, σ_0^2) with a known σ_0^2 , and the prior of ξ is *N*(μ_0 , τ²) with known μ_0 and τ^2 , then the marginal prior p.d.f. of μ is $N(\mu_0, \sigma_0^2 + \tau^2)$.

This can be derived using the result in Example 2.25 previously discussed with (\bar{x}, μ) replaced by (μ, ξ) .

Because of t[h](#page-14-0)ehi[e](#page-0-0)rarchical prior, the prior of μ h[as](#page-15-0) [mor](#page-15-0)e [va](#page-15-0)[ria](#page-0-0)[ti](#page-15-0)[on](#page-0-0)[.](#page-15-0)