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Lecture 2: Bayes rule and computation
Bayes rule
Under the frequentist approach, a Bayes action δ (X ) as a measurable
function of X is a nonrandomized decision rule.
It can be shown that δ (X ) defined in Definition 4.1 (if it exists for
X = x ∈ A with

∫
Θ Pθ (A)dΠ = 1) also minimizes the Bayes risk

rT (Π) =
∫

Θ
RT (θ)dΠ

over all decision rules T (randomized or nonrandomized), where
RT (θ) = E [L(θ ,T (X ))] is the risk function of T (Chapter 2).
Thus, δ (X ) is a Bayes rule defined in §2.3.2.
In an estimation problem, a Bayes rule is called a Bayes estimator.
Generalized Bayes risks and generalized Bayes rules (or estimators)
can be defined similarly.
In view of the discussion in §2.3.2, even if we do not adopt the
Bayesian approach, the method described in §4.1.1 can be used as a
way of generating decision rules.
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Frequentist properties of Bayes rules/estimators
Admissibility
Given RT (θ) = E [L(T (X ),θ)], T is ℑ-admissible iff there is no T0 ∈ ℑ

with RT0(θ)≤ RT (θ) for all θ and RT0(θ) < RT (θ) for some θ

Admissible = ℑ-admissible with ℑ = { all rules }

Bayes rules are typically admissible: If T is better than a Bayes rule δ ,
then T has the same Bayes risk as δ and is itself a Bayes rule: We
only need to show that no Bayes rule is worse than another Bayes rule.

Theorem 4.2 (Admissibility of Bayes rules)
In a decision problem, let δ (X ) be a Bayes rule w.r.t. a prior Π.
(i) If δ (X ) is a unique Bayes rule, then δ (X ) is admissible.
(ii) If Θ is a countable set, the Bayes risk r

δ
(Π) < ∞, and Π gives

positive probability to each θ ∈Θ, then δ (X ) is admissible.
(iii) Let ℑ be the class of decision rules having continuous risk
functions. If δ (X ) ∈ ℑ, r

δ
(Π) < ∞, and Π gives positive probability to

any open subset of Θ, then δ (X ) is ℑ-admissible.
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Generalized Bayes rules or estimators are not necessarily admissible.
Many generalized Bayes rules are limits of Bayes rules (Examples 4.3
and 4.7), which are often admissible.

Theorem 4.3
Suppose that Θ is an open set of Rk .
In a decision problem, let ℑ be the class of decision rules having
continuous risk functions.
A decision rule T ∈ ℑ is ℑ-admissible if there exists a sequence {Πj} of
(possibly improper) priors such that
(a) the generalized Bayes risks rT (Πj) are finite for all j ;
(b) for any θ0 ∈Θ and η > 0,

lim
j→∞

rT (Πj)− r ∗j (Πj)

Πj(Oθ0,η )
= 0,

where r ∗j (Πj) = infT∈ℑ rT (Πj) and Oθ0,η = {θ ∈Θ : ‖θ −θ0‖< η} with
Πj(Oθ0,η ) < ∞ for all j .
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Proof
Suppose that T is not ℑ-admissible.
Then there exists T0 ∈ ℑ such that RT0(θ)≤ RT (θ) for all θ and
RT0(θ0) < RT (θ0) for a θ0 ∈Θ.
From the continuity of the risk functions, we conclude that

RT0(θ) < RT (θ)− ε θ ∈Oθ0,η

for some constants ε > 0 and η > 0.
Then, for any j ,

rT (Πj)− r ∗j (Πj) ≥ rT (Πj)− rT0
(Πj)

≥
∫

Oθ0 ,η

[RT (θ)−RT0(θ)]dΠj(θ)

≥ εΠj(Oθ0,η ),

which contradicts condition (b). Hence, T is ℑ-admissible.
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While the proof of Theorem 4.3 is easy, the application of Theorem 4.3
is not so easy.

Example 4.6 (An application of Theorem 4.3)

Consider X1, ...,Xn iid from N(µ,σ2) with unknown µ and known σ2

Loss = the squared error loss.
By Theorem 2.1, the risk function of any decision rule is continuous in
µ if the risk is finite.
Apply Theorem 4.3 to the sample mean X̄
Let Πj = N(0, j).
Since RX̄ (µ) = σ2/n, rX̄ (Πj) = σ2/n for any j .
Hence, condition (a) in Theorem 4.3 is satisfied.
From Example 2.25, the Bayes estimator w.r.t. Πj is

δj(X ) =
nj

nj + σ2 X̄

Thus,
Rδj

(µ) =
σ2nj2 + σ4µ2

(nj + σ2)2
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and

r ∗j (Πj) =
∫

Rδj
(µ)dΠj =

σ2j
nj + σ2 .

For any Oµ0,η = {µ : |µ−µ0|< η},

Πj(Oµ0,η ) = Φ

(
µ0 + η√

j

)
−Φ

(
µ0−η√

j

)
=

2ηΦ′(ξj)√
j

for some ξj satisfying (µ0−η)/
√

j ≤ ξj ≤ (µ0 + η)/
√

j , where Φ is the
standard normal c.d.f. and Φ′ is its derivative.
Since Φ′(ξj)→ Φ′(0) = (2π)−1/2,

r
X̄

(Πj)− r ∗j (Πj)

Πj(Oµ0,η )
=

σ4
√

j
2ηΦ′(ξj)n(nj + σ2)

→ 0

as j → ∞.
Thus, condition (b) in Theorem 4.3 is satisfied.
Hence, Theorem 4.3 applies and the sample mean X̄ is admissible.
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For any estimator T of ϑ , its bias is E(T )−ϑ

Proposition 4.2 (Bayes estimators are biased)
If δ (X ) is a Bayes estimator of ϑ = g(θ) under the squared error loss,
then δ (X ) is not unbiased except in the trivial case where r

δ
(Π) = 0.

Proposition 4.2 can be used to check whether an estimator can be
a Bayes estimator w.r.t. some prior under the squared error loss.
However, a generalized Bayes estimator may be unbiased; see,
for instance, Examples 4.3 and 4.7.

Proof of Proposition 4.2

Suppose that δ (X ) is unbiased, i.e., E [δ (X )|~θ ] = g(~θ).
Conditioning on ~θ and using Proposition 1.10, we obtain that

E [g(~θ)δ (X )] = E{g(~θ)E [δ (X )|~θ ]}= E [g(~θ)]2.

Since δ (X ) = E [g(~θ)|X ], conditioning on X and using Proposition 1.10,

E [g(~θ)δ (X )] = E{δ (X )E [g(~θ)|X ]}= E [δ (X )]2.

Then
r

δ
(Π) = E [δ (X )−g(~θ)]2 = E [δ (X )]2 + E [g(~θ)]2−2E [g(~θ)δ (X )] = 0.
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Bayesian computation

We first consider an example, in which we need the following useful
lemma.
Lemma 4.1
Suppose that X has a p.d.f. fθ (x) w.r.t. a σ -finite measure ν .
Suppose that θ = (θ1,θ2), θj ∈Θj , and that the prior has a p.d.f.

π(θ) = πθ1|θ2(θ1)πθ2(θ2),

where πθ2(θ2) is a p.d.f. w.r.t. a σ -finite measure ν2 on Θ2 and for any
given θ2, πθ1|θ2(θ1) is a p.d.f. w.r.t. a σ -finite measure ν1 on Θ1.
Suppose further that if θ2 is given, the Bayes estimator of
h(θ1) = g(θ1,θ2) under the squared error loss is δ (X ,θ2).
Then the Bayes estimator of g(θ1,θ2) under the squared error loss is
δ (X ) with

δ (x) =
∫

Θ2

δ (x ,θ2)pθ2|x (θ2)dν2,

where pθ2|x (θ2) is the posterior p.d.f. of ~θ2 given X = x .
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Example 4.9
Consider a linear model

Xij = β
τZi + εij , j = 1, ...,ni , i = 1, ...,k ,

where β ∈Rp is unknown, Zi ’s are known vectors, εij ’s are
independent, and εij is N(0,σ2

i ), j = 1, ...,ni , i = 1, ...,k .
Let X be the sample vector containing all Xij ’s.
The parameter vector is θ = (β ,ω), ω = (ω1, ...,ωk ) and ωi = (2σ2

i )−1.
Assume the prior for θ has the Lebesgue p.d.f.

c π(β )
k

∏
i=1

ω
α

i e−ωi/γ ,

where α > 0, γ > 0, and c > 0 are known constants and π(β ) is a
known Lebesgue p.d.f. on Rp.
The posterior p.d.f. of θ is then proportional to

h(X ,θ) = π(β )
k

∏
i=1

ω
ni/2+α

i e−[γ−1+vi (β)]ωi ,

where vi(β ) = ∑
ni
j=1(Xij −β τZi)

2.
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Example 4.9 (continued)

If β is known, the Bayes estimator of σ2
i under the squared error loss is∫ 1

2ωi

h(X ,θ)∫
h(X ,θ)dω

dω =
γ−1 + vi(β )

2α + ni
.

By Lemma 4.1, the Bayes estimator of σ2
i is

σ̂
2
i =

∫
γ−1 + vi(β )

2α + ni
fβ |X (β )dβ ,

where

fβ |X (β ) ∝

∫
h(X ,θ)dω

∝ π(β )
k

∏
i=1

∫
ω

α+ni/2
i e−[γ−1+vi (β)]ωi dωi

∝ π(β )
k

∏
i=1

[
γ
−1 + vi(β )

]−(α+1+ni/2)

is the posterior p.d.f. of β .
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Example 4.9 (continued)
The Bayes estimator of lτβ for any l ∈Rp is then the posterior mean of
lτβ w.r.t. the p.d.f. fβ |X (β ).
In this problem, Bayes estimators do not have explicit forms.
A numerical method has to be used to evaluate Bayes estimators (see
Example 4.10).
Let X̄i · and S2

i be the sample mean and variance of Xij , j = 1, ...,ni
(S2

i is defined to be 0 if ni = 1)
Let σ2

0 = (2αγ)−1 (the prior mean of σ2
i ).

Then the Bayes estimator σ̂2
i can be written as

2α

2α + ni
σ

2
0 +

ni −1
2α + ni

S2
i +

ni

2α + ni

∫
(X̄i ·−β

τZi)
2fβ |X (β )dβ .

This Bayes estimator is a weighted average of prior information, “within
group" variation, and averaged squared “residuals".

UW-Madison (Statistics) Stat 710 Lecture 2 Jan 2019 11 / 15



beamer-tu-logo

Markov chain Monte Carlo (MCMC)
Often, Bayes actions or estimators have to be computed numerically.
Typically we need to compute

Ep(g) =
∫

Θ
g(θ)p(θ)dν

with some function g, where p(θ) is a p.d.f. w.r.t. a σ -finite measure ν

on (Θ,BΘ) and Θ⊂Rk .
If g is an indicator function of A ∈BΘ and p(θ) is the posterior p.d.f. of
θ given X = x , then Ep(g) is the posterior probability of A.
There are many numerical methods for computing integrals Ep(g).

The simple Monte Carlo method

Generate i.i.d. θ (1), ...,θ (m) from a p.d.f. h(θ) > 0 w.r.t. ν .
By the SLLN, as m→ ∞,

Êp(g) =
1
m

m

∑
j=1

g(θ (j))p(θ (j))

h(θ (j))
→a.s.

∫
Θ

g(θ)p(θ)

h(θ)
h(θ)dν = Ep(g).

Hence Êp(g) is a numerical approximation to Ep(g).
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The simple Monte Carlo method may not work well because
the convergence of Êp(g) is very slow when k (the dimension of
Θ) is large
generating a random vector from some k -dimensional distribution
may be difficult, if not impossible.

More sophisticated MCMC methods
Different from the simple Monte Carlo in two aspects:

generating random vectors can be done using distributions whose
dimensions are much lower than k
θ (1), ...,θ (m) are not independent, but form a homogeneous
Markov chain.

Many MCMC methods were developed in the last 20 years
We only consider one of them as an example
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Gibbs sampler
Let y = (y1,y2, ...,yd ). (yj ’s may be vectors with different dimensions)
At step t = 1,2, ..., given y (t−1), generate
y (t)

1 from P(y (t−1)
2 , ...,y (t−1)

d |y (t−1)
1 ),...,

y (t)
j from P(y (t)

1 , ...,y (t)
j−1,y

(t−1)
j+1 , ...,y (t−1)

k |y (t−1)
j ),...,

y (t)
k from Pk (y (t)

1 , ...,y (t)
k−1|y

(t−1)
k ).

Example 4.10
Consider Example 4.9 (normal linear model).
Under the given prior for θ = (β ,ω), it is difficult to generate random
vectors directly from the posterior p.d.f.

p(θ) ∝ π(β )
k

∏
i=1

ω
ni/2+α

i e−[γ−1+vi (β)]ωi ,

which does not have a familiar form.
To apply a Gibbs sampler with y = θ , y1 = β , and y2 = ω, we need to
generate random vectors from the posterior of β , given x and ω, and
the posterior of ω, given x and β .
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Example 4.10 (continued)
Since

p(θ) ∝ π(β )
k

∏
i=1

ω
ni/2+α

i e−[γ−1+vi (β)]ωi ,

the posterior of ω = (ω1, ...,ωk ), given x and β , is a product of
marginals of ωi ’s that are the gamma distributions
Γ(α + 1 + ni/2, [γ−1 + vi(β )]−1), i = 1, ...,k .
Assume now that π(β )≡ 1 (noninformative prior for β ).
The posterior p.d.f. of β , given x and ω, is proportional to

k

∏
i=1

e−ωi vi (β)
∝ e−‖W

1/2Zβ−W 1/2X‖2 ,

where W is the diagonal block matrix whose i th block is ωi Ini .
Let n = ∑

k
i=1 ni .

The posterior of W 1/2Zβ , given X and ω, is Nn(W 1/2X ,2−1In) and the
posterior of β , given X and ω, is Np((Z τWZ )−1Z τWX ,2−1(Z τWZ )−1)
(Z τWZ is assumed of full rank for simplicity), since
β = [(Z τWZ )−1Z τW 1/2]W 1/2Zβ .
Random generation using these two posterior distributions is easy.
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