Lecture 2: Bayes rule and computation

Bayes rule

Under the frequentist approach, a Bayes action $\delta(X)$ as a measurable function of *X* is a nonrandomized decision rule.

It can be shown that $\delta(X)$ defined in Definition 4.1 (if it exists for X $=$ *x* \in *A* with \int_{Θ} P_{θ} (*A*) d Π $=$ 1) also minimizes the Bayes risk

$$
r_{\tau}(\Pi) = \int_{\Theta} R_{T}(\theta) d\Pi
$$

over all decision rules *T* (randomized or nonrandomized), where $R_T(\theta) = E[L(\theta, T(X))]$ is the risk function of *T* (Chapter 2).

Thus, $\delta(X)$ is a Bayes rule defined in §2.3.2.

In an estimation problem, a Bayes rule is called a *Bayes estimator*.

Generalized Bayes risks and generalized Bayes rules (or estimators) can be defined similarly.

Bayesian approach, the method described in §4.1.1 can be used as a \parallel In view of the discussion in §2.3.2, even if we do not adopt the way of generating decision rules.

Frequentist properties of Bayes rules/estimators

Admissibility

Given $R_T(\theta) = E[L(T(X), \theta)]$, T is \Im -admissible iff there is no $T_0 \in \Im$ with $R_{\mathcal{T}_0}(\theta)$ \leq $R_{\mathcal{T}}(\theta)$ for all θ and $R_{\mathcal{T}_0}(\theta)$ $<$ $R_{\mathcal{T}}(\theta)$ for some θ Admissible = 3 -admissible with $3 = \{$ all rules $\}$

Bayes rules are typically admissible: If T is better than a Bayes rule δ , then *T* has the same Bayes risk as δ and is itself a Bayes rule: We only need to show that no Bayes rule is worse than another Bayes rule.

Theorem 4.2 (Admissibility of Bayes rules)

beamer-tu-logo In a decision problem, let δ(*X*) be a Bayes rule w.r.t. a prior Π. (i) If $\delta(X)$ is a unique Bayes rule, then $\delta(X)$ is admissible. (ii) If Θ is a countable set, the Bayes risk $r_{_\delta}(\Pi)<\infty,$ and Π gives positive probability to each $\theta \in \Theta$, then $\delta(X)$ is admissible. (iii) Let \Im be the class of decision rules having continuous risk functions. If $\delta(X)$ \in $\mathfrak{I},$ $\mathit{r}_{_{\delta}}(\mathsf{\Pi})$ $<$ $\infty,$ and $\mathsf{\Pi}$ gives positive probability to any open subset of Θ , then $\delta(X)$ is *S*-admissi[ble](#page-0-0).

Generalized Bayes rules or estimators are not necessarily admissible.

Many generalized Bayes rules are limits of Bayes rules (Examples 4.3 and 4.7), which are often admissible.

Theorem 4.3

Suppose that Θ is an open set of $\mathscr{R}^k.$

In a decision problem, let S be the class of decision rules having continuous risk functions.

A decision rule *T* ∈ ℑ is ℑ-admissible if there exists a sequence {Π*j*} of (possibly improper) priors such that

(a) the generalized Bayes risks $r_{_{\cal T}}(\Pi_j)$ are finite for all *j*;

(b) for any $\theta_0 \in \Theta$ and $\eta > 0$,

$$
\lim_{j\to\infty}\frac{r_{\tau}(\Pi_j)-r_j^*(\Pi_j)}{\Pi_j(O_{\theta_0,\eta})}=0,
$$

beamer-tu-logo where $r^*_j(\Pi_j)=\inf_{\tau\in\mathfrak{T}}r_{\tau}(\Pi_j)$ and $O_{\theta_0,\eta}=\{\theta\in\Theta:\|\theta-\theta_0\|<\eta\}$ with $\Pi_i(O_{\theta_0,n}) < \infty$ for all *j*.

Proof

Suppose that T is not $\mathfrak T$ -admissible.

Then there exists $T_0 \in \mathfrak{S}$ such that $R_{T_0}(\theta) \leq R_{T}(\theta)$ for all θ and $R_{T_0}(\theta_0) < R_T(\theta_0)$ for a $\theta_0 \in \Theta$. From the continuity of the risk functions, we conclude that

 $R_{\mathcal{T}_0}(\theta) < R_{\mathcal{T}}(\theta) - \varepsilon \quad \theta \in O_{\theta_0, \eta}$

for some constants $\varepsilon > 0$ and $\eta > 0$. Then, for any *j*,

$$
r_{\tau}(\Pi_j) - r_j^*(\Pi_j) \ge r_{\tau}(\Pi_j) - r_{\tau_0}(\Pi_j)
$$

\n
$$
\ge \int_{O_{\theta_0,\eta}} [R_{\tau}(\theta) - R_{\tau_0}(\theta)] d\Pi_j(\theta)
$$

\n
$$
\ge \epsilon \Pi_j(O_{\theta_0,\eta}),
$$

which contradicts condition (b). Hence, T is \Im -admissible.

化重新分量

beamer-tu-logo

 Ω

While the proof of Theorem 4.3 is easy, the application of Theorem 4.3 is not so easy.

Example 4.6 (An application of Theorem 4.3)

Consider $X_1,...,X_n$ iid from $\mathcal{N}(\mu,\sigma^2)$ with unknown μ and known σ^2 Loss = the squared error loss.

By Theorem 2.1, the risk function of any decision rule is continuous in μ if the risk is finite.

Apply Theorem 4.3 to the sample mean \bar{X}

Let Π _{*j*} = *N*(0,*j*). $\textsf{Since } R_{\bar{X}}(\mu) = \sigma^2/n, \ r_{\bar{X}}(\Pi_j) = \sigma^2/n \text{ for any } j.$ Hence, condition (a) in Theorem 4.3 is satisfied. From Example 2.25, the Bayes estimator w.r.t. Π*^j* is

$$
\delta_j(X)=\frac{nj}{nj+\sigma^2}\bar{X}
$$

Thus,

$$
R_{\delta_j}(\mu) = \frac{\sigma^2 n j^2 + \sigma^4 \mu^2}{(n j + \sigma^2)^2}
$$

and

$$
r_j^*(\Pi_j)=\int R_{\delta_j}(\mu)d\Pi_j=\frac{\sigma^2j}{nj+\sigma^2}.
$$

For any $O_{\mu_0, \eta} = {\mu : |\mu - \mu_0| < \eta},$

$$
\Pi_j(O_{\mu_0,\eta}) = \Phi\left(\frac{\mu_0 + \eta}{\sqrt{j}}\right) - \Phi\left(\frac{\mu_0 - \eta}{\sqrt{j}}\right) = \frac{2\eta \Phi'(\xi_j)}{\sqrt{j}}
$$

for some ξ_j satisfying $(\mu_0 - \eta)/\sqrt{j}$ \leq ξ_j \leq $(\mu_0 + \eta)/\sqrt{j},$ where Φ is the standard normal c.d.f. and Φ' is its derivative. Since $\Phi'(\xi_j)\rightarrow\Phi'(0)=(2\pi)^{-1/2},$

$$
\frac{r_{\bar{\chi}}(\Pi_j)-r^*_j(\Pi_j)}{\Pi_j(O_{\mu_0,\eta})}=\frac{\sigma^4\sqrt{j}}{2\eta\Phi'(\xi_j)n(\eta_j+\sigma^2)}\rightarrow 0
$$

as $j \rightarrow \infty$.

Hence, Theorem 4.3 applies and the sample [me](#page-4-0)[an](#page-6-0) \bar{X} \bar{X} \bar{X} [is](#page-6-0) [a](#page-0-0)[d](#page-0-1)[mis](#page-0-0)[si](#page-0-1)[bl](#page-0-0)[e.](#page-0-1) Thus, condition (b) in Theorem 4.3 is satisfied.

UW-Madison (Statistics) and [Stat 710 Lecture 2](#page-0-0) Jan 2019 6/15

For any estimator *T* of ϑ , its bias is $E(T) - \vartheta$

Proposition 4.2 (Bayes estimators are biased)

If $\delta(X)$ is a Bayes estimator of $\vartheta = g(\theta)$ under the squared error loss, then $\delta(X)$ is not unbiased except in the trivial case where $r_{\delta}(\Pi)=0.$

- Proposition 4.2 can be used to check whether an estimator can be a Bayes estimator w.r.t. some prior under the squared error loss.
- However, a generalized Bayes estimator may be unbiased; see, for instance, Examples 4.3 and 4.7.

Proof of Proposition 4.2

Suppose that $\delta(X)$ is unbiased, i.e., $E[\delta(X)|\vec{\theta}] = g(\vec{\theta})$. Conditioning on $\vec{\theta}$ and using Proposition 1.10, we obtain that $E[g(\vec{\theta})\delta(X)] = E\{g(\vec{\theta})E[\delta(X)|\vec{\theta}]\} = E[g(\vec{\theta})]^2.$

Since $\delta(X) = E[g(\vec{\theta})|X]$, conditioning on X and using Proposition 1.10, $E[g(\vec{\theta})\delta(X)] = E\{\delta(X)E[g(\vec{\theta})|X]\} = E[\delta(X)]^2$.

Then

$$
r_{\delta}(\Pi) = E[\delta(X) - g(\vec{\theta})]^2 = E[\delta(X)]^2 + E[g(\vec{\theta})]^2 - 2E[g(\vec{\theta})\delta(X)] = 0.
$$

UW-Madison (Statistics) State 3 [Stat 710 Lecture 2](#page-0-0) Jan 2019 1 Jan 2019

Bayesian computation

We first consider an example, in which we need the following useful lemma.

Lemma 4.1

Suppose that *X* has a p.d.f. $f_{\theta}(x)$ w.r.t. a σ -finite measure v. Suppose that $\theta=(\theta_1,\theta_2),\,\theta_j\in\Theta_j,$ and that the prior has a p.d.f.

$$
\pi(\theta)=\pi_{\theta_1|\theta_2}(\theta_1)\pi_{\theta_2}(\theta_2),
$$

where $\pi_{\theta_2}(\theta_2)$ is a p.d.f. w.r.t. a σ -finite measure v_2 on Θ_2 and for any given θ_2 , $\pi_{\theta_1 \mid \theta_2}(\theta_1)$ is a p.d.f. w.r.t. a σ -finite measure v_1 on $\Theta_1.$ Suppose further that if θ_2 is given, the Bayes estimator of $h(\theta_1) = g(\theta_1, \theta_2)$ under the squared error loss is $\delta(X, \theta_2)$. Then the Bayes estimator of $g(\theta_1, \theta_2)$ under the squared error loss is $\delta(X)$ with

$$
\delta(x) = \int_{\Theta_2} \delta(x,\theta_2) \rho_{\theta_2|x}(\theta_2) dv_2,
$$

where $p_{\theta_2|x}(\theta_2)$ $p_{\theta_2|x}(\theta_2)$ $p_{\theta_2|x}(\theta_2)$ is the posterior p[.](#page-8-0)d.f. of $\vec{\theta}_2$ giv[en](#page-6-0) $X\!=\!x.$ $X\!=\!x.$ $X\!=\!x.$ $X\!=\!x.$

Example 4.9

Consider a linear model

$$
X_{ij} = \beta^{\tau} Z_i + \varepsilon_{ij}, \qquad j = 1,...,n_i, i = 1,...,k,
$$

where β ∈ R*^p* is unknown, *Zⁱ* 's are known vectors, ε*ij* 's are independent, and ε_{ij} is $N(0, \sigma_i^2)$, $j = 1, ..., n_i$, $i = 1, ..., k$. Let *X* be the sample vector containing all X_{ii} 's. The parameter vector is $\theta = (\beta, \omega)$, $\omega = (\omega_1, ..., \omega_k)$ and $\omega_i = (2\sigma_i^2)^{-1}$. Assume the prior for θ has the Lebesgue p.d.f.

$$
c\,\pi(\beta)\prod_{i=1}^k\omega_i^{\alpha}e^{-\omega_i/\gamma},
$$

where $\alpha > 0$, $\gamma > 0$, and $c > 0$ are known constants and $\pi(\beta)$ is a known Lebesgue p.d.f. on \mathscr{R}^p .

The posterior p.d.f. of θ is then proportional to

$$
h(X,\theta)=\pi(\beta)\prod_{i=1}^k\omega_i^{n_i/2+\alpha}e^{-\left[\gamma^{-1}+v_i(\beta)\right]\omega_i},
$$

where $v_i(\beta) = \sum_{j=1}^{n_i} (X_{ij} - \beta^{\tau} Z_i)^2$.

Example 4.9 (continued)

If $β$ is known, the Bayes estimator of $σ_i²$ under the squared error loss is

$$
\int \frac{1}{2\omega_i} \frac{h(X, \theta)}{\int h(X, \theta) d\omega} d\omega = \frac{\gamma^{-1} + v_i(\beta)}{2\alpha + n_i}
$$

.

By Lemma 4.1, the Bayes estimator of σ_i^2 is

$$
\widehat{\sigma}_i^2 = \int \frac{\gamma^{-1} + v_i(\beta)}{2\alpha + n_i} f_{\beta|X}(\beta) d\beta,
$$

where

$$
f_{\beta|X}(\beta) \propto \int h(X,\theta)d\omega
$$

$$
\propto \pi(\beta)\prod_{i=1}^{k} \int \omega_i^{\alpha+n_i/2} e^{-[\gamma^{-1}+v_i(\beta)]\omega_i}d\omega_i
$$

$$
\propto \pi(\beta)\prod_{i=1}^{k} [\gamma^{-1}+v_i(\beta)]^{-(\alpha+1+n_i/2)}
$$

is the posterior p.d.f. of β .

Example 4.9 (continued)

The Bayes estimator of *l^τβ* for any *l* ∈ \mathscr{R}^{ρ} is then the posterior mean of *l* ^τβ w.r.t. the p.d.f. *f*β|*^X* (β).

In this problem, Bayes estimators do not have explicit forms.

A numerical method has to be used to evaluate Bayes estimators (see Example 4.10).

Let \bar{X}_i and S_i^2 be the sample mean and variance of X_{ij} , $j = 1, ..., n_i$ $(S_i^2$ is defined to be 0 if $n_i = 1$)

Let $\sigma_0^2 = (2\alpha\gamma)^{-1}$ (the prior mean of σ_i^2).

Then the Bayes estimator $\widehat{\sigma}_{i}^{2}$ can be written as

$$
\frac{2\alpha}{2\alpha+n_i}\sigma_0^2+\frac{n_i-1}{2\alpha+n_i}S_i^2+\frac{n_i}{2\alpha+n_i}\int(\bar X_{i\cdot}-\beta^\tau Z_i)^2f_{\beta|X}(\beta)d\beta.
$$

 $\overline{}$ This Bayes estimator is a weighted average of prior information, "within group" variation, and averaged squared "residuals".

 QQQ

4 0 8 4 6 8 4 9 8 4 9 8 1

Markov chain Monte Carlo (MCMC)

Often, Bayes actions or estimators have to be computed numerically. Typically we need to compute

$$
\mathsf{E}_\rho(g)=\int_\Theta g(\theta)\rho(\theta)d\nu
$$

with some function g , where $p(\theta)$ is a p.d.f. w.r.t. a σ -finite measure v on $(\Theta,\mathscr{B}_{\Theta})$ and $\Theta\subset\mathscr{R}^{\mathsf{k}}.$

If *g* is an indicator function of $A \in \mathcal{B}_{\Theta}$ and $p(\theta)$ is the posterior p.d.f. of θ given $X = x$, then $E_p(g)$ is the posterior probability of A. There are many numerical methods for computing integrals $E_p(q)$.

The simple Monte Carlo method

Generate i.i.d. $\theta^{(1)},...,\theta^{(m)}$ from a p.d.f. $h(\theta)>$ 0 w.r.t. $v.$ By the SLLN, as $m \rightarrow \infty$,

$$
\widehat{E}_p(g) = \frac{1}{m} \sum_{j=1}^m \frac{g(\theta^{(j)})p(\theta^{(j)})}{h(\theta^{(j)})} \rightarrow_{a.s.} \int_{\Theta} \frac{g(\theta)p(\theta)}{h(\theta)} h(\theta) d\nu = E_p(g).
$$

Hence $E_p(g)$ $E_p(g)$ $E_p(g)$ $E_p(g)$ $E_p(g)$ is a numerical approximation to $E_p(g)$ [.](#page-10-0)

The simple Monte Carlo method may not work well because

- the convergence of $E_p(g)$ is very slow when k (the dimension of Θ) is large
- generating a random vector from some *k*-dimensional distribution may be difficult, if not impossible.

More sophisticated MCMC methods

Different from the simple Monte Carlo in two aspects:

- **e** generating random vectors can be done using distributions whose dimensions are much lower than *k*
- $\theta^{(1)},...,\theta^{(m)}$ are not independent, but form a homogeneous Markov chain.

Many MCMC methods were developed in the last 20 years We only consider one of them as an example

(ロトイ部)→(差)→(差)→

 $\overline{}$

 Ω

Gibbs sampler

Let *y* = (*y*1,*y*2,...,*y^d*). (*y^j* 's may be vectors with different dimensions) At step *t* = 1,2,..., given *y* (*t*−1) , generate $y_1^{(t)}$ 1 from *P*(*y* (*t*−1) ,^(t−1), ..., y^(t−1),
², *d*^(*t*−1)
 d^(*t*−1) $\binom{(i-1)}{1}, \ldots,$ *y* (*t*) $f_j^{(t)}$ from $P(y_1^{(t)})$ 1 ,...,*y* (*t*) *j*−1 ,*y* (*t*−1) *j*+1 ,...,*y* (*t*−1) *k* |*y* (*t*−1) *j*),..., $y_k^{(t)}$ $P_k(t)$ from $P_k(y_1^{(t)})$ 1 ,...,*y* (*t*) *k*−1 |*y* (*t*−1) $\binom{k^{(l-1)}}{k}$.

Example 4.10

Consider Example 4.9 (normal linear model).

Under the given prior for $\theta = (\beta, \omega)$, it is difficult to generate random vectors directly from the posterior p.d.f.

$$
p(\theta) \propto \pi(\beta) \prod_{i=1}^k \omega_i^{n_i/2 + \alpha} e^{-[\gamma^{-1} + v_i(\beta)]\omega_i},
$$

which does not have a familiar form.

generate random vectors from the posterior of β , given *x* and ω , and $\|\cdot\|$ To apply a Gibbs sampler with $y = \theta$, $y_1 = \beta$, and $y_2 = \omega$, we need to the posterior of ω, given *x* and β.

UW-Madison (Statistics) and [Stat 710 Lecture 2](#page-0-0) Jan 2019 14 / 15

Example 4.10 (continued)

Since

$$
p(\theta) \propto \pi(\beta) \prod_{i=1}^k \omega_i^{n_i/2 + \alpha} e^{-[\gamma^{-1} + v_i(\beta)]\omega_i},
$$

the posterior of $\omega = (\omega_1, ..., \omega_k)$, given x and β , is a product of marginals of ω_i 's that are the gamma distributions $\Gamma(\alpha + 1 + n_i/2, [\gamma^{-1} + v_i(\beta)]^{-1}), i = 1, ..., k.$ Assume now that $\pi(\beta) \equiv 1$ (noninformative prior for β). The posterior p.d.f. of β, given *x* and ω, is proportional to

$$
\prod_{i=1}^k e^{-\omega_i v_i(\beta)} \propto e^{-\|W^{1/2}Z\beta - W^{1/2}X\|^2},
$$

where W is the diagonal block matrix whose *i*th block is $\omega_i I_{n_i}$. Let $n = \sum_{i=1}^k n_i$.

beamer-tu-logo The posterior of $W^{1/2}Z\beta$, given X and $ω$, is $N_n(W^{1/2}X,2^{-1}I_n)$ and the $\mathsf{posterior\ of\ }\beta,$ given X and $\omega,$ is $\mathsf{N}_p((Z^\tau WZ)^{-1}Z^\tau WX, 2^{-1}(Z^\tau WZ)^{-1})$ (*Z* ^τ*WZ* is assumed of full rank for simplicity), since $\beta = [(Z^\tau WZ)^{-1}Z^\tau W^{1/2}]W^{1/2}Z\beta.$ Random generation using these two posterior [di](#page-13-0)s[tr](#page-0-1)[ib](#page-11-0)[ut](#page-14-0)[i](#page-0-1)[on](#page-0-0)[s i](#page-0-1)[s](#page-0-0) [ea](#page-0-1)[sy](#page-0-0)[.](#page-0-1)