Lecture 3: Minimaxity and admissibility

Consider estimators of a real-valued $\vartheta = g(\theta)$ based on a sample *X* from $P_{\theta}, \theta \in \Theta$, under loss *L* and risk $R_T(\theta) = E[L(T(X), \theta)]$.

Minimax estimator

An estimator δ is minimax if $\sup_{\theta} R_{\delta}(\theta) = \inf_{\text{all } T} \sup_{\theta} R_{T}(\theta)$

Discussion

- A minimax estimator can be very conservative and unsatisfactory. It tries to do as well as possible in the worst case.
- A unique minimax estimator is admissible, since any estimator better than a minimax estimator is also minimax.
- We should find an admissible minimax estimator.
- Different for UMVUE: if a UMVUE is inadmissible, it is dominated by a biased estimator)
- If a minimax estimator has some other good properties (e.g., it is a Bayes estimator), then it is often a reasonable estimator.

Minimax estimator

The following result shows when a Bayes estimator is minimax.

Theorem 4.11 (minimaxity of a Bayes estimator)

Let Π be a proper prior on Θ and δ be a Bayes estimator of ϑ w.r.t. Π . Suppose δ has constant risk on Θ_{Π} .

If $\Pi(\Theta_{\Pi}) = 1$, then δ is minimax.

If, in addition, δ is the unique Bayes estimator w.r.t. Π , then it is the unique minimax estimator.

Proof

Let T be any other estimator of ϑ . Then

$$\sup_{\theta\in\Theta} R_{\mathcal{T}}(\theta) \geq \int_{\Theta_{\Pi}} R_{\mathcal{T}}(\theta) d\Pi \geq \int_{\Theta_{\Pi}} R_{\delta}(\theta) d\Pi = \sup_{\theta\in\Theta} R_{\delta}(\theta).$$

If δ is the unique Bayes estimator, then the second inequality in the previous expression should be replaced by > and, therefore, δ is the unique minimax estimator.

UW-Madison (Statistics)

・ロト ・ 四ト ・ ヨト ・ ヨト

Example 4.18

Let $X_1, ..., X_n$ be i.i.d. binary random variables with $P(X_1 = 1) = p$. Consider the estimation of p under the squared error loss. The UMVUE \bar{X} has risk p(1-p)/n which is not constant. In fact, \bar{X} is not minimax (Exercise 67).

To find a minimax estimator by applying Theorem 4.11, we consider the Bayes estimator w.r.t. the beta distribution $B(\alpha,\beta)$ with known α and β (Exercise 1):

$$\delta(X) = (\alpha + nX)/(\alpha + \beta + n).$$

$$R_{\delta}(p) = [np(1-p) + (\alpha - \alpha p - \beta p)^{2}]/(\alpha + \beta + n)^{2}.$$

To apply Theorem 4.11, we need to find values of $\alpha > 0$ and $\beta > 0$ such that $R_{\delta}(p)$ is constant.

It can be shown that $R_{\delta}(p)$ is constant if and only if $\alpha = \beta = \sqrt{n/2}$, which leads to the unique minimax estimator

$$T(X) = (n\bar{X} + \sqrt{n}/2)/(n + \sqrt{n}).$$

The risk of *T* is $R_T = 1/[4(1 + \sqrt{n})^2]$.

Example 4.18 (continued)

Note that T is a Bayes estimator and has some good properties. Comparing the risk of T with that of \overline{X} , we find that T has smaller risk if and only if

$$\mathbf{D} \in \left(\frac{1}{2} - \frac{1}{2}\sqrt{1 - \frac{n}{(1 + \sqrt{n})^2}}, \ \frac{1}{2} + \frac{1}{2}\sqrt{1 - \frac{n}{(1 + \sqrt{n})^2}}\right)$$

Thus, for a small *n*, *T* is better (and can be much better) than \overline{X} for most of the range of *p* (Figure 4.1).

When $n \rightarrow \infty$, the above interval shrinks toward $\frac{1}{2}$.

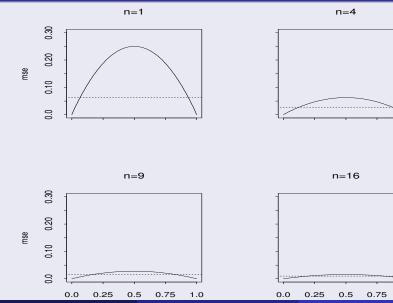
Hence, for a large (and even moderate) n, \bar{X} is better than T for most of the range of p (Figure 4.1).

The limit of the asymptotic relative efficiency of *T* w.r.t. \bar{X} is 4p(1-p), which is always smaller than 1 when $p \neq \frac{1}{2}$ and equals 1 when $p = \frac{1}{2}$. Minimaxity depends strongly on the loss function.

Under the loss function $L(p, a) = (a-p)^2/[p(1-p)]$, \bar{X} has constant risk and is the unique Bayes estimator w.r.t. the uniform prior on (0,1). By Theorem 4.11, \bar{X} is the unique minimax estimator.

The risk, however, of T is $1/[4(1+\sqrt{n})^2p(1-p)]$, which is unbounded.

Figure 4.1. mse's of \bar{X} (curve) and T(X) (straight line) in Example 4.18



UW-Madison (Statistics)

Stat 710 Lecture 3

75 1.0 Jan 2019 5 / 15

How to find a minimax estimator?

Candidates for minimax: estimators having constant risks.

Theorem 4.11 (minimaxity of a Bayes estimator)

A limit of Bayes estimators

In many cases a constant risk estimator is not a Bayes estimator (e.g., an unbiased estimator under the squared error loss), but a limit of Bayes estimators w.r.t. a sequence of priors. The next result may be used to find a minimax estimator.

Theorem 4.12

Let Π_j , j = 1, 2, ..., be a sequence of priors and r_j be the Bayes risk of a Bayes estimator of ϑ w.r.t. Π_j .

Let T be a constant risk estimator of ϑ .

If $\liminf_j r_j \ge R_T$, then *T* is minimax.

Although Theorem 4.12 is more general than Theorem 4.11 in finding minimax estimators, it does not provide uniqueness of the minimax estimator even when there is a unique Bayes estimator w.r.t. each Π_j .

UW-Madison (Statistics)

Stat 710 Lecture 3

Example 2.25

Let $X_1, ..., X_n$ be i.i.d. components having the $N(\mu, \sigma^2)$ distribution with an unknown $\mu = \theta \in \mathscr{R}$ and a known σ^2 . If the prior is $N(\mu_0, \sigma_0^2)$, then the posterior of θ given X = x is $N(\mu_*(x), c^2)$ with

$$\mu_*(x) = \frac{\sigma^2}{n\sigma_0^2 + \sigma^2}\mu_0 + \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2}\bar{x} \quad \text{and} \quad c^2 = \frac{\sigma_0^2\sigma^2}{n\sigma_0^2 + \sigma^2}$$

We now show that \bar{X} is minimax under the squared error loss. For any decision rule T,

$$\sup_{\theta \in \mathscr{R}} R_{T}(\theta) \geq \int_{\mathscr{R}} R_{T}(\theta) d\Pi(\theta) \geq \int_{\mathscr{R}} R_{\mu_{*}}(\theta) d\Pi(\theta)$$
$$= E\left\{ [\vec{\theta} - \mu_{*}(X)]^{2} \right\} = E\left\{ E\{[\vec{\theta} - \mu_{*}(X)]^{2} | X\} \right\} = E(c^{2}) = c^{2}.$$

Since this result is true for any $\sigma_0^2 > 0$ and $c^2 \to \sigma^2/n$ as $\sigma_0^2 \to \infty$,

$$\sup_{\theta\in\mathscr{R}}R_{T}(\theta)\geq\frac{\sigma^{2}}{n}=\sup_{\theta\in\mathscr{R}}R_{\bar{X}}(\theta),$$

Example 2.25 (continued)

where the equality holds because the risk of \overline{X} under the squared error loss is σ^2/n and independent of $\theta = \mu$. Thus, \overline{X} is minimax.

To discuss the minimaxity of \bar{X} in the case where σ^2 is unknown, we need the following lemma.

Lemma 4.3

Let Θ_0 be a subset of Θ and T be a minimax estimator of ϑ when Θ_0 is the parameter space. Then T is a minimax estimator if

$$\sup_{\theta\in\Theta}R_{\mathcal{T}}(\theta)=\sup_{\theta\in\Theta_0}R_{\mathcal{T}}(\theta).$$

Proof

If there is an estimator T_0 with $\sup_{\theta \in \Theta} R_{T_0}(\theta) < \sup_{\theta \in \Theta} R_T(\theta)$, then

$$\sup_{\theta\in\Theta_0}R_{T_0}(\theta)\leq \sup_{\theta\in\Theta}R_{T_0}(\theta)<\sup_{\theta\in\Theta}R_{T}(\theta)=\sup_{\theta\in\Theta_0}R_{T}(\theta)$$

which contradicts the minimaxity of T when Θ_0 is the parameter space. Hence, T is minimax when Θ is the parameter space.

UW-Madison (Statistics)

Stat 710 Lecture 3

Example 4.19

Let $X_1, ..., X_n$ be i.i.d. from $N(\mu, \sigma^2)$ with unknown $\theta = (\mu, \sigma^2)$. Consider the estimation of μ under the squared error loss. Suppose first that $\Theta = \mathscr{R} \times (0, c]$ with a constant c > 0. Let $\Theta_0 = \mathscr{R} \times \{c\}$.

From Example 2.25, \bar{X} is a minimax estimator of μ when the parameter space is Θ_0 .

By Lemma 4.3, \bar{X} is also minimax when the parameter space is Θ . Although σ^2 is assumed to be bounded by *c*, the minimax estimator \bar{X} does not depend on *c*.

Consider next the case where $\Theta = \mathscr{R} \times (0, \infty)$, i.e., σ^2 is unbounded. Let *T* be any estimator of μ . For any fixed σ^2 ,

$$\frac{\sigma^2}{n} \leq \sup_{\mu \in \mathscr{R}} R_T(\theta),$$

since σ^2/n is the risk of \bar{X} that is minimax when σ^2 is known. Letting $\sigma^2 \to \infty$, we obtain that $\sup_{\theta} R_T(\theta) = \infty$ for any estimator T. Thus, minimaxity is meaningless (any estimator is minimax).

Admissibility

The following is another result to show admissibility.

Theorem 4.14 (Admissibility in one-parameter exponential families)

Suppose that X has the p.d.f. $c(\theta)e^{\theta T(x)}$ w.r.t. a σ -finite measure v, where T(x) is real-valued and $\theta \in (\theta_-, \theta_+) \subset \mathscr{R}$. Consider the estimation of $\vartheta = E[T(X)]$ under the squared error loss. Let $\lambda \ge 0$ and γ be known constants and let

$$T_{\lambda,\gamma}(X) = (T + \gamma \lambda)/(1 + \lambda).$$

Then a sufficient condition for the admissibility of $T_{\lambda,\gamma}$ is that

$$\int_{ heta_0}^{ heta_+} rac{oldsymbol{e}^{-\gamma\lambda heta}}{[oldsymbol{c}(heta)]^\lambda} oldsymbol{d} heta = \int_{ heta_-}^{ heta_0} rac{oldsymbol{e}^{-\gamma\lambda heta}}{[oldsymbol{c}(heta)]^\lambda} oldsymbol{d} heta = \infty,$$

where $heta_0 \in (heta_-, heta_+)$.

Remarks

- Theorem 4.14 provides a class of admissible estimators.
- The reason why *T*_{λ,γ} is considered is that it is often a Bayes estimator w.r.t. some prior; see Examples 2.25, 4.1, 4.7, and 4.8.
- Using this theorem and Theorem 4.13, we can obtain a class of minimax estimators.
- Although the proof of this theorem is more complicated than that of Theorem 4.3, the application of Theorem 4.14 is typically easier.
- To find minimax estimators, we may use the following result.

Corollary 4.3

Assume that *X* has the p.d.f. as described in Theorem 4.14 with $\theta_{-} = -\infty$ and $\theta_{+} = \infty$.

(i) As an estimator of $\vartheta = E(T)$, T(X) is admissible under the squared error loss and the loss $(a - \vartheta)^2 / \operatorname{Var}(T)$.

(ii) *T* is the unique minimax estimator of ϑ under the loss $(a - \vartheta)^2 / \operatorname{Var}(T)$.

Example 4.20

Let $X_1, ..., X_n$ be i.i.d. from $N(0, \sigma^2)$ with an unknown $\sigma^2 > 0$ and let $Y = \sum_{i=1}^n X_i^2$.

Consider the estimation of σ^2 .

The risk of Y/(n+2) is a constant under the loss $(a - \sigma^2)^2/\sigma^4$. We now apply Theorem 4.14 to show that Y/(n+2) is admissible. Note that the joint p.d.f. of X_i 's is of the form $c(\theta)e^{\theta T(x)}$ with $\theta = -n/(4\sigma^2)$, $c(\theta) = (-2\theta/n)^{n/2}$, T(X) = 2Y/n, $\theta_- = -\infty$, and $\theta_+ = 0$.

By Theorem 4.14, $T_{\lambda,\gamma} = (T + \gamma \lambda)/(1 + \lambda)$ is admissible under the squared error loss if, for some c > 0,

$$\int_{-\infty}^{-c} e^{-\gamma\lambda\theta} \left(\frac{-2\theta}{n}\right)^{-n\lambda/2} d\theta = \int_{0}^{c} e^{\gamma\lambda\theta} \theta^{-n\lambda/2} d\theta = \infty$$

This means that $T_{\lambda,\gamma}$ is admissible if $\gamma = 0$ and $\lambda = 2/n$, or if $\gamma > 0$ and $\lambda \ge 2/n$. In particular, 2Y/(n+2) is admissible for estimating $E(T) = 2E(Y)/n = 2\sigma^2$, under the squared error loss.

Example 4.20 (continued)

It is easy to see that Y/(n+2) is then an admissible estimator of σ^2 under the squared error loss and the loss $(a - \sigma^2)^2/\sigma^4$. Hence Y/(n+2) is minimax under the loss $(a - \sigma^2)^2/\sigma^4$. Note that we cannot apply Corollary 4.3 directly since $\theta_+ = 0$.

Example 4.21

Let $X_1, ..., X_n$ be i.i.d. from the Poisson distribution $P(\theta)$ with an unknown $\theta > 0$.

The joint p.d.f. of X_i 's w.r.t. the counting measure is

$$(x_1!\cdots x_n!)^{-1}e^{-n\theta}e^{n\bar{x}\log\theta}$$

For $\eta = n \log \theta$, the conditions of Corollary 4.3 are satisfied with $T(X) = \overline{X}$. Since $E(T) = \theta$ and $Var(T) = \theta/n$, by Corollary 4.3, \overline{X} is the unique minimax estimator of θ under the loss function $(a - \theta)^2/\theta$.

★週 ▶ ★ 理 ▶ ★ 理 ▶ …

Exercise 37 (#4.83)

Let *X* be an observation from the distribution with Lebesgue density $\frac{1}{2}c(\theta)e^{\theta x - |x|}$, $|\theta| < 1$. (i) Show that $c(\theta) = 1 - \theta^2$. (ii) Show that if $0 \le \alpha \le \frac{1}{2}$, then $\alpha X + \beta$ is admissible for estimating E(X) under the squared error loss.

Solution

(i) Note that

$$\begin{aligned} \frac{1}{2(\theta)} &= \frac{1}{2} \int_{-\infty}^{\infty} e^{\theta x - |x|} dx \\ &= \frac{1}{2} \left(\int_{-\infty}^{0} e^{\theta x + x} dx + \int_{0}^{\infty} e^{\theta x - x} dx \right) \\ &= \frac{1}{2} \left(\int_{0}^{\infty} e^{-(1+\theta)x} dx + \int_{0}^{\infty} e^{-(1-\theta)x} dx \right) \\ &= \frac{1}{2} \left(\frac{1}{1+\theta} + \frac{1}{1-\theta} \right) = \frac{1}{1-\theta^2}. \end{aligned}$$

UW-Madison (Statistics)

Solution (continued)

(ii) Consider first $\alpha > 0$. Let $\alpha = (1 + \lambda)^{-1}$ and $\beta = \gamma \lambda / (1 + \lambda)$.

$$\int_{-1}^{0} \frac{e^{-\gamma\lambda\theta}}{(1-\theta^2)^{\lambda}} d\theta = \int_{0}^{1} \frac{e^{-\gamma\lambda\theta}}{(1-\theta^2)^{\lambda}} d\theta = \infty$$

if and only if $\lambda \ge 1$, i.e., $\alpha \le \frac{1}{2}$.

Hence, $\alpha X + \beta$ is an admissible estimator of E(X) when $0 < \alpha \le \frac{1}{2}$. Consider next $\alpha = 0$.

$$E(X) = \frac{1-\theta^2}{2} \left(\int_{-\infty}^0 x e^{\theta x + x} dx + \int_0^\infty x e^{\theta x - x} dx \right)$$

= $\frac{1-\theta^2}{2} \left(-\int_0^\infty x e^{-(1+\theta)} dx + \int_0^\infty x e^{-(1-\theta)x} dx \right)$
= $\frac{1-\theta^2}{2} \left(\frac{1+\theta}{1-\theta} - \frac{1-\theta}{1+\theta} \right) = \frac{2\theta}{1-\theta^2},$

which takes any value in $(-\infty,\infty)$.

Hence, the constant estimator β is an admissible estimator of E(X).