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Lecture 3: Minimaxity and admissibility

Consider estimators of a real-valued ϑ = g(θ) based on a sample X
from Pθ , θ ∈Θ, under loss L and risk RT (θ) = E [L(T (X ),θ)].

Minimax estimator
An estimator δ is minimax if supθ Rδ (θ) = infall T supθ RT (θ)

Discussion
A minimax estimator can be very conservative and unsatisfactory.
It tries to do as well as possible in the worst case.
A unique minimax estimator is admissible, since any estimator
better than a minimax estimator is also minimax.
We should find an admissible minimax estimator.
Different for UMVUE: if a UMVUE is inadmissible, it is dominated
by a biased estimator)
If a minimax estimator has some other good properties (e.g., it is a
Bayes estimator), then it is often a reasonable estimator.
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Minimax estimator
The following result shows when a Bayes estimator is minimax.

Theorem 4.11 (minimaxity of a Bayes estimator)
Let Π be a proper prior on Θ and δ be a Bayes estimator of ϑ w.r.t. Π.
Suppose δ has constant risk on ΘΠ.
If Π(ΘΠ) = 1, then δ is minimax.
If, in addition, δ is the unique Bayes estimator w.r.t. Π, then it is the
unique minimax estimator.

Proof
Let T be any other estimator of ϑ . Then

sup
θ∈Θ

RT (θ)≥
∫

ΘΠ

RT (θ)dΠ≥
∫

ΘΠ

Rδ (θ)dΠ = sup
θ∈Θ

Rδ (θ).

If δ is the unique Bayes estimator, then the second inequality in the
previous expression should be replaced by > and, therefore, δ is the
unique minimax estimator.
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Example 4.18
Let X1, ...,Xn be i.i.d. binary random variables with P(X1 = 1) = p.
Consider the estimation of p under the squared error loss.
The UMVUE X̄ has risk p(1−p)/n which is not constant.
In fact, X̄ is not minimax (Exercise 67).
To find a minimax estimator by applying Theorem 4.11, we consider
the Bayes estimator w.r.t. the beta distribution B(α,β ) with known α

and β (Exercise 1):
δ (X ) = (α + nX̄ )

/
(α + β + n).

Rδ (p) = [np(1−p) + (α−αp−βp)2]
/

(α + β + n)2.

To apply Theorem 4.11, we need to find values of α > 0 and β > 0
such that Rδ (p) is constant.
It can be shown that Rδ (p) is constant if and only if α = β =

√
n/2,

which leads to the unique minimax estimator

T (X ) = (nX̄ +
√

n/2)
/

(n +
√

n).

The risk of T is RT = 1/[4(1 +
√

n)2].
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Example 4.18 (continued)
Note that T is a Bayes estimator and has some good properties.
Comparing the risk of T with that of X̄ , we find that T has smaller risk
if and only if

p ∈
(

1
2 −

1
2

√
1− n

(1+
√

n)2 ,
1
2 + 1

2

√
1− n

(1+
√

n)2

)
.

Thus, for a small n, T is better (and can be much better) than X̄ for
most of the range of p (Figure 4.1).
When n→ ∞, the above interval shrinks toward 1

2 .
Hence, for a large (and even moderate) n, X̄ is better than T for most
of the range of p (Figure 4.1).
The limit of the asymptotic relative efficiency of T w.r.t. X̄ is 4p(1−p),
which is always smaller than 1 when p 6= 1

2 and equals 1 when p = 1
2 .

Minimaxity depends strongly on the loss function.
Under the loss function L(p,a) = (a−p)2/[p(1−p)], X̄ has constant
risk and is the unique Bayes estimator w.r.t. the uniform prior on (0,1).
By Theorem 4.11, X̄ is the unique minimax estimator.
The risk, however, of T is 1/[4(1 +

√
n)2p(1−p)], which is unbounded.
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Figure 4.1. mse’s of X̄ (curve) and T (X ) (straight line)
in Example 4.18

 

m
se

     

0.
0

0.
10

0.
20

0.
30

n=1

 

     

n=4

p

m
se

0.0 0.25 0.5 0.75 1.0

0.
0

0.
10

0.
20

0.
30

n=9

p

0.0 0.25 0.5 0.75 1.0

n=16

UW-Madison (Statistics) Stat 710 Lecture 3 Jan 2019 5 / 15



beamer-tu-logo

How to find a minimax estimator?
Candidates for minimax: estimators having constant risks.
Theorem 4.11 (minimaxity of a Bayes estimator)

A limit of Bayes estimators
In many cases a constant risk estimator is not a Bayes estimator (e.g.,
an unbiased estimator under the squared error loss), but a limit of
Bayes estimators w.r.t. a sequence of priors.
The next result may be used to find a minimax estimator.

Theorem 4.12
Let Πj , j = 1,2, ..., be a sequence of priors and rj be the Bayes risk of a
Bayes estimator of ϑ w.r.t. Πj .
Let T be a constant risk estimator of ϑ .
If liminf j rj ≥ RT , then T is minimax.

Although Theorem 4.12 is more general than Theorem 4.11 in finding
minimax estimators, it does not provide uniqueness of the minimax
estimator even when there is a unique Bayes estimator w.r.t. each Πj .
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Example 2.25

Let X1, ...,Xn be i.i.d. components having the N(µ,σ2) distribution with
an unknown µ = θ ∈R and a known σ2.
If the prior is N(µ0,σ

2
0 ), then the posterior of θ given X = x is

N(µ∗(x),c2) with

µ∗(x) =
σ2

nσ2
0 + σ2

µ0 +
nσ2

0

nσ2
0 + σ2

x̄ and c2 =
σ2

0 σ2

nσ2
0 + σ2

We now show that X̄ is minimax under the squared error loss.
For any decision rule T ,

sup
θ∈R

RT (θ)≥
∫

R
RT (θ)dΠ(θ)≥

∫
R

Rµ∗(θ)dΠ(θ)

= E
{

[~θ −µ∗(X )]2
}

= E
{

E{[~θ −µ∗(X )]2|X}
}

= E(c2) = c2.

Since this result is true for any σ2
0 > 0 and c2→ σ2/n as σ2

0 → ∞,

sup
θ∈R

RT (θ)≥ σ2

n
= sup

θ∈R
RX̄ (θ),
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Example 2.25 (continued)

where the equality holds because the risk of X̄ under the squared error
loss is σ2/n and independent of θ = µ.
Thus, X̄ is minimax.
To discuss the minimaxity of X̄ in the case where σ2 is unknown, we
need the following lemma.

Lemma 4.3
Let Θ0 be a subset of Θ and T be a minimax estimator of ϑ when Θ0 is
the parameter space. Then T is a minimax estimator if

sup
θ∈Θ

RT (θ) = sup
θ∈Θ0

RT (θ).

Proof
If there is an estimator T0 with supθ∈Θ RT0(θ) < supθ∈Θ RT (θ), then

sup
θ∈Θ0

RT0(θ)≤ sup
θ∈Θ

RT0(θ) < sup
θ∈Θ

RT (θ) = sup
θ∈Θ0

RT (θ),

which contradicts the minimaxity of T when Θ0 is the parameter space.
Hence, T is minimax when Θ is the parameter space.
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Example 4.19

Let X1, ...,Xn be i.i.d. from N(µ,σ2) with unknown θ = (µ,σ2).
Consider the estimation of µ under the squared error loss.
Suppose first that Θ = R× (0,c] with a constant c > 0.
Let Θ0 = R×{c}.
From Example 2.25, X̄ is a minimax estimator of µ when the
parameter space is Θ0.
By Lemma 4.3, X̄ is also minimax when the parameter space is Θ.
Although σ2 is assumed to be bounded by c, the minimax estimator X̄
does not depend on c.
Consider next the case where Θ = R× (0,∞), i.e., σ2 is unbounded.
Let T be any estimator of µ. For any fixed σ2,

σ2

n
≤ sup

µ∈R
RT (θ),

since σ2/n is the risk of X̄ that is minimax when σ2 is known.
Letting σ2→ ∞, we obtain that supθ RT (θ) = ∞ for any estimator T .
Thus, minimaxity is meaningless (any estimator is minimax).
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Admissibility

The following is another result to show admissibility.

Theorem 4.14 (Admissibility in one-parameter exponential
families)

Suppose that X has the p.d.f. c(θ)eθT (x) w.r.t. a σ -finite measure ν ,
where T (x) is real-valued and θ ∈ (θ−,θ+)⊂R.
Consider the estimation of ϑ = E [T (X )] under the squared error loss.
Let λ ≥ 0 and γ be known constants and let

Tλ ,γ (X ) = (T + γλ )/(1 + λ ).

Then a sufficient condition for the admissibility of Tλ ,γ is that

∫
θ+

θ0

e−γλθ

[c(θ)]λ
dθ =

∫
θ0

θ−

e−γλθ

[c(θ)]λ
dθ = ∞,

where θ0 ∈ (θ−,θ+).
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Remarks
Theorem 4.14 provides a class of admissible estimators.
The reason why Tλ ,γ is considered is that it is often a Bayes
estimator w.r.t. some prior; see Examples 2.25, 4.1, 4.7, and 4.8.
Using this theorem and Theorem 4.13, we can obtain a class of
minimax estimators.
Although the proof of this theorem is more complicated than that
of Theorem 4.3, the application of Theorem 4.14 is typically easier.
To find minimax estimators, we may use the following result.

Corollary 4.3
Assume that X has the p.d.f. as described in Theorem 4.14 with
θ− =−∞ and θ+ = ∞.
(i) As an estimator of ϑ = E(T ), T (X ) is admissible under the squared
error loss and the loss (a−ϑ)2/ Var(T ).
(ii) T is the unique minimax estimator of ϑ under the loss
(a−ϑ)2/ Var(T ).
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Example 4.20

Let X1, ...,Xn be i.i.d. from N(0,σ2) with an unknown σ2 > 0 and let
Y = ∑

n
i=1 X 2

i .
Consider the estimation of σ2.
The risk of Y/(n + 2) is a constant under the loss (a−σ2)2/σ4.
We now apply Theorem 4.14 to show that Y/(n + 2) is admissible.
Note that the joint p.d.f. of Xi ’s is of the form c(θ)eθT (x) with
θ =−n/(4σ2), c(θ) = (−2θ/n)n/2, T (X ) = 2Y/n, θ− =−∞, and
θ+ = 0.
By Theorem 4.14, Tλ ,γ = (T + γλ )/(1 + λ ) is admissible under the
squared error loss if, for some c > 0,∫ −c

−∞

e−γλθ

(
−2θ

n

)−nλ/2

dθ =
∫ c

0
eγλθ

θ
−nλ/2dθ = ∞

This means that Tλ ,γ is admissible if γ = 0 and λ = 2/n, or if γ > 0 and
λ ≥ 2/n.
In particular, 2Y/(n + 2) is admissible for estimating
E(T ) = 2E(Y )/n = 2σ2, under the squared error loss.
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Example 4.20 (continued)

It is easy to see that Y/(n + 2) is then an admissible estimator of σ2

under the squared error loss and the loss (a−σ2)2/σ4.
Hence Y/(n + 2) is minimax under the loss (a−σ2)2/σ4.
Note that we cannot apply Corollary 4.3 directly since θ+ = 0.

Example 4.21
Let X1, ...,Xn be i.i.d. from the Poisson distribution P(θ) with an
unknown θ > 0.
The joint p.d.f. of Xi ’s w.r.t. the counting measure is

(x1! · · ·xn!)−1e−nθ enx̄ logθ

For η = n log θ , the conditions of Corollary 4.3 are satisfied with
T (X ) = X̄ .
Since E(T ) = θ and Var(T ) = θ/n, by Corollary 4.3, X̄ is the unique
minimax estimator of θ under the loss function (a−θ)2/θ .
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Exercise 37 (#4.83)
Let X be an observation from the distribution with Lebesgue density
1
2c(θ)eθx−|x |, |θ |< 1.
(i) Show that c(θ) = 1−θ 2.
(ii) Show that if 0≤ α ≤ 1

2 , then αX + β is admissible for estimating
E(X ) under the squared error loss.

Solution
(i) Note that

1
c(θ)

=
1
2

∫
∞

−∞

eθx−|x |dx

=
1
2

(∫ 0

−∞

eθx+xdx +
∫

∞

0
eθx−xdx

)
=

1
2

(∫
∞

0
e−(1+θ)xdx +

∫
∞

0
e−(1−θ)xdx

)
=

1
2

(
1

1 + θ
+

1
1−θ

)
=

1
1−θ 2 .
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Solution (continued)

(ii) Consider first α > 0. Let α = (1 + λ )−1 and β = γλ/(1 + λ ).∫ 0

−1

e−γλθ

(1−θ 2)λ
dθ =

∫ 1

0

e−γλθ

(1−θ 2)λ
dθ = ∞

if and only if λ ≥ 1, i.e., α ≤ 1
2 .

Hence, αX + β is an admissible estimator of E(X ) when 0 < α ≤ 1
2 .

Consider next α = 0.

E(X ) =
1−θ 2

2

(∫ 0

−∞

xeθx+xdx +
∫

∞

0
xeθx−xdx

)
=

1−θ 2

2

(
−
∫

∞

0
xe−(1+θ)dx +

∫
∞

0
xe−(1−θ)xdx

)
=

1−θ 2

2

(
1 + θ

1−θ
− 1−θ

1 + θ

)
=

2θ

1−θ 2 ,

which takes any value in (−∞,∞).
Hence, the constant estimator β is an admissible estimator of E(X ).
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